Supporting Information

Facile synthesis of morphology-controlled hybrid structure of ZnCo₂O₄ nanosheets and nanowires for high-performance asymmetric supercapacitors

Huiqing Fan,^{a,*} Hexiang Di,^a Yanlei Bi,^a Ru Wang,^a Guangwu Wen,^b Lu-Chang Qin ^c

^a School of Chemistry and Chemical Engineering, Shandong University of

Technology, Zibo, China

^b School of Materials Science and Engineering, Shandong University of Technology, Zibo, China

^c Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA

Fig. S1. EDS of the 3D hierarchical ZnCo₂O₄ nanosheets@nanowires films.

Fig. S2. Electrochemical properties of $ZnCo_2O_4$ films electrodes obtained at different concentration of NH₄F. (a) CV curves at the scan rate of 20 mV s⁻¹. (b) Galvanostatic charge-discharge curves at current density of 1 A g⁻¹. (c) Specific capacitances at different current densities. (d) Cycling stability at 1 A g⁻¹.

Sample	$R_{s}\left(\Omega ight)$	$R_{ct}(\Omega)$	$Z_W(\Omega)$	CPE (µF cm ⁻²)
Before 10,000 cycles	0.49	0.29	0.51	0.02
After 10,000 cycles	0.51	1.92	2.06	0.03

Table S1 Parameters obtained by fitting of Nyquist plots in Fig. 7f.

Fig. S3. (a) CV curves of the 3D hierarchical $ZnCo_2O_4$ nanosheets@nanowires films and AC electrodes at the scan rate of 20 mV s⁻¹. (b) CV curves of $ZnCo_2O_4$ //AC ASC device in different potential ranges.

Initial	5 min	10 min
15 min 🦘	20 min	25 min

Fig. S4. Optical images of a blue LED powered by three ASC devices connected in series and the lightened blue LED at different stages.

Table S2 Comparison of the electrochemical properties between the as-prepared 3D hierarchical $ZnCo_2O_4$ nanosheets@nanowires films and recent results reported in literature.

Materials	Electrolyte	Voltage window	Specific Capacity	Cycling Stability	Ref.
ZnCo ₂ O ₄ nanoparticles	1 M KOH	0-0.45 V	843 F g ⁻¹ at 1 A g ⁻¹	91.5% after 2,000 cycles at 1 A g ⁻¹	[1]
3D hierarchical ZnCo ₂ O ₄	6 M KOH	0-0.4 V	421.05 F g ⁻¹ at 1 A g ⁻¹	88% after 5000 cycles at 5 A g ⁻¹	[2]
ZnCo ₂ O ₄ nanobelts	2 M KOH	0-0.45 V	776.2 F g ⁻¹ at 1 A g ⁻¹	84.3% after 1,500 cycles at 3 A g ⁻¹	[3]
ZnCo ₂ O ₄ nanowires	2 M KOH	0-0.4 V	1099 F g ⁻¹ at 1 A g ⁻¹	84.8% after 5,000 cycles at 40 A g ⁻¹	[4]
ZnCo ₂ O ₄ microspheres	1 M KOH	0-0.425 V	344.44 F g ⁻¹ at 1 mA cm ⁻ ²	85% after 500 cycles at 100 mV s ⁻¹	[5]
peony-like ZnCo ₂ O ₄	3 М КОН	0-0.55 V	440 F g ⁻¹ at 1 A g ⁻¹	98% after 5,000 cycles at 2 A g ⁻¹	[6]
ZnCo ₂ O ₄ with Zn/Co vacancies	6 M KOH	0-0.4 V	1608.95 F g ⁻¹ at 0.35 A g ⁻¹	89% after 3,500 cycles at 5 A g ⁻¹	[7]
flower-like ZnCo ₂ O ₄	КОН	0-0.4 V	680 F g ⁻¹ at 1 A g ⁻¹	90% after 2,000 cycles at 5 A g ⁻¹	[8]
Porous ZnCo ₂ O ₄ quasi-cubes	2 M KOH	0-0.45 V	804 F g ⁻¹ at 1 A g ⁻¹	79.2% after 3,000 cycles at 5 A g ⁻¹	[9]
ZnCo ₂ O ₄ nanocubes with 3D porous structure	6 М КОН	0-0.5 V	542.6 F g ⁻¹ at 1 A g ⁻¹	87% after 8,000 cycles at 15 A g ⁻¹	[10]

N-rGO/ZnCo ₂ O ₄	1 М КОН	0-0.6 V	950 F g ⁻¹ at 1 A g ⁻¹	89.6% after 5,000 cycles at 1 A g ⁻¹	[11]
flower-like ZnCo ₂ O ₄ /ZnO	6 M KOH	0-0.5 V	803 F g ⁻¹ at 1 A g ⁻¹	91.04% after 10,000 cycles at 10 A g ⁻¹	[12]
3D hierarchical ZnCo ₂ O ₄ nanosheets@nanowires	6 М КОН	0-0.35 V	1289.6 F g ⁻¹ at 1 A g ⁻¹	86.8% after 10,000 cycles at 1 A g ⁻¹	(This work)

References

- [1] J. Bhagwan, S. Khaja Hussain and J. S. Yu, J. Alloys Compd., 2020, 815, 152456.
- [2] G. Rajasekhara Reddy, N. Siva Kumar, B. Deva Prasad Raju, G. Shanmugam, E.
- H. Al-Ghurabi and M. Asif, Nanomaterials, 2020, 10, 1206.

[3] L. Xu, Y. Zhao, J. Lian, Y. Xu, J. Bao, J. Qiu, L. Xu, H. Xu, M. Hua and H. Li, *Energy*, 2017, **123**, 296-304.

- [4] J. A. Rajesh and K. -S. Ahn, Catalysts, 2021, 11, 1516-1530.
- [5] N. Tiwari, S. Kadam, A. Kakade, R. Ingole and S. Kulkarni, ECS J. Solid State Sci. Technol., 2021, 10, 103008.
- [6] Y. Shang, T. Xie, Y. Gai, L. Su, L. Gong, H. Lv and F. Dong, *Electrochim. Acta*, 2017, 253, 281-290.
- [7] G. R. Reddy, G. Dillip, T. Sreekanth, R. Rajavaram, B. D. P. Raju, P. Nagajyothi and J. Shim, *Appl. Surf. Sci.*, 2020, **529**, 147123.
- [8] R. R. Gutturu, T. V. M. Sreekanth, R. Rajavaram, D. P. R. Borelli, G. R. Dillip, P. C. Nagajyothi and J. Shim, *Int. J. Energy Res.*, 2020, 44, 11233-11247.
- [9] H. Chen, X. Du, J. Sun, H. Mao, R. Wu and C. Xu, *Appl. Surf. Sci.*, 2020, **515**, 146008.
- [10] C. Kuchi, N. G. Prakash, K. Prasad, Y. V. M. Reddy, B. Sravani, R. Mangiri and G. R. Reddy, *Mater. Sci. Semicond. Process.*, 2022, 142, 106453.
- [11] G. Vignesh, R. Ranjithkumar, P. Devendran, N. Nallamuthu, S. Sudhahar and M.

Krishna Kumar, Mater. Sci. Eng. B, 2023, 290, 116328.

[12] P. Sivakumar, L. Kulandaivel, J. W. Park, C. Justin Raj, R. Manikandan and H. Jung, *J. Alloys Compd.*, 2023, **952**, 170042.