Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

> Iridium/Graphene Nanostructured Catalyst for the N-Alkylation of Amines to Synthesize Nitrogen-containing Derivatives and Heterocyclic Compounds in Green Process

Supporting Information

Ligand Effect of Cyclometallated Iridium (III) Complexes

on N-Alkylation of Amines in Hydrogen Borrowing

Reactions

Yi-Sheng Chen^[a], Siang-Yu Chiu^[a], Chia-Ying Li ^[a], Tsun-Ren Chen*^[a], and

Jhy-Der Chen^[b]

^[a] Department of Applied Chemistry, National Pingtung University, Pingtung,

Taiwan,90003

^[b] Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C[.]

	Contents	Page
Crystal dat	a for Cat. 1~7	S3
Table S1.	Crystal data for Cat. 1 ~ Cat. 3	S3
Table S2.	Selected bond distance (Å) and bond angles for Cat. $1 \sim 3$	S4
Table S3.	Crystal data for Cat. 4 and Cat. 5	S 6
Table S4.	Crystal data for Cat. 6 and Cat. 7	S7
Table S5.	Selected bond distance (Å) and bond angles for Cat. $4 \sim 7$	S 8
Figure S1	Theoretical calculation data of Cat.2 and 4-7, including the orbital	S 10
distribution	and composition of HOMO and LUMO	510
Structural of	lata of Benzoxazole Derivative Ligands	S11
Structural	data of Dinuclear Iridium Precursors $(C^N)_2 Ir(\mu-Cl)_2 Ir(C^N)_2$	S12
(D1~D5)		512
Structural I	Data of Catalysts (C^N) ₂ Ir(Cl) (TPP) (Cat.1~7)	S13
Structural of	lata of N-alkylation Products.	S15
The Atomi	c Coordinates of Cat. 1~7	S23
Table S6.	The Atomic Coordinates (angstroms) of Cat. 1	S23
Table S7.	The Atomic Coordinates (angstroms) of Cat. 2	S25
Table S8.	The Atomic Coordinates (angstroms) of Cat. 3	S27
Table S9.	The Atomic Coordinates (angstroms) of Cat. 4	S29
Table S10.	The Atomic Coordinates (angstroms) of Cat. 5	S31
Table S11.	The Atomic Coordinates (angstroms) of Cat. 6	S33
Table S12.	The Atomic Coordinates (angstroms) of Cat. 7	S35

I. Crystal data for Cat. 1~7

Cat.	1	2	3
empirical formula	C42 H35 Cl5 Ir N2 P	C ₅₀ H ₄₅ Cl Ir N ₂ O ₃ P	$C_{42}H_{32}Cl_5F_3IrN_2$
			Р
fw	968.14	980.50	1022.11
temp [K]	110(2)	296(2)	296(2)
radiated used (λ [Å])	0.71073	0.71073	0.71073
cryst size [mm ³]	0.66 x 0.56 x 0.54	0.200 x 0.100 x 0.100	0.200 x 0.100 x
			0.100
cryst syst	Triclinic	Triclinic	Triclinic
space group	P -1	P-1	P-1
a [Å]	11.0738(5)	12.911(6)	11.250(13)
b [Å]	13.2326(6)	13.195(6)	13.317(16)
c [Å]	13.7902(5)	14.842(7)	14.035(17)
α [deg]	83.693(3)°	82.321(12)°	84.55(3)°.
β [deg]	70.637(3)°	72.051(10)°	74.18(3)°.
γ [deg]	82.745(4)°	63.435(10)°	83.10(3)°.
V[Å ³], Z	1886.19(14), 4	2151.4(18),2	2004(4), 2
$\rho_{calcd} \left[g.cm^{-3} \right]$	1.705	1.514	1.694
μ [mm ⁻¹]	3.970 mm ⁻¹	3.247	3.752
F(000)	956	984	1004
scan rang θ [deg]	2.88 to 29.21°	1.442 to 26.000°.	1.511 to 25.998°.
no. of total refins	16612	42883	40353
no. of unique refins	8694 [R(int) = 0.0221]	8448 [R(int) = 0.1296]	7871 [R(int) =
			0.1774]
no. of data/restraints/ params	8694 / 0 / 460	8448 / 1 / 523	7871 / 0 / 487
goodness-of-fit on F ²	0.986	0.940	0.973
$R_1, wR_2 [I > \sigma 2(I)]$	0.0217 and 0.0474	R1 = 0.0451, wR2 = 0.0547	R1 = 0.0609, wR2
			= 0.0736
R_1 , wR_2 (all data)	0.0257 and 0.0479	R1 = 0.0881, wR2 = 0.0629	R1 = 0.1289, wR2
			= 0.0882

$Table \ S1. \quad Crystal \ data \ for \ Cat. \ 1 \sim Cat. \ 3$

	Ca	it. 1	
Ir-C(22)	2.004(2)	Ir-N(1)	2.062(2)
Ir-C(11)	2.044(2)	Ir-P	2.4074(6)
Ir-N(2)	2.053(2)	Ir-Cl(1)	2.4919(6)
C(22)-Ir-C(11)	89.14(9)	N(2)-Ir-P	89.94(6)
C(22)-Ir-N(2)	80.64(9)	N(1)-Ir-P	98.60(6)
C(11)-Ir-N(2)	91.70(9)	C(22)-Ir-Cl(1)	172.90(7)
C(22)-Ir-N(1)	93.60(9)	C(11)-Ir-Cl(1)	86.98(7)
C(11)-Ir-N(1)	80.05(9)	N(2)-Ir-Cl(1)	93.53(6)
N(2)-Ir-N(1)	170.06(8)	N(1)-Ir-Cl(1)	91.58(6)
C(22)-Ir-P	94.17(6)	P-Ir-Cl(1)	89.85(2)
C(11)-Ir-P	176.51(7)		
	Ca	nt. 2	
Ir-C(22)	2.012(5)	Ir-N(1)	2.066(4)
Ir-C(11)	2.049(5)	Ir-P	2.4388(16)
Ir-N(2)	2.058(4)	Ir-Cl	2.4861(15)
C(22)-Ir-C(11)	89.91(18)	N(2)-Ir-P	91.12(12)
C(22)-Ir-N(2)	80.74(19)	N(1)-Ir-P	97.32(13)
C(11)-Ir-N(2)	91.65(18)	C(22)-Ir-Cl	172.91(15)
C(22)-Ir-N(1)	95.85(18)	C(11)-Ir-Cl	87.62(13)
C(11)-Ir-N(1)	80.00(19)	N(2)-Ir-Cl	92.68(12)
N(2)-Ir-N(1)	171.03(16)	N(1)-Ir-Cl	90.27(11)
C(22)-Ir-P	92.27(14)	P-Ir-Cl	90.49(6)
C(11)-Ir-P	176.71(14)		
	Ca	it. 3	
Ir-C(12)	2.002(9)	Ir-N(2)	2.064(6)
Ir-C(11)	2.041(8)	Ir-P	2.419(3)
Ir-N(1)	2.064(6)	Ir-Cl(1)	2.499(3)
C(12)-Ir-C(11)	88.1(3)	N(1)-Ir-P	98.36(18)
C(12)-Ir-N(1)	94.2(3)	N(2)-Ir-P	90.42(18)
C(11)-Ir-N(1)	79.8(3)	C(12)-Ir-Cl(1)	172.1(2)
C(12)-Ir-N(2)	79.8(3)	C(11)-Ir-Cl(1)	87.3(2)

Table S2. Selected bond distance (Å) and bond angles for Cat. $1 \sim 3$.

C(11)-Ir-N(2)	91.6(3)	N(1)-Ir-Cl(1)	91.29(17)
N(1)-Ir-N(2)	169.7(2)	N(2)-Ir-Cl(1)	93.9(2)
C(12)-Ir-P	94.1(2)	P-Ir-Cl(1)	90.76(8)
C(11)-Ir-P	177.2(3)		

Cat.	4	5
empirical formula	C49 H41 Cl5 Ir N2 O5 P	C47 H35 Cl3 Ir N2 O5 P
fw	1138.26	1037.29
temp [K]	293(2)	296(2)
radiated used (λ [Å])	0.71073	0.71073
cryst size [mm ³]	0.800 x 0.300 x 0.200	0.500 x 0.500 x 0.500
cryst syst	Triclinic	Triclinic
space group	P-1	P-1
a [Å]	12.34(2)	12.499(3)
b [Å]	12.49(2)	14.154(3)
c [Å]	16.46(4)	16.193(3)
α [deg]	86.17(5)°.	85.480(6)°.
β [deg]	69.00(5)°.	87.279(6)°.
γ [deg]	88.19(5)°.	65.482(6)°.
V[Å ³], Z	2364(8), 2	2597.9(9), 2
$\rho_{calcd} \left[g.cm^{-3} \right]$	1.599	1.326
μ [mm ⁻¹]	3.189	2.795
F(000)	1132	1028
scan rang θ [deg]	1.327 to 25.998°.	1.585 to 26.000°.
no. of total refins	9296	35372
no. of unique refins	9296 [R(int) = ?]	10226 [R(int) = 0.0793]
no. of data/restraints/ params	9296 / 0 / 563	10226 / 0 / 532
goodness-of-fit on F ²	1.060	1.031
$\mathbf{R}_1, w \mathbf{R}_2 \left[I \!\! > \!\! \sigma 2(I) \right]$	R1 = 0.0526, wR2 = 0.1074	R1 = 0.0419, wR2 = 0.0914
R ₁ , wR ₂ (all data)	R1 = 0.0804, wR2 = 0.1246	R1 = 0.0616, wR2 = 0.0998

Table S3.Crystal data for Cat. 4 and Cat. 5

Cat.	6	7
empirical formula	C47.60 H38.80 Cl F4 Ir N2	C47.25 H37.50 Cl3.50 Ir N2
	O7.30 P	O6 P
fw	1090.23	1076.54
temp [K]	297(2)	296(2) K
radiated used (λ [Å])	0.71073	0.71073 Å
cryst size [mm ³]	0.42 x 0.39 x 0.23	0.300 x 0.100 x 0.100
cryst syst	Orthorhombic	Triclinic
space group	P b c a	P-1
a [Å]	19.1611(8)	a = 13.2859(8)
b [Å]	20.4125(9)	b = 13.4065(8)
c [Å]	23.7193(10)	c = 15.6834(10)
α [deg]	90°.	= 103.2380(15)°
β [deg]	90°.	= 90.1227(16)°
γ [deg]	90°.	= 117.8150(14)°
V[Å ³], Z	9277.2(7),8	2385.7(3), 2
$\rho_{calcd} [g.cm^{-3}]$	1.561	1.499
μ[mm ⁻¹]	3.039	3.075
F(000)	4334	1069
scan rang θ [deg]	1.69 to 26.01°.	1.747 to 26.000°.
no. of total refins	50639	33139
no. of unique refins	9119 [R(int) = 0.0427]	9373 [R(int) = 0.1131]
no. of data/restraints/ params	9119 / 0 / 640	9373 / 3 / 550
goodness-of-fit on F ²	1.047	1.005
$R_1, wR_2 [I > \sigma 2(I)]$	R1 = 0.0324, $wR2 = 0.1027$	R1 = 0.0602, wR2 = 0.1364
R ₁ , wR ₂ (all data)	R1 = 0.0535, wR2 = 0.1171	R1 = 0.1096, wR2 = 0.1565

Table S4.Crystal data for Cat. 6 and Cat. 7

	Ca	nt. 4	
Ir-C(1)	2.050(8)	Ir-N(1)	2.095(6)
Ir-C(14)	2.084(9)	Ir-P(1)	2.427(4)
Ir-N(2)	2.091(7)	Ir-Cl(1)	2.463(4)
C(1)-Ir-C(14)	89.6(3)	N(2)-Ir-P(1)	100.2(2)
C(1)-Ir-N(2)	92.8(3)	N(1)-Ir-P(1)	90.9(2)
C(14)-Ir-N(2)	80.2(3)	C(1)-Ir-Cl(1)	174.6(2)
C(1)-Ir-N(1)	81.3(3)	C(14)-Ir-Cl(1)	87.3(2)
C(14)-Ir-N(1)	89.1(3)	N(2)-Ir-Cl(1)	91.10(19)
N(2)-Ir-N(1)	167.8(2)	N(1)-Ir-Cl(1)	94.14(19)
C(1)-Ir-P(1)	94.8(2)	P(1)-Ir-Cl(1)	88.17(11)
C(14)-Ir-P(1)	175.5(2)		
	Ca	nt. 5	
Ir-C(14)	2.018(5)	Ir-N(1)	2.226(4)
Ir-N(2)	2.080(4)	Ir-Cl(1)	2.3751(13)
Ir-C(1)	2.106(5)	Ir-P	2.3972(14)
C(14)-Ir-N(2)	80.17(17)	C(1)-Ir-Cl(1)	84.34(12)
C(14)-Ir-C(1)	89.94(18)	N(1)-Ir-Cl(1)	87.71(11)
N(2)-Ir-C(1)	92.07(15)	C(14)-Ir-P	89.93(14)
C(14)-Ir-N(1)	167.63(17)	N(2)-Ir-P	90.24(10)
N(2)-Ir-N(1)	95.63(14)	C(1)-Ir-P	177.63(12)
C(1)-Ir-N(1)	78.53(16)	N(1)-Ir-P	101.77(11)
C(14)-Ir-Cl(1)	95.67(15)	Cl(1)-Ir-P	93.31(5)
N(2)-Ir-Cl(1)	174.53(10)		
	Ca	it. 6	
Ir-C(26)	2.047(4)	Ir-N(1)	2.081(4)
Ir-N(2)	2.049(4)	Ir-P	2.4145(14)
Ir-C(13)	2.080(5)	Ir-Cl	2.4465(12)
C(26)-Ir-N(2)	79.42(17)	C(13)-Ir-P	173.97(14)
C(26)-Ir-C(13)	89.23(19)	N(1)-Ir-P	99.40(11)
N(2)-Ir-C(13)	92.4(2)	C(26)-Ir-Cl	170.24(13)

Table S5. Selected bond distance (Å) and bond angles for Cat. $4 \sim 7$.

C(26)-Ir-N(1)	96.53(17)	N(2)-Ir-Cl	94.08(12)
N(2)-Ir-N(1)	171.52(16)	C(13)-Ir-Cl	83.73(14)
C(13)-Ir-N(1)	80.07(19)	N(1)-Ir-Cl	88.93(11)
C(26)-Ir-P	96.80(13)	P-Ir-Cl	90.25(4)
N(2)-Ir-P	88.52(12)		
	Ca	t. 7	
Ir-C(13)	2.033(9)	Ir-N(2)	2.067(7)
Ir-N(1)	2.046(7)	Ir-P	2.416(2)
Ir-C(26)	2.062(10)	Ir-Cl(1)	2.480(2)
C(13)-Ir-N(1)	80.7(3)	C(26)-Ir-P	174.3(3)
C(13)-Ir-C(26)	88.3(4)	N(2)-Ir-P	100.5(2)
N(1)-Ir-C(26)	90.5(3)	C(13)-Ir-Cl(1)	171.6(3)
C(13)-Ir-N(2)	91.3(3)	N(1)-Ir-Cl(1)	93.4(2)
N(1)-Ir-N(2)	167.5(3)	C(26)-Ir-Cl(1)	85.8(3)
C(26)-Ir-N(2)	79.5(3)	N(2)-Ir-Cl(1)	93.40(19)
C(13)-Ir-P	97.3(3)	P-Ir-Cl(1)	88.58(8)
N(1)-Ir-P	90.2(2)		

Cat.		2	4	1	5	5	(5	7	
LUM					N					
ō	Composit	ion	Composit	tion	Composit	ion	Composit	tion	Composit	ion
	5.19%	Ir	5.50%	Ir	5.48%	Ir	5.30%	Ir	3.02%	Ir
	35.65%	Ph	22.64%	Ph	29.09%	Ph	32.06%	Ph	19.47%	Ph
	17.04%	Ру	17.47%	Ox	18.94%	Ox	18.21%	Ox	20.50%	Ox
HOM	-		1000		1	West Street	•••••••			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
l O	Composit	ion	Composit	tion	Composit	ion	Composit	tion	Composit	ion
	5.19%	Ir	4.75%	Ir	4.19%	Ir	3.97%	Ir	3.33%	Ir
	34.92%	Ph	29.86%	Ph	32.35%	Ph	33.02%	Ph	22.72%	Ph
	16.86%	C^N	21.72%	Ox	24.05%	Ox	17.71%	Ox	27.43%	Ox
Ph: 7	The phenyl	group of th	e C^N ligar	nd						
Py: 7	The pyridyl	of C^N lig	ands							
Ox :	The benzo:	xazole grou	ps of C^N	ligands						

and composition of HOMO and LUMO

II. Structural Data of Benzoxazole Derivative Ligands

2-phenylbenzoxazole (pbo) (**L2**): 80% yield. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 8.28–8.25 (m, 2H), 7.80–7.76 (m, 1H), 7.60–7.56 (m, 1H), 7.53–7.51 (m, 3H), 7.37–7.33 (m, 2H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): δ163.2, 151.0, 142.3, 131.7, 129.1, 127.8, 127.4, 125.3, 124.8, 120.263, 110.8. Anal. Calcd for C₁₃H₉NO (MW = 195.22): C, 79.98; H, 4.65; N, 7.18. Found: C, 79.99; H, 4.65; N, 7.20%. MS (FAB; m/z): 195.0686

2-(4-Chlorophenyl)benzoxazole (cpbo) (**L3**): 75% yield. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 8.17 (d, J = 8.7 Hz, 2H), 7.77–7.74 (m, 1H), 7.57–7.54 (m, 1H), 7.48 (d, J = 8.7 Hz, 2H), 7.38–7.33 (m, 2H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): 162.2, 150.9, 142.2, 137.9, 129.4, 129.0, 125.8, 125.5, 124.9, 120.3, 110.8. Anal. Calcd for C₁₃H₈NOCl (MW = 229.67): C, 67.98; H, 3.51; N, 6.10. Found: C, 67.98; H, 3.53; N, 6.11%. MS (FAB; m/z):229.0303

2-(3.5-Difluorophenyl)benzoxazole (fpbo) (L4): 88% yield. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 7.80–7.74 (m, 3H), 7.59–7.56 (m, 1H), 7.41–7.36 (m, 2H), 7.00–6.96 (m, 1H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)): 165.1, 164.9, 161.8, 161.7, 160.9, 151.0, 141.9, 130.4, 130.3, 130.1, 126.1, 125.2, 120.6, 110.9, 110.8, 110.7, 110.6, 107.3, 107.0, 106.7. Anal. Calcd for C₁₃H₇NO F₂ (MW = 231.20): C, 67.53; H, 3.05; N, 6.06. Found: C, 67.50; H, 3.08; N, 5.99%. MS (FAB; m/z): 231.0496

2-Phenyl-5-chlorobenzoxazole (pcbo) (L5): 75% yield. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 8.23–8.20 (m, 2H), 7.66 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 1.8 Hz, 1H), 7.55–7.49 (m, 3H), 7.32 (dd, J = 8.7, 1.8 Hz, 1H). 13C NMR (75 MHz,

S11

CDCl3, 298 K; δ (ppm)): 163.9, 151.1, 141.1, 132.0, 130.9, 129.2, 127.8, 126.9, 125.5, 120.7, 111.4. Anal. Calcd for C₁₃H₈NOCl (MW = 229.67): C, 67.98; H, 3.51; N, 6.10. Found: C, 67.91; H, 3.52; N, 6.09%. MS (FAB; m/z): 229.0300

III. Structural Data of Dinuclear Iridium Precursors (C^N)₂Ir(μ-Cl)₂Ir(C^N)₂(D1~D5)

(**pp**)₂Ir(μ-Cl)₂Ir(**pp**)₂ (**D**1): 85% yield. 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 8.39–8.35 (m, 4H), 8.18–8.14 (m, 4H), 7.53–7.47 (m, 4H), 7.44–7.35 (m, 6H), 7.16–8.12 (m, 2H), 6.93–6.87 (m, 2H). Anal. Calcd for C₄₄H₂₂N₄Cl₂Ir₂ (MW = 1072.09): C, 49.29; H, 3.01; N, 5.23%. Found: C, 49.67; H, 3.08; N, 5.31%. MS (FAB; m/z): 1070.9610

(**pbo**)₂Ir(μ -Cl)₂Ir(**pbo**)₂ (**D2**): 90% yield. 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 7.78–7.76 (m, 4H), 7.75–7.73 (m, 10H), 7.52–7.49 (m, 4H), 7.43–7.41 (m, 4H), 7.40–7.36 (m, 10H). Anal. Calcd for C₅₂H₃₂N₄O₄Cl₂Ir₂ (MW = 1232.17): C, 50.69; H, 2.61; N, 4.55%. Found: C, 50.67; H, 2.63; N, 4.51%. MS (FAB; m/z): 1231.8585

(cpbo)₂Ir(μ -Cl)₂Ir(cpbo)₂ (D3): 88% yield. 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 8.76–8.73 (m, 2H), 8.09–8.54 (m, 4H), 7.95 (d, J = 8.4 Hz, 2H), 7.84–7.60 (m, 8H), 7.48 (dd, J = 8.2, 2.1 Hz, 2H), 7.38 (t, J = 8.4 Hz, 2H), 7.14 (t, J = 8.4 Hz, 2H), 7.03 (dd, J = 8.1, 1.8 Hz, 2H), 6.40 (d, J = 7.8 Hz, 2H), 6.0 (d, J = 2.1 Hz, 2H). Anal. Calcd for C₅₂H₂₈N₄O₄Cl₆Ir₂ (MW = 1369.98): C, 45.59; H, 2.06; N, 4.09%. Found: C, 45.67; H, 2.10; N, 4.11%. MS (FAB; m/z): 1367.9515

(fpbo)₂Ir(μ -Cl)₂Ir(fpbo)₂ (D4): 78% yield. 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 8.18 (d, J = 8.18, 8.1 Hz, 4H), 7.31 (dd, J = 7.6, 2.7 Hz, 4H), 7.22–7.12 (m, 8H),

6.99 (dt, J = 7.1, 1.5 Hz, 4H), 6.14 (dt, J = 9.6, 2.7 Hz, 4H). 13C NMR (75 MHz, CDC13, 298 K; δ (ppm)): 174.9, 169.2, 169.1, 167.5, 167.4, 160.3, 160.2, 158.7, 158.6, 149.1, 140.8, 133.6, 133.5, 133.4, 133.3, 125.1, 124.4, 118.0, 115.3, 115.0, 110.9, 108.6, 108.4, 107.2, 107.0, 106.8, 31.8, 31.1, 22.8, 14.3. Anal. Calcd for C₅₂H₂₄N₄O₄Cl₂F₈Ir₂ (MW = 1376.12): C, 45.38; H, 1.76; N, 4.07%. Found: C, 45.80; H, 1.80; N, 4.03%. MS (FAB; m/z): 1376.0319.

(pcbo)₂Ir(μ -Cl)₂Ir(pcbo)₂ (D5): 80% yield. 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 8.22 (d, J = 1.8 Hz, 4H), 7.65 (dd, J = 7.8, 1.2 Hz, 4H), 7.36 (d, J = 9 Hz, 4H), 7.1 (dd, J = 8.7, 2.1 Hz, 4H), 6.87 (dt, J = 7.4, 1.2 Hz, 4H), 6.68 (dt, J = 7.4, 1.2 Hz, 4H), 6.17 (d, J = 7.8 Hz, 4H). Anal. C₅₂H₂₈N₄O₄Cl₆Ir₂ (MW = 1369.98): C, 45.59; H, 2.06; N, 4.09%. Found: C, 45.38; H, 2.08; N, 4.05%. MS (FAB; m/z): 1367.9504.

IV. Structural Data of Catalysts (C^N)₂Ir(Cl) (TPP) (Cat.1~7)

(**pp**)₂Ir(Cl)(TPP) (Cat. 1): 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 9.194(d, J=6Hz, 1H), 8.849(d, J=5.4Hz, 1H), 7.883(d, J=7.8Hz, 1H), 7.565(d, J=7.8Hz, 1H), 7.083(t, J=6.9Hz, 4H), 6.832(t, J=7.2Hz, 1H), 6.803(t, J=5.7Hz, 1H), 6.693(t, J=5.7Hz, 1H), 5.888(d, J=7.8Hz, 1H), 5.835(d, J=6.75Hz, 1H). Anal. Calcd for C₄₀H₃₁N₂ClPIr (MW = 798.3282): C, 60.18; H, 3.91; N, 3.51%. Found: C, 60.67; H, 3.85; N, 3.49%. HMS (FAB; m/z): 798.2241

(pp)2Ir(Cl)(TMPP) (Cat. 2): 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 9.306(d, J=5.4Hz, 1H), 8.523(d, J=5.4Hz, 1H), 7.878(d, J=8.4Hz, 1H), 7.563(d, J=8.4Hz, 1H), 7.535(d, J=7.8Hz, 1H), 7.473(t, J=7.8Hz, 1H), 7.428(d, J=7.2Hz, 1H), 7.129(t, J=9Hz, 3H), 6.836~6.792(m, 1H), 6.611(d, J=7.2Hz, 3H), 5.929(d, J=7.8Hz, 1H) Anal. Calcd

for C₄₃H₃₇N₂O₃ClPIr (MW = 888.4043): C, 58.13; H, 4.20; N, 3.15%. Found: C, 58.67; H, 4.30; N, 3.17%. HMS (FAB; m/z): 888.2559

(pp)2Ir(Cl)(TFPP) (Cat. 3): 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 8.715(d, J=5.4Hz, 1H), 7.907(d, J=8.4Hz, 1H), 7.725(t, J=7.8Hz, 1H), 7.576(d, J=9.6Hz, 1H), 7.529(t, J=7.8Hz, 1H), 7.496(d, J=4.2Hz, 1H), 7.240~7.180(m, 4H), 6.576(t, J=8.1Hz, 1H), 5.819(t, J=6.6Hz, 1H) Anal. Calcd for C₄₀H₂₈N₂ClF₃PIr (MW = 852.2999): C, 56.37; H, 3.31; N, 3.29%. Found: C, 56.67; H, 3.30; N, 3.31%. HMS (FAB; m/z): 852.1959.

(**pbo**)₂Ir(Cl)(TMPP) (Cat. 4): 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 8.585(d, J=8.4Hz, 1H), 7.739(d, J=7.8Hz, 1H), 7.637(d, J=8.4Hz, 1H), 7.559(d, J=7.8Hz, 1H), 7.349(d, J=8.4Hz, 1H), 7.301(t, J=8.1Hz, 1H), 7.111(t, J=7.8Hz, 1H), 7.067(d, J=7.8Hz, 1H), 6.815(t, J=7.5Hz, 1H), 6.699(t, J=6.4Hz, 1H), 6.479(d, J=7.2Hz, 3H). Anal. Calcd for C₄₇H₃₇N₂O₅ClPIr (MW = 968.4451): C, 58.29; H, 3.85; N, 2.89%. Found: C, 58.67; H, 3.80; N, 2.81%. HMS (FAB; m/z): 968.2458

(**cpbo**)2**Ir**(**Cl**)(**TMPP**) (**Cat. 5**): 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 7.711(d, J=8.4Hz, 1H), 7.688(d, J=1.8Hz, 1H), 7.674(d, J=1.8Hz, 1H), 7.456(d, J=7.8Hz, 1H), 7.104(t, J=7.8Hz, 1H), 7.067(d, J=4.2Hz, 1H), 6.968(t, J=8.1Hz, 1H), 6.942(t, J=8.1Hz, 1H), 6.883(d, J=4.2Hz, 1H), 6.507(d, J=8.1Hz, 3H), 6.286(d, J=3.9Hz, 1H), 6.042(d, J=7.8Hz, 1H). Anal. Calcd for C₄₇H₃₅N₂O₅Cl₃PIr (MW = 1037.3355): C, 54.42; H, 3.40; N, 2.70%. Found: C, 54.67; H, 3.30; N, 2.75%. HMS (FAB; m/z): 1037.1667

(**fpbo**)₂Ir(Cl)(TMPP) (Cat. 6): 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 8.529(d,

J=7.8Hz, 1H), 7.626(d, J=8.4Hz, 1H), 7.428(d, J=3.6Hz, 1H), 7.305(t, J=7.5Hz, 2H), 7.150(d, J=5.1Hz, 1H), 7.063(t, J=7.5Hz, 2H), 6.512(s, 3H), 6.297~6.260(m, 2H) Anal. Calcd for C₄₇H₃₃N₂O₅ClF₄PIr (MW = 1040.4074): C, 54.26; H, 3.20; N, 2.69%. Found: C, 54.37; H, 3.18; N, 2.71%. HMS (FAB; m/z): 1040.2081

(**pcbo**)₂Ir(Cl)(TMPP) (Cat. 7): 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 8.490 (d, J=1.8Hz, 1H), 7.745(d, J=7.8Hz, 1H), 7.620(d, J=3.9Hz, 1H), 7.577(d, J=9Hz, 1H), 7.348(s, 1H), 7.302~7.240(m, 3H), 6.968(t, J=7.5Hz, 2H), 6.764~6.739(m, 5H) Anal. Calcd for C₄₇H₃₅N₂O₅Cl₃PIr (MW = 1037.3355): C, 54.42; H, 3.40; N, 2.70%. Found: C, 54.47; H, 3.50; N, 2.65%. MS (FAB; m/z): 1037.2559

V. Structural Data of N-alkylation Products.

N-benzylaniline (P₁):¹H NMR (d-chloroform, 600MHz) = 7.38-7.33 (m, Ar, 4H), 7.28-7.25 (m, Ar, 1H), 7.19-7.16 (m, Ar, 2H), 6.73-6.68 (t, Ar, 1H), 6.65-6.63 (d, Ar, 2H, JHH = 7.8Hz), 4.33 (s, CH2, 2H), 4.02 (br. s, NH, 1H). ¹³C NMR (d-Chloroform, 150MHz) = 148.2, 139.4, 129.3, 128.7, 127.5, 127.3, 117.6, 112.8, 48.3. MS (ESI/CI): m/z =183.02, Calculated for C13H13N: 183.26 g/mol.

N-(*p*-chlorobenzyl)aniline (P₂): ¹H NMR (d-chloroform, 600MHz) = 7.29 (s, 3H, Ar), 7.17-7.11 (m, 2H, Ar), 6.73-6.68 (m, 1H, Ar), 6.58-6.59 (m, 2H, Ar), 4.28 (d, 2H, JHH = 5.4Hz), 4.05 (br. s, NH, 1H). ¹³C NMR (d-Chloroform, 150MHz) = 147.8, 137.8, 132.9, 129.3,128.8, 128.7, 117.8, 112.9, 47.506. MS (ESI/CI): m/z = 216.98, Calculated for $C_{13}H_{12}NCl^+ [M]^+: 217.68 \text{ g/mol.}$

N-(4-methoxybenzyl)aniline (P₃): ¹H NMR (d-chloroform, 600MHz) = 7.29-7.27 (d, JHH = 8.4Hz, 2H, Ar), 7.18-7.15 (m, 2H, Ar), 6.88-6.86 (m, 2H, Ar), 6.72-6.69 (t, 1H, Ar), 6.63-6.62 (m, 2H, Ar), 4.24 (br. s, NH, 1H), 3.91 (d, JHH = 13.2Hz, 1H) , 3.79 (s, 3H). .¹³C NMR (d-Chloroform, 150MHz) = 158.9, 148.2, 131.4, 129.3, 128.8, 117.5, 113.8, 112.8, 55.3, 47.8. MS (ESI/CI): m/z = 213.21, Calculated for C₁₄H₁₅NO⁺ [M]⁺ : 213.28 g/mol.

N-benzyl, *N*-(4-chlorophenyl)amine (P4) : ¹H NMR (d-chloroform, 600MHz) = 7.34-7.20 (m, Ar, 4H), 7.11-7.07 (m, Ar, 2H), 6.55-6.5102 (m, Ar, 2H), 4.62 (s, 1H), 4.30, 4.29 (d, CH2 ,2H, JHH = 6.0Hz), 4.05(br. s, NH, 1H). ¹³C NMR (d-Chloroform, 150MHz) = 146.7, 138.8, 128.9, 128.7, 127.5, 127.4, 127.1, 126.6, 122.1, 113.9 ,54.5, 48.4. MS (ESI/CI): m/z = 217.14, Calculated for $C_{13}H_{12}NCl^+$ [M]⁺: 217.70 g/mol.

N-(4-chlorobenzyl), *N*-(4-chlorophenyl)amine (P5)

¹H NMR (d-chloroform, 600MHz) = 7.39 (d, JHH = 9Hz, 2H, Ar), 7.31 (d, JHH = 9Hz, 2H, Ar), 7.03 (d, JHH = 9Hz, 2H, Ar), 6.57 (d, JHH = 9Hz, 2H, Ar), 4.32 (s, 2H). ¹³C NMR (d-Chloroform, 150MHz) = 147.2, 138.9, 132.3, 129.0, 128.8, 128.1, 121.8, 114.9, 47.1. MS (ESI/CI): m/z = 253.21, Calculated for C₁₃H₁₁NCl₂⁺ [M]⁺ : 252.14 g/mol.

N-(4-methoxybenzyl), *N*-(4-chlorophenyl)amine (P6)

¹H NMR (d-chloroform, 600MHz) =7.13 (d, JHH = 9Hz, 2H, Ar), 7.04 (d, JHH = 9Hz, 2H, Ar), 6.89 (d, JHH = 9Hz, 2H, Ar), 6.58(d, JHH = 9Hz, 2H, Ar), 4.32 (s, 2H), 3.79 (s, - OCH₃, 3H). ¹³C NMR (d-Chloroform, 150MHz) = 160.1, 147.3 132.4, 129.0, 128.4, 121.8, 114.9, 114.2, 56.1, 47.1. MS (ESI/CI): m/z = 248.21, Calculated for C₁₄H₁₄NOCl⁺ [M]⁺: 247.72 g/mol.

N-benzyl, *N*-(4-methoxyphenyl)amine (P7): ¹H NMR (d-chloroform, 600MHz) = 7.37-7.32 (m, Ar, 4H), 7.27-7.25 (t, Ar, 1H), 6.77-6.76 (m, Ar, 2H), 6.59-6.60 (m, Ar, 2H), 4.27 (s, CH2, 2H), 3.73 (s, CH3, 3H).¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 152.2, 142.5, 139.7, 128.6, 127.6, 127.2, 114.9, 114.1, 55.8, 49.3. MS (ESI/CI): m/z = 213.05, Calculated for C₁₄H₁₅NO⁺ [M]⁺: 213.28g/mol.

N-(4-chlorobenzyl), *N*-(4-methoxyphenyl)amine (P8)

¹H NMR (d-chloroform, 600MHz) =7.38 (d, JHH = 9Hz, 2H, Ar), 7.30(d, JHH = 9Hz, 2H, Ar), 6.76 (d, JHH = 9Hz, 2H, Ar), 6.68(d, JHH = 9Hz, 2H, Ar), 4.31 (s, 2H), 3.78 (s, -OCH₃, 3H). ¹³C NMR (d-Chloroform, 150MHz) = 152.7, 141.6, 138.9, 132.4, 128.8, 128.1, 115.4, 115.1, 56.1, 47.1. MS (ESI/CI): m/z = 248.61, Calculated for C₁₄H₁₄NOCl⁺ [M]⁺ : 247.72 g/mol.

N-(4-methoxybenzyl), *N*-(4-methoxyphenyl)amine (P9)

¹H NMR (d-chloroform, 600MHz) =7.12 (d, JHH = 9Hz, 2H, Ar), 6.88 (d, JHH = 9Hz, 2H, Ar), 6.78 (d, JHH = 9Hz, 2H, Ar), 6.70(d, JHH = 9Hz, 2H, Ar), 4.32 (s, 2H), 3.90 (s, -OCH₃, 3H), 3.78 (s, -OCH₃, 3H). ¹³C NMR (d-Chloroform, 150MHz) = 160.1, 152.7, 141.6 132.4, 128.4, 115.4, 115.1, 114.2, 57.5, 56.1, 47.1. MS (ESI/CI): m/z = 242.21, Calculated for $C_{15}H_{17}NO_2^+$ [M]⁺: 243.30g/mol.

N-hexylaniline (P10): ¹H NMR (d-chloroform, 600MHz) = 7.17-7.14 (m, Ar, 2H), 6.68-6.66 (m, Ar, 1H), 6.59-6.58 (m, Ar, 2H), 3.57 (br. s, NH, 1H), 3.11-3.0718 (t, 2H), 1.62-1.55 (m, 2H), 1.45-1.39 (m, 2H), 0.96-0.93 (t, 3H). ¹³C NMR (d-Chloroform, 150MHz) = 148.6, 129.2, 117.7, 112.7, 43.7, 31.7, 28.8, 27.4, 23.3, 134.0. MS (ESI/CI): m/z = 177.17, Calculated for C₁₂H₁₉N⁺ [M]⁺: 177.29 g/mol.

N-hexyl, *N*-(4-chlorophenyl) amine (P11):

¹H NMR (d-chloroform, 600MHz) =7.03 (d, JHH = 9Hz, 2H, Ar), 6.58 (d, JHH = 9Hz, 2H, Ar), 3.08 (m,1H,), 1.86(m, 2H), 1.60 (m, 2H), 1.25 (m, 2H), 1.12 (m, 2H), ¹³C NMR (d-Chloroform, 150MHz) = 147.9, 129.1 119.7, 114.5, 52.6, 33.4, 25.9, 24.7. MS (ESI/CI):

m/z = 210.21, Calculated for $C_{12}H_{16}NC1^+$ [M]⁺ : 209.71 g/mol.

N-hexyl, *N*-(4-methoxyphenyl) amine (P12):

¹H NMR (d-chloroform, 600MHz) =6.77 (d, JHH = 9Hz, 2H, Ar), 6.69 (d, JHH = 9Hz, 2H,

Ar), 3.79 (s,1H,), 3.37(m, 1H), 1.60 (m, 2H), 1.46 (m, 2H), 1.16 (m, 4H), ¹³C NMR (d-

Chloroform, 150MHz) = 151.8, 142.0 115.3, 114.3, 56.1, 52.6, 33.4, 25.9, 24.7. MS

(ESI/CI): m/z = 206.21, Calculated for $C_{13}H_{19}NO^+$ [M]⁺: 205.29g/mol.

N-Benzylpyrrolidine (P13):

¹H NMR (d-chloroform, 600MHz) =7.23 (m, 5H, Ar), 3.66 (s, 2H), 2.51 (m, 4H,), 1.68(m,

4H). ¹³C NMR (d-Chloroform, 150MHz) = 138.6, 128.7, 128.2, 127.2, 63.3, 54.4, 24.9.

MS (ESI/CI): m/z = 162.21, Calculated for $C_{11}H_{15}N^+$ [M]⁺: 161.24 g/mol.

N-(4-Chlorobenzyl)pyrrolidine (P14):

¹H NMR (d-chloroform, 600MHz) =7.39 (d, JHH = 6Hz, 2H, Ar), 7.32 (d, JHH = 6Hz, 2H, Ar), 3.66 (s,2H,), 2.51(m, 4H), 1.68 (m, 4H). ¹³C NMR (d-Chloroform, 150MHz) = 137.7, 131.7, 129.8, 128.2, 68.6, 54.4, 24.9. MS (ESI/CI): m/z = 195.21, Calculated for $C_{11}H_{14}NCl^{+}[M]^{+}$: 195.69 g/mol.

N-(4-Methoxybenzyl)pyrrolidine (P15):

¹H NMR (d-chloroform, 600MHz) =7.13 (d, JHH = 9Hz, 2H, Ar), 6.89 (d, JHH = 9Hz, 2H, Ar), 3.79 (s,3H,), 3.66(s, 2H), 2.51 (m, 4H), 1.68 (m, 4H). ¹³C NMR (d-Chloroform, 150MHz) = 160.4, 130.2, 129.1, 114.1, 63.6, 56.1, 54.4, 24.9. MS (ESI/CI): m/z = 192.21, Calculated for $C_{12}H_{17}NO^{+}$ [M]⁺ : 191.27 g/mol.

Benzylpiperazine (P16): ¹H NMR (CDCl₃, 600MHz) δ (ppm) = 7.29-7.22 (m, Ar, 5H), 3.56-3.40 (m, 4H), 2.89-2.86 (m, 4H), 2.41 (br. s, NH , 1H). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 137.8, 129.2, 128.1, 127.0, 64.0, 54.1, 45.8. HRMS (ESI/APCI): m/z = 177.2642 g/mol, calc'd. for C₁₁H₁₇N₂⁺ [M]⁺: 177.2644g/mol.

(4-Chlorobenzyl) piperazine (P17):

¹H NMR (d-chloroform, 600MHz) =7.40 (d, JHH = 9Hz, 2H, Ar), 7.32 (d, JHH = 9Hz, 2H, Ar), 3.66 (s,2H,), 2.68 (m, 4H), 2.34 (m, 4H). ¹³C NMR (d-Chloroform, 150MHz) = 137.7, 131.7, 129.4, 128.3, 63.4, 53.5, 46.7. MS (ESI/CI): m/z = 210.21, Calculated for $C_{11}H_{14}N_2Cl^+ [M]^+ : 209.69 \text{ g/mol}.$

(4-Methoxybenzyl) piperazine (P18)

¹H NMR (d-chloroform, 600MHz) =7.13 (d, JHH = 9Hz, 2H, Ar), 6.89 (d, JHH = 9Hz, 2H,

Ar), 3.79 (s,3H,), 3.66 (s, 2H), 2.68 (m, 4H), 2.34 (m, 4H). ¹³C NMR (d-Chloroform, 150MHz) = 160.4, 130.2, 129.1, 114.35, 68.4, 56.1, 52.5, 45.7. MS (ESI/CI): m/z = 204.21, Calculated for $C_{12}H_{17}N_2O^+$ [M]⁺ : 205.27 g/mol.

N-phenylpyrrolidine (P19): ¹H NMR (d-chloroform, 600MHz) = 7.26 (m, 2H), 7.12 (m, 1H), 6.84(m, 1H), 3.19–3.18 (m, 4H), 2.33 (s, 3H), 1.94-1.92 (m,4H). ¹³C NMR (d-Chloroform, 150MHz) = 148.6, 129.7, 115.8, 111.97, 47.9, 26.0. MS (ESI/CI): m/z = 147.13, Calculated for C13H13N: 147.23 g/mol.

N-phenylpiperidine (P20): ¹H NMR (d-chloroform, 600MHz) = 7.45 (t, 2H, J=7.4 Hz), 6.99 (d, 2H, J=7.8 Hz), 6.73 (t, 1H, J=7.3 Hz), 3.36 (t, 4H, J=6.7 Hz), 1.81 (m, 4H), 1.62 (t, 2H, J=4.8 Hz). ¹³C NMR (CDCl₃, 150MHz) δ (ppm) = 152.6, 129.9, 119.7, 117.3, 60.12, 26.6, 24.9. MS (ESI/CI): m/z = 161.12, Calculated for C₁₁H₁₅N⁺ [M]⁺: 161.25 g/mol.

N-phenylcycloheptamine (P21)

¹H NMR (d-chloroform, 600MHz) =7.30 (m, 2H, Ar), 6.91 (m, 2H, Ar), 6.71 (m, 1H, Ar),
3.36 (m, 4H), 1.78(m, 4H), 1.66 (m, 4H). ¹³C NMR (d-Chloroform, 150MHz) = 150.1,
130.3, 117.3, 114.4, 51.3, 27.6, 27.5. MS (ESI/CI): m/z = 174.81, Calculated for

 $C_{12}H_{17}N^{+}[M]^{+}: 175.27 \text{ g/mol.}$

N-Methyl-N'-phenylpiperazine (P22): ¹H NMR (d-chloroform, 600MHz) = 8.21 (dd, 1H),7.66 (ddd, 1H), 6.88 – 6.78 (m, 2H), 3.74 –3.66 (m, 4H), 3.22 - 3.13 (m, 4H). ¹³C NMR (d-Chloroform, 150MHz) = 160.4, 147.9, 137.6, 110.1, 107.2, 46.1, 45.8. MS (ESI/CI): m/z = 177.23, Calculated for C₁₁H₁₆N₂⁺ [M]⁺: 176.25 g/mol.

N-(4-Chlorophenyl), N'-methylpiperazine (P23): ¹H NMR (d-chloroform, 600MHz) =7.13 (d, JHH = 9Hz, 2H, Ar), 6.72 (d, JHH = 9Hz, 2H, Ar), 3.44 (m,4H,), 2.35 (m, 4H), 2.20 (s, 3H. ¹³C NMR (d-Chloroform, 150MHz) = 149.0, 129.5, 123.1, 116.8, 52.7, 50.3, 46.1. MS (ESI/CI): m/z = 210.92, Calculated for C₁₁H₁₅N₂Cl⁺ [M]⁺ : 210.70g/mol.

N-(4-Methoxyphenyl), N'-methylpiperazine (P24):¹H NMR (d-chloroform, 600MHz) =6.74 (d, JHH = 9Hz, 2H, Ar), 6.65 (d, JHH = 9Hz, 2H, Ar), 3.79 (s,3H,), 3.41(m, 4H), 2.35 (m, 4H), 2.20 (s, 3H). ¹³C NMR (d-Chloroform, 150MHz) = 152.6, 143.4, 117.5, 115.5, 56.1, 52.6, 50.1, 46.1. MS (ESI/CI): m/z = 205.92, Calculated for C₁₂H₁₈N₂O⁺ [M]⁺ : 206.28 g/mol.

VI. The Atomic Coordinates of Cat. 1~7

Element	Coordinates (Angstroms)				
Element	X	Y	Z		
r	0.765	0.7634	0.6258		
P	0.6883	0.7259	0.8096		
Cl(1)	0.9909	0.7284	0.6273		
N(1)	0.7717	0.9187	0.6236		
N(2)	0.7515	0.6147	0.6045		
C(1)	0.7221	0.9773	0.7042		
C(2)	0.7366	1.0795	0.6972		
C(3)	0.8057	1.1259	0.6032		
C(4)	0.8507	1.0683	0.5194		
C(5)	0.8307	0.9655	0.5291		
C(6)	0.8667	0.8996	0.4436		
C(7)	0.9211	0.9357	0.3408		
C(8)	0.9509	0.8693	0.2639		
C(9)	0.9259	0.7678	0.2891		
C(10)	0.8709	0.7322	0.3908		
C(11)	0.8403	0.7974	0.4706		
C(12)	0.8456	0.5381	0.596		
C(13)	0.8314	0.4409	0.5781		
C(14)	0.7156	0.4199	0.5703		
C(15)	0.6181	0.498	0.5798		
C(16)	0.6371	0.5958	0.596		
C(17)	0.5445	0.686	0.6023		
C(18)	0.4203	0.6827	0.5994		
C(19)	0.34	0.7719	0.6022		
C(20)	0.3845	0.8647	0.6061		
C(21)	0.5077	0.868	0.6102		
C(22)	0.5891	0.7786	0.6118		
C(23)	0.7911	0.752	0.8821		
2(24)	0.8763	0.8272	0.8458		
2(25)	0.9488	0.85	0.9033		
C(26)	0.939	0.7974	0.9979		

Table S6. The Atomic Coordinates (angstroms) of Cat. 1

C(27)	0.8552	0.723	1.0351
C(28)	0.7818	0.6998	0.9783
C(29)	0.6707	0.5895	0.8416
C(30)	0.7795	0.5227	0.8379
C(31)	0.7732	0.4185	0.8545
C(32)	0.6577	0.3779	0.8731
C(33)	0.5508	0.4426	0.8743
C(34)	0.5559	0.5477	0.8601
C(35)	0.5323	0.7898	0.8829
C(36)	0.5192	0.8484	0.9643
C(37)	0.402	0.9006	1.0151
C(38)	0.2955	0.8935	0.9865
C(39)	0.3063	0.8351	0.9066
C(40)	0.4236	0.7845	0.8538
Cl(2)	0.3794	1.0782	0.786
Cl(3)	0.4363	1.2851	0.706
C(41)	0.4157	1.1654	0.6765
Cl(4)	0.8422	0.5053	1.2666
Cl(5)	0.8084	0.4252	1.0898
C(42)	0.8725	0.4002	1.1902

Flomant	C	oordinates (Angstron	ns)
Element	Х	Y	Ζ
Ir	0.8964	0.8514	0.8235
Cl	0.9558	1.007	0.757
Р	1.0623	0.7218	0.7016
O(1)	1.2618	0.2354	0.824
O(2)	1.5173	0.7842	0.5464
O(3)	0.864	0.7686	0.3754
N(1)	0.9888	0.8191	0.9234
N(2)	0.7804	0.8932	0.7414
C(1)	1.0997	0.7353	0.9208
C(2)	1.1567	0.7247	0.987
C(3)	1.1004	0.8008	1.0607
C(4)	0.9867	0.8836	1.067
C(5)	0.9294	0.892	0.9989
C(6)	0.8055	0.9717	1.002
C(7)	0.7294	1.0521	1.0752
C(8)	0.6112	1.118	1.0781
C(9)	0.5673	1.1062	1.0079
C(10)	0.6422	1.0305	0.934
C(11)	0.7641	0.9621	0.928
C(12)	0.7548	0.9813	0.6837
C(13)	0.6752	1.0053	0.63
C(14)	0.6223	0.9342	0.6364
C(15)	0.6464	0.844	0.6974
C(16)	0.7258	0.8233	0.7513
C(17)	0.7538	0.7347	0.8214
C(18)	0.708	0.6534	0.8419
C(19)	0.7345	0.5764	0.9117
C(20)	0.8042	0.5804	0.9646
C(21)	0.8515	0.659	0.9459
C(22)	0.8297	0.7366	0.8721
C(23)	1.1298	0.5714	0.7327
C(24)	1.0568	0.5122	0.7655
C(25)	1.1051	0.4003	0.7935

Table S7.The Atomic Coordinates (angstroms) of Cat. 2

C(26)	1.2241	0.3457	0.7941
C(27)	1.2966	0.402	0.7639
C(28)	1.2492	0.5127	0.7334
C(29)	1.1986	0.7465	0.6504
C(30)	1.2769	0.7006	0.5626
C(31)	1.383	0.7117	0.5244
C(32)	1.4144	0.7682	0.5748
C(33)	1.3392	0.8136	0.6628
C(34)	1.2315	0.8044	0.6996
C(35)	1.0152	0.7264	0.5965
C(36)	0.9982	0.8207	0.5385
C(37)	0.9506	0.8387	0.4626
C(38)	0.9152	0.7594	0.4455
C(39)	0.933	0.6648	0.502
C(40)	0.982	0.6482	0.5755
C(41)	1.378	0.1789	0.8403
C(42)	1.6002	0.7363	0.456
C(43)	0.8274	0.8713	0.3266
C(44)	0.4886	0.4874	0.8491
C(45)	0.5581	0.3703	0.8623
C(46)	0.6621	0.2973	0.804
C(47)	0.7201	0.3369	0.7246
C(48)	0.6563	0.4548	0.7055
C(49)	0.5508	0.5147	0.7673
C(50)	0.7246	0.4914	0.6265

Flamont	Co	oordinates (Angstron	ns)
Element	X	Y	Z
Ir	0.725	0.7304	0.8709
Cl(1)	0.5027	0.7644	0.8677
Р	0.7921	0.7724	0.6941
F(1)	0.4696	0.6998	0.4418
F(2)	0.8192	1.2165	0.6362
F(3)	1.2715	0.5571	0.481
N(1)	0.7196	0.5765	0.8666
N(2)	0.7384	0.8774	0.8988
C(1)	0.761	0.5227	0.7858
C(2)	0.751	0.4193	0.7881
C(3)	0.6968	0.3698	0.8771
C(4)	0.6592	0.4222	0.9597
C(5)	0.6728	0.5266	0.9558
C(6)	0.6423	0.5881	1.0406
C(7)	0.596	0.5496	1.1374
C(8)	0.5678	0.6125	1.2152
C(9)	0.5873	0.7146	1.1946
C(10)	0.633	0.7524	1.0984
C(11)	0.662	0.691	1.0188
C(12)	0.897	0.7162	0.8884
C(13)	0.978	0.6261	0.8913
C(14)	1.096	0.6303	0.8992
C(15)	1.1415	0.7207	0.9039
C(16)	1.0651	0.8092	0.9048
C(17)	0.9417	0.808	0.8997
C(18)	0.8504	0.8975	0.9071
C(19)	0.871	0.9934	0.9236
C(20)	0.7755	1.0705	0.9352
C(21)	0.6604	1.0504	0.929
C(22)	0.6446	0.9553	0.9078
C(23)	0.6891	0.7517	0.6196
C(24)	0.6053	0.6793	0.6471
C(25)	0.5325	0.6612	0.5866

Table S8.The Atomic Coordinates (angstroms) of Cat. 3

C(26)	0.5437	0.7174	0.4991
C(27)	0.6239	0.7881	0.4685
C(28)	0.6973	0.8076	0.526
C(29)	0.8088	0.9079	0.6668
C(30)	0.7014	0.9729	0.6796
C(31)	0.7047	1.0766	0.6691
C(32)	0.8141	1.1132	0.645
C(33)	0.9239	1.0543	0.6286
C(34)	0.9224	0.9486	0.6397
C(35)	0.9413	0.7099	0.6244
C(36)	0.9509	0.6576	0.5413
C(37)	1.0621	0.6076	0.4932
C(38)	1.1605	0.6081	0.527
C(39)	1.1591	0.6576	0.6083
C(40)	1.0454	0.7105	0.658
C(41)	1.6527	1.0955	0.3002
Cl(2)	1.7119	1.0798	0.3969
Cl(3)	1.6722	0.9931	0.2304
C(42)	0.9263	0.6755	0.1729
Cl(4)	0.9438	0.7938	0.1981
Cl(5)	0.8887	0.594	0.2764

Floment	Co	oordinates (Angstron	ns)
Element	Х	Y	Z
Ir	0.511	0.7363	0.7205
Cl(1)	0.561	0.5513	0.7569
P(1)	0.315	0.7038	0.822
O(1)	0.5651	0.9519	0.8824
O(2)	0.5915	0.6509	0.4673
O(3)	-0.0817	0.9722	0.7878
O(4)	0.1251	0.2567	0.8572
O(5)	0.3272	0.7889	1.175
N(1)	0.5561	0.8024	0.8176
N(2)	0.4954	0.6897	0.6055
C(1)	0.482	0.8949	0.6936
C(2)	0.4478	0.9425	0.6282
C(3)	0.4283	1.0527	0.6249
C(4)	0.4419	1.1172	0.6866
C(5)	0.4785	1.0735	0.7509
C(6)	0.5005	0.9622	0.7544
C(7)	0.5393	0.9057	0.8178
C(8)	0.5984	0.7737	0.884
C(9)	0.6335	0.6772	0.9122
C(10)	0.6704	0.6785	0.9833
C(11)	0.6689	0.771	1.0258
C(12)	0.6348	0.8684	0.9973
C(13)	0.6022	0.8652	0.925
C(14)	0.6829	0.7521	0.6363
C(15)	0.779	0.7845	0.6565
C(16)	0.8868	0.7846	0.592
C(17)	0.9056	0.7458	0.5118
C(18)	0.8118	0.7105	0.4927
C(19)	0.7032	0.7136	0.5553
C(20)	0.5976	0.6821	0.5427
C(21)	0.4137	0.6636	0.5679
C(22)	0.295	0.6601	0.5995
C(23)	0.2409	0.6253	0.5441

Table S9.The Atomic Coordinates (angstroms) of Cat. 4

C(24)	0.3049	0.5957	0.46
C(25)	0.4227	0.6005	0.4284
C(26)	0.4753	0.6361	0.4833
C(27)	0.1929	0.7858	0.8114
C(28)	0.2064	0.8969	0.7964
C(29)	0.1172	0.9616	0.7881
C(30)	0.0118	0.9161	0.7953
C(31)	-0.0631	1.081	0.7537
C(32)	-0.0037	0.8068	0.8113
C(33)	0.0854	0.741	0.8194
C(34)	0.2578	0.5665	0.8354
C(35)	0.1726	0.5284	0.9131
C(36)	0.126	0.4253	0.9227
C(37)	0.1634	0.3594	0.8535
C(38)	0.0363	0.2166	0.9351
C(39)	0.2472	0.3963	0.776
C(40)	0.2945	0.498	0.7678
C(41)	0.3106	0.7262	0.9331
C(42)	0.2761	0.8246	0.9711
C(43)	0.2823	0.8422	1.0513
C(44)	0.3235	0.7635	1.0962
C(45)	0.3597	0.666	1.0594
C(46)	0.3534	0.6497	0.9785
C(47)	0.3606	0.7064	1.2258
C(48)	0.2499	0.952	0.4606
Cl(2)	0.1969	0.89	0.401
Cl(3)	0.1779	0.9466	0.5697
C(49)	1.1155	0.4654	0.277
Cl(4)	1.0567	0.5453	0.3624
Cl(5)	1.0936	0.5062	0.184

Flement	Co	oordinates (Angstron	ns)
Element	Х	Y	Z
Ir	-0.0006	0.199	0.2292
Cl(1)	0.076	0.2524	0.3393
Cl(2)	0.4901	0.0055	0.1231
Cl(3)	0.2126	0.4665	0.0853
Р	-0.1923	0.3377	0.2416
O(1)	0.0945	-0.0768	0.3828
O(2)	-0.0768	0.1732	-0.0091
O(3)	-0.2687	0.7823	0.2496
O(4)	-0.49	0.308	-0.0233
O(5)	-0.4317	0.3383	0.5706
N(1)	-0.0148	0.076	0.3176
N(2)	-0.0537	0.1517	0.1261
C(1)	0.1704	0.0802	0.2217
C(2)	0.2637	0.0813	0.1735
C(3)	0.3734	0.0027	0.185
C(4)	0.3958	-0.0778	0.2441
C(5)	0.3041	-0.0805	0.2932
C(6)	0.1917	-0.0016	0.2815
C(7)	0.0901	0.001	0.3281
C(8)	-0.0885	0.0457	0.3704
C(9)	-0.0193	-0.0482	0.4105
C(10)	-0.0609	-0.1024	0.4682
C(11)	-0.1796	-0.0575	0.4853
C(12)	-0.2516	0.0365	0.4446
C(13)	-0.2084	0.0888	0.3867
C(14)	0.0418	0.2848	0.1388
C(15)	0.1038	0.3469	0.1448
C(16)	0.1359	0.3901	0.0734
C(17)	0.111	0.3753	-0.0047
C(18)	0.0513	0.3148	-0.0134
C(19)	0.0187	0.2695	0.0576
C(20)	-0.0364	0.1985	0.0576
C(21)	-0.1071	0.0887	0.1065

Table S10.The Atomic Coordinates (angstroms) of Cat. 5

C(22)	-0.1227	0.1041	0.0214
C(23)	-0.1772	0.0565	-0.0209
C(24)	-0.2153	-0.0094	0.0269
C(25)	-0.1999	-0.026	0.1109
C(26)	-0.1435	0.0218	0.1527
C(27)	-0.2064	0.4732	0.2322
C(28)	-0.1215	0.4974	0.2613
C(29)	-0.1382	0.5994	0.2681
C(30)	-0.242	0.6786	0.2441
C(31)	-0.3245	0.6561	0.2127
C(32)	-0.312	0.5554	0.2073
C(33)	-0.2036	0.8107	0.3026
C(34)	-0.2884	0.3341	0.1639
C(35)	-0.2982	0.3863	0.0863
C(36)	-0.3652	0.3765	0.0256
C(37)	-0.4252	0.3128	0.0396
C(38)	-0.4145	0.2579	0.1142
C(39)	-0.3464	0.2692	0.1743
C(40)	-0.5448	0.238	-0.0113
C(41)	-0.2734	0.3434	0.3405
C(42)	-0.3935	0.3765	0.3464
C(43)	-0.4494	0.3758	0.4229
C(44)	-0.3854	0.3445	0.4932
C(45)	-0.2659	0.3153	0.4885
C(46)	-0.2118	0.3145	0.4135
C(47)	-0.5547	0.3649	0.5782

Flomont	Co	oordinates (Angstron	ns)
Element	Х	Y	Z
Ir	-0.4923	0.2622	0.5172
Cl	-0.6112	0.3043	0.5079
Р	-0.4891	0.2389	0.4174
F(1)	-0.5436	0.3746	0.7576
F(2)	-0.5403	0.1875	0.644
F(3)	-0.2251	0.1061	0.5802
F(4)	-0.3221	0.3098	0.5361
O(1)	-0.446	0.4514	0.5655
O(2)	-0.4938	0.0655	0.5547
N(1)	-0.4557	0.3583	0.516
N(2)	-0.5237	0.1676	0.5307
C(1)	-0.4237	0.4052	0.4812
C(2)	-0.3968	0.4037	0.4276
C(3)	-0.3696	0.4607	0.4058
C(4)	-0.3683	0.5191	0.4385
C(5)	-0.3926	0.5206	0.4931
C(6)	-0.4194	0.4627	0.5121
C(7)	-0.4664	0.3882	0.5644
C(8)	-0.4929	0.3549	0.613
C(9)	-0.5051	0.3847	0.6645
C(10)	-0.5293	0.347	0.7067
C(11)	-0.5424	0.281	0.6999
C(12)	-0.5287	0.2524	0.6478
C(13)	-0.5052	0.2867	0.6017
C(14)	-0.5855	0.13	0.5338
C(15)	-0.6558	0.1442	0.5241
C(16)	-0.7017	0.0924	0.5298
C(17)	-0.6804	0.0297	0.5452
C(18)	-0.6115	0.0151	0.5549
C(19)	-0.5657	0.067	0.5488
C(20)	-0.4732	0.1272	0.5434
C(21)	-0.4028	0.1507	0.5474
C(22)	-0.3462	0.1113	0.5616

 Table S11.
 The Atomic Coordinates (angstroms) of Cat. 6

C(23)	-0.2828	0.1422	0.566
C(24)	-0.2744	0.2088	0.5584
C(25)	-0.3334	0.2447	0.5445
C(26)	-0.3989	0.2192	0.537
C(27)	-0.5047	0.3066	0.3683
C(28)	-0.5492	0.3565	0.3817
C(29)	-0.5598	0.4091	0.345
C(30)	-0.5258	0.4114	0.2945
C(31)	-0.481	0.3614	0.2803
C(32)	-0.4712	0.3093	0.3163
C(34)	-0.4089	0.2008	0.3898
C(35)	-0.4094	0.1546	0.3474
C(36)	-0.3465	0.1281	0.328
C(37)	-0.2839	0.1478	0.3501
C(38)	-0.2832	0.195	0.3901
C(39)	-0.3449	0.2216	0.4101
C(41)	-0.5573	0.1803	0.3984
C(42)	-0.6216	0.2006	0.3782
C(43)	-0.6744	0.155	0.3683
C(44)	-0.6626	0.0899	0.3767
C(45)	-0.5994	0.0689	0.3954
C(46)	-0.5479	0.113	0.4071
O(6)	-0.2601	0.2966	0.2326
C(48)	-0.3277	0.2685	0.2081
O(7)	-0.2796	0.3926	0.2342
O(8)	-0.2157	0.363	0.2925
O(3)	-0.5484	0.466	0.2586
O(4)	-0.2114	0.1296	0.3373
O(5)	-0.7096	0.0383	0.3721
C(33)	-0.5156	0.4656	0.206
C(40)	-0.2127	0.0799	0.2918
C(47)	-0.7839	0.0557	0.3716
O(3')	-0.526	0.465	0.2666
O(4')	-0.2312	0.1171	0.328
O(5')	-0.723	0.0504	0.3594
C(33')	-0.481	0.47	0.208
C(40')	-0.1648	0.1397	0.3239
C(47')	-0.79	0.075	0.35

Element	Co	oordinates (Angstron	ns)
	Х	Y	Z
Ir	0.6904	0.9199	0.7672
Cl(1)	0.5279	0.932	0.7012
Cl(2)	0.5174	0.8252	0.3538
Cl(3)	0.8799	1.3686	1.1086
Р	0.816	1.1163	0.7572
O(1)	0.8313	0.7762	0.5767
O(2)	0.5436	0.8778	0.9966
O(3)	0.858	1.0872	0.3739
O(4)	1.2978	1.36	0.9435
O(5)	0.6406	1.4579	0.8615
N(1)	0.7265	0.8541	0.6473
N(2)	0.6503	0.9534	0.8942
C(1)	0.6947	0.828	0.5568
C(2)	0.6181	0.8416	0.509
C(3)	0.6118	0.8096	0.4182
C(4)	0.6815	0.7671	0.3761
C(5)	0.7558	0.7505	0.4225
C(6)	0.7606	0.7811	0.5125
C(7)	0.8045	0.8202	0.6554
C(8)	0.8559	0.8331	0.7397
C(9)	0.9374	0.7994	0.7538
C(10)	0.9762	0.8156	0.84
C(11)	0.9347	0.8636	0.9103
C(12)	0.858	0.9011	0.8946
C(13)	0.8138	0.8864	0.809
C(14)	0.6864	1.0425	0.9713
C(15)	0.771	1.1583	0.9954
C(16)	0.7788	1.2226	1.0781
C(17)	0.7054	1.1749	1.1382
C(18)	0.6258	1.0607	1.1186
C(19)	0.6182	0.9957	1.0339
C(20)	0.5681	0.8593	0.9116
C(21)	0.5182	0.7489	0.85

Table S12.The Atomic Coordinates (angstroms) of Cat. 7

C(22)	0.4294	0.646	0.8626
C(23)	0.3931	0.5444	0.7948
C(24)	0.4399	0.5469	0.7191
C(25)	0.5287	0.6516	0.7063
C(26)	0.57	0.7541	0.7713
C(27)	0.8352	1.1175	0.642
C(28)	0.9206	1.1014	0.5991
C(29)	0.9244	1.0906	0.5099
C(30)	0.8453	1.0993	0.4604
C(31)	0.7599	1.1173	0.5008
C(32)	0.7545	1.1251	0.59
C(33)	0.7778	1.0909	0.3177
C(34)	0.9627	1.1919	0.8148
C(35)	1.0127	1.3036	0.8723
C(36)	1.1212	1.3535	0.9139
C(37)	1.1874	1.2966	0.8988
C(38)	1.1395	1.1846	0.8422
C(39)	1.0295	1.1334	0.802
C(40)	1.3677	1.3101	0.9357
C(41)	0.7667	1.2244	0.7916
C(42)	0.8211	1.3307	0.7713
C(43)	0.7848	1.4131	0.7958
C(44)	0.6878	1.3871	0.8372
C(45)	0.6334	1.2813	0.8589
C(46)	0.6708	1.2001	0.8351
C(47)	0.6939	1.5701	0.8419
C(48)	0.662	1.396	0.454
Cl(4)	0.7296	1.3613	0.5318
Cl(5)	0.6172	1.4754	0.538
O(6')	0.888	1.568	0.324
O(6)	0.924	1.564	0.397