# Supporting Information: Noncovalently bound excited-state dimers: a perspective on current time-dependent Density Functional Theory approaches applied to aromatic excimer models

Amy C. Hancock and Lars Goerigk\*

School of Chemistry, The University of Melbourne, Victoria 3010, Australia; Ph: +61-(0)3-83446784

E-mail: lars.goerigk@unimelb.edu.au

## Contents

| SI.1 Expl | icit definition of coordinates defining inter-monomer distance                                 | <b>S-3</b> |
|-----------|------------------------------------------------------------------------------------------------|------------|
| SI.2 Addi | tional Data for Establishing Suitable Wavefunction Reference Method                            | S-3        |
| SI.2.1    | Numerical Data for Wavefunction Methods                                                        | . S-3      |
| SI.2.2    | SCS-CC2 Dissociation Curves Comparing Basis Sets and Extrapolation to Complete Basis Set Limit | . S-4      |
| SI.3 The  | $\omega$ B97X Problem                                                                          | <b>S-6</b> |
| SI.4 Addi | tional Data For Benchmarking TD-DFT methods                                                    | S-7        |
| SI.4.1    | Fock Exchange Study                                                                            | . S-7      |
|           | SI.4.1.1 Tables of Minima and Signed Percentage Errors                                         | . S-7      |
|           | SI.4.1.2 Dissociation Curves                                                                   | . S-8      |
| SI.4.2    | DFT-D Corrected TD-DFT                                                                         | .S-10      |
|           | SI.4.2.1 Dissociation Curves                                                                   | .S-10      |
|           | SI.4.2.2 Unphysical Positive Regions in Mid-range of Dissociation Curves                       | .S-12      |
| SI.4.3    | Numerical Data For Binding Minima and Associated Percentage errors                             | .S-15      |
| SI.4.4    | Mean Absolute Deviations                                                                       | .S-17      |
| Reference | s                                                                                              | S-18       |

#### References

SI.1 Explicit definition of coordinates defining intermonomer distance



Figure S1: Diagrams of excimer model structures illustrating the atom coordinates used to define the inter-monomer distance for dissociation energy curves. Z-matrix templates used for defining the inter-monomer distance from these coordinates is given in the other supplementary files. Refer to README file for usage.

## SI.2 Additional Data for Establishing Suitable Wavefunction Reference Method

#### SI.2.1 Numerical Data for Wavefunction Methods

Table S1: Explicit minima of SCS-CC2 and CC2 interaction energy curves of the lowest singlet excited state of the stacked benzene dimer for the basis set study. The distance of the minimum is denoted  $r_e$  (Å) and the associated interaction energy at that position  $\Delta E$  (kcal/mol).

|             | SCS-CC2 |            | С     | C2         |
|-------------|---------|------------|-------|------------|
| Basis set   | $r_e$   | $\Delta E$ | $r_e$ | $\Delta E$ |
| def2-SVP    | 2.99    | -12.60     | 2.90  | -18.22     |
| def2-TZVP   | 2.99    | -13.18     | 2.90  | -20.19     |
| def2-QZVP   | 2.99    | -13.29     | 2.90  | -20.64     |
| cc- $pVTZ$  | 3.00    | -12.99     | 2.90  | -19.95     |
| def2-TZVPD  | 3.00    | -15.61     | 2.90  | -22.75     |
| aug-cc-pVTZ | 3.00    | -15.03     | 2.90  | -22.37     |

**Table S2:** CCSDR(3) and SCS-CC2 interaction energies (kcal/mol) of the lowest singlet excited state of the stacked benzene dimer relative to the excited state asymptote (value at 16 Å) for Karlsruhe basis sets and CBS limit extrapolations.

|              |          | SCS-      | ·CC2     |          |          |
|--------------|----------|-----------|----------|----------|----------|
| Distance (Å) | def2-SVP | def2-TZVP | CBS(2,3) | CBS(2,3) | CBS(3,4) |
| 2.90         | -10.72   | -11.31    | -13.06   | -14.56   | -13.40   |
| 2.95         | -11.19   | -11.76    | -13.41   | -14.76   | -13.63   |
| 3.00         | -11.39   | -11.96    | -13.52   | -14.73   | -13.62   |
| 3.05         | -11.36   | -11.96    | -13.42   | -14.52   | -13.42   |

SI.2.2 SCS-CC2 Dissociation Curves Comparing Basis Sets and Extrapolation to Complete Basis Set Limit



Figure S2: Dissociation curves for the lowest-lying excited state of the benzene excimer with SCS-CC2 across two successive basis sets in the Karlsruhe family (def2-nZVP) and their complete basis set extrapolated result, CBS(3,4). A magnified snapshot of the minima is shown to the right.



Figure S3: Dissociation curves for the lowest-lying excited state of the naphthalene excimer with spin-component scaled CC2 (SCS-CC2) across two successive basis sets in the Karlsruhe family (def2-nZVP) and their complete basis set extrapolated result, CBS(3,4). A magnified snapshot of the minima is shown to the right.



**Figure S4:** Dissociation curves for the lowest-lying excited state of the anthracene excimer with spin-component scaled CC2 (SCS-CC2) across two successive basis sets in the Karlsruhe family (def2-nZVP) and their complete basis set extrapolated result, CBS(3,4). A magnified snapshot of the minima is shown to the right.



**Figure S5:** Dissociation curves for the lowest-lying excited state of the pyrene excimer with spin-component scaled CC2 (SCS-CC2) across two successive basis sets in the Karlsruhe family (def2-nZVP) and their complete basis set extrapolated result, CBS(3,4). A magnified snapshot of the minima is shown to the right.

## SI.3 The $\omega$ B97X Problem

There were some unanticipated technical problems for  $\omega$ B97X resulting in wobbly interaction energy curves as shown in the figures below.



Figure S6: Dissociation energy curves for  $\omega$ B97X and SCS-CC2/CBS(3,4) for each excimer. Due to the difficulty of identifying the actual minima for  $\omega$ B97X we defined each  $D_e$  from the mathematical minimum of each curve.

# SI.4 Additional Data For Benchmarking TD-DFT methods

#### SI.4.1 Fock Exchange Study

#### SI.4.1.1 Tables of Minima and Signed Percentage Errors

**Table S3:** Dissociation energies ( $D_e$ ; kcal/mol), equilibrium inter-monomer distances ( $r_e$ ; Å) and signed percentage errors relative to the SCS-CC2/CBS(3,4) reference for TD-BLYP and global hybrid variants with varied amounts of Fock exchange.

| Excimer           | Benzene | Naphthalene | Anthracene | Pyrene | Benzene            | Naphthalene | Anthracene | Pyrene |  |
|-------------------|---------|-------------|------------|--------|--------------------|-------------|------------|--------|--|
| Fock exchange (%) |         | $D_e$ (kcal | /mol)      |        |                    | $r_e$ (Å)   |            |        |  |
| $0^a$             | 10.56   | 0.73        | -          | -      | 3.23               | 3.57        | -          | -      |  |
| 20                | 10.68   | 14.69       | 9.19       | 10.60  | 3.15               | 3.37        | 3.61       | 3.67   |  |
| 37.5              | 8.72    | 12.61       | 7.41       | 9.08   | 3.14               | 3.32        | 3.54       | 3.59   |  |
| 50                | 8.10    | 11.79       | 6.88       | 8.22   | 3.13               | 3.29        | 3.51       | 3.54   |  |
| 75                | 7.57    | 10.60       | 6.40       | 7.14   | 3.12               | 3.26        | 3.47       | 3.51   |  |
| Fock exchange (%) |         | Error in L  | $D_e$ (%)  |        | Error in $r_e$ (%) |             |            |        |  |
| $0^a$             | -22.7   | -97.4       | -          | -      | 8.8                | 17.4        | -          | -      |  |
| 20                | -21.7   | -48.1       | -67.7      | -68.2  | 6.1                | 10.9        | 13.5       | 15.0   |  |
| 37.5              | -36.1   | -55.5       | -73.9      | -72.7  | 5.7                | 9.2         | 11.3       | 12.5   |  |
| 50                | -40.7   | -58.4       | -75.8      | -75.3  | 5.4                | 8.2         | 10.4       | 11.0   |  |
| 75                | -44.6   | -62.6       | -77.5      | -78.6  | 5.1                | 7.2         | 9.1        | 10.0   |  |

 $a^{\rm BLYP}$  does not predict minima for the anthracene and pyrene excimer states. See Fig. S7.

**Table S4:** Dissociation energies  $(D_e)$ , equilibrium inter-monomer distances  $(r_e)$  and signed percentage errors relative to the SCS-CC2/CBS(3,4) reference for TD-PBE and global hybrid variants with varied amounts of Fock exchange.

| Excimer           | Benzene | Naphthalene | Anthracene | Pyrene | Benzene            | Naphthalene | Anthracene | Pyrene |  |
|-------------------|---------|-------------|------------|--------|--------------------|-------------|------------|--------|--|
| Fock exchange (%) |         | $D_e$ (kcal | l/mol)     |        |                    | $r_e$ (Å)   |            |        |  |
| 0                 | 15.38   | 5.42        | 3.23       | 1.76   | 3.10               | 3.36        | 3.60       | 3.71   |  |
| 20                | 14.65   | 18.99       | 13.24      | 14.44  | 3.05               | 3.25        | 3.47       | 3.52   |  |
| 37.5              | 12.62   | 17.00       | 11.31      | 13.09  | 3.03               | 3.20        | 3.40       | 3.44   |  |
| 50                | 11.50   | 15.69       | 10.10      | 11.53  | 3.02               | 3.17        | 3.38       | 3.41   |  |
| 75                | 9.92    | 13.27       | 7.98       | 8.69   | 3.00               | 3.15        | 3.35       | 3.38   |  |
| Fock exchange (%) |         | Error in .  | $D_e$ (%)  |        | Error in $r_e$ (%) |             |            |        |  |
| 0                 | 12.6    | -80.9       | -88.6      | -94.7  | 4.4                | 10.5        | 13.2       | 16.3   |  |
| 20                | 7.3     | -33.0       | -53.4      | -56.6  | 2.7                | 6.9         | 9.1        | 10.3   |  |
| 37.5              | -7.6    | -40.0       | -60.2      | -60.7  | 2.0                | 5.3         | 6.9        | 7.8    |  |
| 50                | -15.7   | -44.6       | -64.4      | -65.4  | 1.7                | 4.3         | 6.3        | 6.9    |  |
| 75                | -27.3   | -53.2       | -71.9      | -73.9  | 1.0                | 3.6         | 5.3        | 6.0    |  |





Figure S7: Dissociation energy curves for TD-BLYP and global hybrid variants with varied amounts of Fock exchange. SCS-CC2/CBS(3,4) and CCS/def2-TZVP curves are also shown for reference.



Figure S8: Dissociation energy curves for TD-PBE and global hybrid variants with varied amounts of Fock exchange. SCS-CC2/CBS(3,4) curves are also shown for reference.

#### SI.4.2 DFT-D Corrected TD-DFT

#### SI.4.2.1 Dissociation Curves



Figure S9: Dissociation energy curves for the benzene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference. All TD-DFT results are based on the def2-TZVP basis set.



Figure S10: Dissociation energy curves for the naphthalene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference. All TD-DFT results are based on the def2-inter-monomerTZVP basis set.



Figure S11: Dissociation energy curves for the anthracene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference.



Figure S12: Dissociation energy curves for the pyrene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference.

#### SI.4.2.2 Unphysical Positive Regions in Mid-range of Dissociation Curves



Figure S13: Mid-range region of SCS-CC2 dissociation curves for the benzene excimer with two truncated basis sets and their CBS(3,4) extrapolation.



Figure S14: Mid-range region of the dissociation energy curves for the benzene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference.



Figure S15: Mid-range region of the dissociation energy curves for the naphthalene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/def2-TZVP reference. All TD-DFT results are based on the def2-TZVP basis set. As distances beyond the binding region were not the focus of the paper, some curves may show strange shapes in the mid-range due to the small number of data points however they still showcase the identified positive region.



Figure S16: Mid-range region of the dissociation energy curves for the anthracene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/def2-TZVP reference. All TD-DFT results are based on the def2-TZVP basis set. As distances beyond the binding region were not the focus of the paper, some curves may show strange shapes in the mid-range due to the small number of data points however they still showcase the identified positive region.



Figure S17: Mid-range region of the dissociation energy curves for the pyrene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/def2-TZVP reference. All TD-DFT results are based on the def2-TZVP basis set. As distances beyond the binding region were not the focus of the paper, some curves may show strange shapes in the mid-range due to the small number of data points however they still showcase the identified positive region.

### SI.4.3 Numerical Data For Binding Minima and Associated Percentage errors

**Table S5:** Binding of the benzene excimer described by the dissociation energy  $(D_e; \text{ kcal/mol})$ , equilibrium inter-monomer distance  $(r_e; \text{ Å})$  and the unsigned percentage errors of each compared to that of the SCS-CC2/CBS(3,4) reference.

|                    |             | $D_e$       |       | $r_e$                     |        |      |  |
|--------------------|-------------|-------------|-------|---------------------------|--------|------|--|
| Functional         | Uncorrected | D3(BJ)      | D4    | Uncorrected               | D3(BJ) | D4   |  |
| B3LYP              | 10.68       | 21.24       | 21.47 | 3.15                      | 3.03   | 3.03 |  |
| PBE38              | 12.62       | 19.21       | 19.03 | 3.03                      | 2.98   | 3.00 |  |
| BHLYP              | 8.10        | 16.28       | 16.69 | 3.13                      | 3.03   | 3.05 |  |
| CAM-B3LYP          | 8.58        | 15.24       | 15.77 | 3.09                      | 3.04   | 3.03 |  |
| $\omega B97 X^a$   | 11.99       | -           | -     | 3.08                      | -      | -    |  |
| B2PLYP             | 11.36       | 16.94       | 16.96 | 3.05                      | 3.00   | 3.01 |  |
| B2GP-PLYP          | 11.99       | 15.95       | 15.73 | 3.03                      | 2.99   | 3.01 |  |
| $\omega B2PLYP$    | 13.07       | 13.20       | 13.19 | 2.99                      | 2.99   | 2.99 |  |
| $\omega B2GP-PLYP$ | 13.90       | 13.90       | 13.90 | 2.98                      | 2.98   | 2.98 |  |
|                    | Percentag   | ge error in | $D_e$ | Percentage error in $r_e$ |        |      |  |
| Functional         | Uncorrected | D3(BJ)      | D4    | Uncorrected               | D3(BJ) | D4   |  |
| B3LYP              | 21.7        | 55.5        | 57.3  | 6.1                       | 2.0    | 2.0  |  |
| PBE38              | 7.6         | 40.7        | 39.4  | 2.0                       | 0.3    | 1.0  |  |
| BHLYP              | 40.7        | 19.3        | 22.2  | 5.4                       | 2.0    | 2.7  |  |
| CAM-B3LYP          | 37.2        | 11.7        | 15.5  | 4.0                       | 2.4    | 2.0  |  |
| $\omega B97 X^a$   | 12.2        | -           | -     | 3.7                       | -      | -    |  |
| B2PLYP             | 16.8        | 24.1        | 24.3  | 2.7                       | 1.0    | 1.3  |  |
| B2GP-PLYP          | 12.2        | 16.8        | 15.7  | 2.0                       | 0.7    | 1.3  |  |
| $\omega B2PLYP$    | 4.2         | 3.3         | 3.4   | 0.7                       | 0.7    | 0.7  |  |
| $\omega B2GP-PLYP$ | 1.8         | 1.8         | 1.8   | 0.3                       | 0.3    | 0.3  |  |

 $^a \rm We$  assessed the pure  $\omega \rm B97X.$  Its various dispersion-corrected variants all depend on slightly different underlying XC expressions,  $^{\rm S1-S6}$  which is why dispersion-corrected results are not provided.

**Table S6:** Binding of the naphthalene excimer described by the dissociation energy ( $D_e$ ; kcal/mol), equilibrium inter-monomer distance ( $r_e$ ; Å) and the unsigned percentage errors of each compared to that of the SCS-CC2/CBS(3,4) reference.

|                    |             | De          |       |             | $r_{c}$             |                |
|--------------------|-------------|-------------|-------|-------------|---------------------|----------------|
| Functional         | Uncorrected | D3(BJ)      | D4    | Uncorrected | D3(BJ)              | D4             |
| B3LYP              | 14.69       | 30.94       | 31.54 | 3.37        | 3.16                | 3.16           |
| PBE38              | 17.00       | 28.13       | 28.52 | 3.20        | 3.12                | 3.14           |
| BHLYP              | 11.79       | 24.90       | 26.03 | 3.29        | 3.16                | 3.16           |
| CAM-B3LYP          | 13.32       | 24.83       | 25.65 | 3.24        | 3.16                | 3.15           |
| $\omega B97 X^a$   | 18.95       | -           | -     | 3.24        | -                   | -              |
| B2PLYP             | 20.58       | 29.78       | 29.96 | 3.19        | 3.11                | 3.12           |
| B2GP-PLYP          | 22.43       | 29.03       | 29.09 | 3.14        | 3.10                | 3.11           |
| $\omega B2PLYP$    | 22.72       | 22.98       | 22.99 | 3.09        | 3.09                | 3.09           |
| $\omega B2GP-PLYP$ | 24.67       | 24.68       | 24.68 | 3.07        | 3.07                | 3.07           |
|                    | Percentag   | ge error in | $D_e$ | Percentag   | e error in <i>i</i> | r <sub>e</sub> |
| Functional         | Uncorrected | D3(BJ)      | D4    | Uncorrected | D3(BJ)              | D4             |
| B3LYP              | 48.1        | 9.3         | 11.4  | 10.9        | 3.9                 | 3.9            |
| PBE38              | 40.0        | 0.7         | 0.7   | 5.3         | 2.6                 | 3.3            |
| BHLYP              | 58.4        | 12.1        | 8.1   | 8.2         | 3.9                 | 3.9            |
| CAM-B3LYP          | 53.0        | 12.3        | 9.4   | 6.6         | 3.9                 | 3.6            |
| $\omega B97 X^a$   | 33.1        | -           | -     | 6.6         | -                   | -              |
| B2PLYP             | 27.3        | 5.2         | 5.8   | 4.9         | 2.3                 | 2.6            |
| B2GP-PLYP          | 20.8        | 2.5         | 2.7   | 3.3         | 2.0                 | 2.3            |
| $\omega B2PLYP$    | 19.8        | 18.8        | 18.8  | 1.6         | 1.6                 | 1.6            |
| $\omega B2GP-PLYP$ | 12.9        | 12.9        | 12.9  | 1.0         | 1.0                 | 1.0            |

<sup>*a*</sup>We assessed the pure  $\omega$ B97X. Its various dispersion-corrected variants all depend on slightly different underlying XC expressions, <sup>S1–S6</sup> which is why dispersion-corrected results are not provided.

**Table S7:** Binding of the anthracene excimer described by the dissociation energy ( $D_e$ ; kcal/mol), equilibrium inter-monomer distance ( $r_e$ ; Å) and the unsigned percentage errors of each compared to that of the SCS-CC2/CBS(3,4) reference.

|                                                                                                 |                                                                                          | $D_e$                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | $r_e$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Functional                                                                                      | Uncorrected                                                                              | D3(BJ)                                                                           | D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Uncorrected                                                                        | D3(BJ)                                                                       | D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| B3LYP                                                                                           | 9.19                                                                                     | 29.59                                                                            | 30.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.61                                                                               | 3.30                                                                         | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| PBE38                                                                                           | 11.31                                                                                    | 26.05                                                                            | 27.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.40                                                                               | 3.28                                                                         | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| BHLYP                                                                                           | 6.88                                                                                     | 23.40                                                                            | 25.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.51                                                                               | 3.31                                                                         | 3.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| CAM-B3LYP                                                                                       | 8.18                                                                                     | 23.50                                                                            | 24.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.45                                                                               | 3.32                                                                         | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\omega B97 X^a$                                                                                | 16.01                                                                                    | -                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.36                                                                               | -                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| B2PLYP                                                                                          | 17.23                                                                                    | 29.24                                                                            | 29.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.36                                                                               | 3.25                                                                         | 3.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| B2GP-PLYP                                                                                       | 19.82                                                                                    | 28.44                                                                            | 28.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.31                                                                               | 3.24                                                                         | 3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\omega B2PLYP$                                                                                 | 20.10                                                                                    | 20.53                                                                            | 20.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.25                                                                               | 3.25                                                                         | 3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $\omega B2GP-PLYP$                                                                              | 22.70                                                                                    | 22.72                                                                            | 22.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.23                                                                               | 3.23                                                                         | 3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                                                 | Percentage error in $D_e$                                                                |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | Percentage error in $r_e$                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                 | Percentag                                                                                | ge error in .                                                                    | $D_e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percentag                                                                          | e error in                                                                   | $r_e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Functional                                                                                      | Uncorrected                                                                              | D3(BJ)                                                                           | $D_e$ D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Uncorrected                                                                        | D3(BJ)                                                                       | $r_e$ D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Functional<br>B3LYP                                                                             | Uncorrected<br>67.7                                                                      | $\frac{\text{D3(BJ)}}{4.2}$                                                      | $\frac{D_e}{7.1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Uncorrected<br>13.5                                                                | $\frac{\text{D3(BJ)}}{3.8}$                                                  | $\frac{D4}{3.8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Functional<br>B3LYP<br>PBE38                                                                    | Percentag<br>Uncorrected<br>67.7<br>60.2                                                 | 203(BJ)<br>4.2<br>8.3                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Uncorrected<br>13.5<br>6.9                                                         | $\frac{D3(BJ)}{3.8}$                                                         | $r_e$ D4 3.8 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Functional<br>B3LYP<br>PBE38<br>BHLYP                                                           | Percentag<br>Uncorrected<br>67.7<br>60.2<br>75.8                                         | ge error in .<br>D3(BJ)<br>4.2<br>8.3<br>17.6                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Uncorrected<br>13.5<br>6.9<br>10.4                                                 | e error in (<br>D3(BJ)<br>3.8<br>3.1<br>4.1                                  | $     \begin{array}{r} r_e \\                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Functional<br>B3LYP<br>PBE38<br>BHLYP<br>CAM-B3LYP                                              | Percentag<br>Uncorrected<br>67.7<br>60.2<br>75.8<br>71.2                                 | D3(BJ)           4.2           8.3           17.6           17.2                 | $     \frac{D_e}{11.4}     14.0     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100  $ | Percentag<br>Uncorrected<br>13.5<br>6.9<br>10.4<br>8.5                             | e error in 4<br>D3(BJ)<br>3.8<br>3.1<br>4.1<br>4.4                           | $     \frac{1}{1}     \frac{1}{1}     \frac{1}{1}     \frac{1}{3.8}     \frac{1}{3.8}     \frac{1}{3.8}     \frac{1}{3.8}     \frac{1}{1}     \frac{1}{3.8}     \frac{1}{1}     \frac$ |  |  |
| Functional<br>B3LYP<br>PBE38<br>BHLYP<br>CAM-B3LYP<br>ωB97X <sup>a</sup>                        | Percentag<br>Uncorrected<br>67.7<br>60.2<br>75.8<br>71.2<br>43.6                         | D3(BJ)           4.2           8.3           17.6           17.2                 | $\begin{array}{c} \hline D_{e} \\ \hline 1 \\ \hline 7.1 \\ 4.5 \\ 11.4 \\ 14.0 \\ \hline - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Percentag<br>Uncorrected<br>13.5<br>6.9<br>10.4<br>8.5<br>5.7                      | e error in 4<br>D3(BJ)<br>3.8<br>3.1<br>4.1<br>4.4                           | D4           3.8           3.77           4.1           3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| FunctionalB3LYPPBE38BHLYPCAM-B3LYP $\omega$ B97X <sup>a</sup> B2PLYP                            | Percentag<br>Uncorrected<br>67.7<br>60.2<br>75.8<br>71.2<br>43.6<br>39.3                 | ge error in .<br>D3(BJ)<br>4.2<br>8.3<br>17.6<br>17.2<br>-<br>3.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Percentag<br>Uncorrected<br>13.5<br>6.9<br>10.4<br>8.5<br>5.7<br>5.7<br>5.7        | e error in 2<br>D3(BJ)<br>3.8<br>3.1<br>4.1<br>4.4<br>-<br>2.2               | $     \begin{array}{r} r_e \\ \hline D4 \\ \hline 3.8 \\ 3.77 \\ 4.1 \\ 3.8 \\ - \\ 2.5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Functional<br>B3LYP<br>PBE38<br>BHLYP<br>CAM-B3LYP<br>ωB97X <sup>a</sup><br>B2PLYP<br>B2GP-PLYP | Percentag<br>Uncorrected<br>67.7<br>60.2<br>75.8<br>71.2<br>43.6<br>39.3<br>30.2         | ge error in 1<br>D3(BJ)<br>4.2<br>8.3<br>17.6<br>17.2<br>-<br>3.0<br>0.1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Percentag<br>Uncorrected<br>13.5<br>6.9<br>10.4<br>8.5<br>5.7<br>5.7<br>4.1        | e error in 4<br>D3(BJ)<br>3.8<br>3.1<br>4.1<br>4.4<br>-<br>2.2<br>1.9        | $\begin{array}{r} r_e \\ \hline D4 \\ \hline 3.8 \\ 3.77 \\ 4.1 \\ 3.8 \\ - \\ 2.5 \\ 2.2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                           | Percentag<br>Uncorrected<br>67.7<br>60.2<br>75.8<br>71.2<br>43.6<br>39.3<br>30.2<br>29.2 | ge error in .<br>D3(BJ)<br>4.2<br>8.3<br>17.6<br>17.2<br>-<br>3.0<br>0.1<br>27.7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Percentag<br>Uncorrected<br>13.5<br>6.9<br>10.4<br>8.5<br>5.7<br>5.7<br>4.1<br>2.2 | e error in 2<br>D3(BJ)<br>3.8<br>3.1<br>4.1<br>4.4<br>-<br>2.2<br>1.9<br>2.2 | $\begin{array}{r} r_e \\ \hline D4 \\ \hline 3.8 \\ 3.77 \\ 4.1 \\ 3.8 \\ - \\ 2.5 \\ 2.2 \\ 2.2 \\ 2.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

 $^a\mathrm{We}$  assessed the pure  $\omega\mathrm{B97X}.$  Its various dispersion-corrected variants all depend on slightly different underlying XC expressions,  $^{\mathrm{S1-S6}}$  which is why dispersion-corrected results are not provided.

**Table S8:** Binding of the pyrene excimer described by the dissociation energy  $(D_e; \text{ kcal/mol})$ , equilibrium inter-monomer distance  $(r_e; \text{\AA})$  and the unsigned percentage errors of each compared to that of the SCS-CC2/CBS(3,4) reference.

|                    |             | $D_e$       |       | $r_e$       |                      |       |  |
|--------------------|-------------|-------------|-------|-------------|----------------------|-------|--|
| Functional         | Uncorrected | D3(BJ)      | D4    | Uncorrected | D3(BJ)               | D4    |  |
| B3LYP              | 10.60       | 33.41       | 34.37 | 3.67        | 3.31                 | 3.31  |  |
| PBE38              | 13.09       | 29.98       | 31.57 | 3.44        | 3.30                 | 3.31  |  |
| BHLYP              | 8.22        | 26.89       | 29.02 | 3.54        | 3.32                 | 3.32  |  |
| CAM-B3LYP          | 9.71        | 27.39       | 28.41 | 3.50        | 3.33                 | 3.32  |  |
| $\omega B97 X^a$   | 17.97       | -           | -     | 3.37        | -                    | -     |  |
| B2PLYP             | 20.51       | 34.28       | 34.60 | 3.38        | 3.26                 | 3.27  |  |
| B2GP-PLYP          | 23.53       | 33.44       | 33.89 | 3.32        | 3.25                 | 3.26  |  |
| $\omega B2PLYP$    | 23.11       | 23.63       | 23.66 | 3.27        | 3.27                 | 3.27  |  |
| $\omega B2GP-PLYP$ | 26.29       | 26.32       | 26.32 | 3.25        | 3.25                 | 3.25  |  |
|                    | Percentag   | ge error in | $D_e$ | Percentag   | ge error in <i>i</i> | $r_e$ |  |
| Functional         | Uncorrected | D3(BJ)      | D4    | Uncorrected | D3(BJ)               | D4    |  |
| B3LYP              | 68.2        | 0.4         | 3.2   | 15.0        | 3.8                  | 3.8   |  |
| PBE38              | 60.7        | 9.9         | 5.2   | 7.8         | 3.4                  | 3.8   |  |
| BHLYP              | 75.3        | 19.2        | 12.8  | 11.0        | 4.1                  | 4.1   |  |
| CAM-B3LYP          | 70.8        | 17.7        | 14.7  | 9.7         | 4.4                  | 4.1   |  |
| $\omega B97x$      | 46.0        | -           | -     | 5.6         | -                    | -     |  |
| B2PLYP             | 38.4        | 3.0         | 3.9   | 6.0         | 2.2                  | 2.5   |  |
| B2GP-PLYP          | 29.3        | 0.5         | 1.8   | 4.1         | 1.9                  | 2.2   |  |
| $\omega B2PLYP$    | 30.6        | 29.0        | 28.9  | 2.5         | 2.5                  | 2.5   |  |
| $\omega B2GP-PLYP$ | 21.0        | 20.9        | 20.9  | 1.9         | 1.9                  | 1.9   |  |

<sup>*a*</sup>We assessed the pure  $\omega$ B97X. Its various dispersion-corrected variants all depend on slightly different underlying XC expressions, <sup>S1–S6</sup> which is why dispersion-corrected results are not provided.

#### SI.4.4 Mean Absolute Deviations

**Table S9:** Mean absolute deviations (MADs) for the dissociation energy  $(D_e; \text{ kcal/mol})$  and equilibrium distance  $(r_e; \text{ Å})$  characterising the description of excimer binding by the method relative to SCS-CC2/CBS(3,4) reference.

|                    |             | $D_e$ MADs |        |             | $r_e$ MADs |        |
|--------------------|-------------|------------|--------|-------------|------------|--------|
| Functional         | Uncorrected | DFT-D3(BJ) | DFT-D4 | Uncorrected | DFT-D3(BJ) | DFT-D4 |
| B3LYP              | 14.63       | 2.88       | 3.53   | 0.36        | 0.11       | 0.11   |
| PBE38              | 12.41       | 2.85       | 2.15   | 0.17        | 0.07       | 0.09   |
| BHLYP              | 17.17       | 4.36       | 3.21   | 0.27        | 0.11       | 0.12   |
| CAM-B3LYP          | 15.97       | 3.97       | 3.41   | 0.23        | 0.12       | 0.11   |
| $\omega B97 x$     | 9.69        | -          | -      | 0.17        | -          | -      |
| B2PLYP             | 8.50        | 1.64       | 1.85   | 0.15        | 0.06       | 0.07   |
| B2GP-PLYP          | 6.47        | 0.80       | 0.96   | 0.11        | 0.05       | 0.06   |
| $\omega B2PLYP$    | 6.16        | 5.83       | 5.82   | 0.06        | 0.06       | 0.06   |
| $\omega B2GP-PLYP$ | 4.15        | 4.14       | 4.14   | 0.04        | 0.04       | 0.04   |

 $^aWe$  assessed the pure  $\omega B97X.$  Its various dispersion-corrected variants all depend on slightly different underlying XC expressions,  $^{\rm S1-S6}$  which is why dispersion-corrected results are not provided.

## References

- (S1) Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106.
- (S2) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- (S3) Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. J. Chem. Theory Comput. Chem. 2013, 9, 263–272.
- (S4) Mardirossian, N.; Head-Gordon, M. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. *Phys. Chem. Chem. Phys.* 2014, 16, 9904–9924.
- (S5) Najibi, A.; Goerigk, L. The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches. J. Chem. Theory Comput. 2018, 14, 5725–5738.
- (S6) Najibi, A.; Goerigk, L. DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries. J. Comput. Chem. 2020, 41, 2562–2572.