Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Synthesis and Vectorial Functionalisation of Pyrazolo[3,4-c]pyridines

Elizabeth V Bedwell, Flavio da Silva Emery, Giuliano C Clososki, Patrick G Steel

Table of Contents	
Table 1: Optimisation of metalation of 9a with TMPMgCl.LiCl reaction with iodine	2
Experimental Procedures	3
NMR Spectra of all new compounds	27

Table 1: Optimisation of metalation of 9a with TMPMgCl.LiCl reaction with iodine

Entry	base eq.	Temperature with base	Time with base / minutes	Time with I ₂ / minutes	Yield
1	2	0°C	120	60	0%
2	2	0°C	120	1080	0%
3	2	25°C	300	60	0%ª
4	2	25°C	1080	60	0%ª
5	1.2	-78°C	15	120	16%
6	1.5	-78°C	30	120	35%
7	2	-40°C	60	180	59%ª
8	2	-40°C	15	60	77% ^a
9	2	-40°C	30	60	70%ª
10	2	-40°C	60	60	81%ª

^a=conversion calculated by GCMS analysis of crude reaction mixture

Experimental Procedures

Materials and Methods

All solvents and reagents were purchased from commercial suppliers and used without further purification unless otherwise stated below. Final compound purification by flash column chromatography was performed on a CombiFlash[®] System from Teledyne Isco equipped with an UVlight detector using prepacked silica RediSep Rf cartridges with the stated solvent gradient. Crude mixtures to be purified were dry loaded onto silica (normal phase) or Celite[®] 545 (reverse phase) prior to running the column. NMR spectra were recorded on the following instruments: Bruker Neo 700 MHz spectrometer with operating frequencies of 700 MHz for ¹H and 175 MHz for ¹³C; Varian VNMRS-600 with operating frequencies of 600 MHz for ¹H and 150 MHz for ¹³C NMR; and Varian VNMRS-400 with operating frequencies of 400 MHz for ¹H and 376 MHz for ¹⁹F NMR. Spectra were referenced relative to CDCl₃ (δ_H 7.26 ppm, δ_C 77.16 ppm), CD3OD (δ_H 4.87 ppm, δ_C 49.00 ppm), or DMSO ($\delta_{\rm H}$ 2.50 ppm, $\delta_{\rm C}$ 39.52 ppm). Chemical shifts are reported in parts per million (ppm), coupling constants (J) in hertz (Hz) and multiplicity as singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), sextet (s), multiplet (m) or a combination thereof. All J values are J_{H-H} unless otherwise stated. All ¹H NMR and ¹³C NMR spectral assignments were made with the aid of ¹H¹H COSY, ¹H¹H NOESY, ¹H¹C HSQC and ¹H¹³C HMBC NMR experiments. Infra-red spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR spectrometer or a Perkin Elmer RX FT-IR spectrometer with Golden Gate Diamond ATR apparatus. IR assignments are reported in wavenumbers (cm⁻¹). Melting points were recorded on Thermo Scientific Electrothermal IA9100 Digital Melting Point apparatus. Thin layer chromatography was performed using Merck F254 silica gel 60 aluminium sheets pre-coated with silica gel. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LC-MS) were recorded on a Waters TQD mass spectrometer ESI-LC water (0.1 % formic acid): MeCN/MeOH, flow rate 0.6 mL min⁻¹ with a UPLC BEH C18 1.7 μ m (2.1 mm x 50 mm) column. Gas chromatography mass spectrometry (GCMS) was carried out on a Shimadzu QP2010- Ultra with a temperature gradient 50 $^{\circ}$ C – 300 $^{\circ}$ C and a hold time of 5 mins, using a Rxi-17Sil MS (0.15 µm x 10 m x 0.15 mm) column.

Substrate synthesis

Compound **3a** 1'-{5-chloro-1H-pyrazolo[3,4-c]pyridin-1-yl}ethan-1'-one Cl. ⁵

Ac₂O (33 mL, 0.35 mol, 10.0 eq) was added to a solution of 6-chloro-4-methylpyridin-3-amine **2a** (5.00 g, 35 mmol, 1.00 eq) in DCE (140 mL) and stirred at room temperature for 90 minutes under a nitrogen atmosphere. NaNO₂ (9.68 g, 0.14 mol, 4.00 eq) was added and the reaction mixture stirred at room temperature for 3 hours, then heated overnight at 90 °C. The reaction mixture was concentrated under reduced pressure then diluted with NaHCO₃ (150 mL). The product was extracted into EtOAc (5 x 100 mL) then washed with H₂O (4 x 100 mL) and brine (2 x 100 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to give 1'-{5-chloro-*1H*-pyrazolo[3,4-c]pyridin-1-yl}ethan-1'-one **3a** as a white solid (6.57 g, 34 mmol, 96%) with mp 138-139 °C. No further purification was necessary.

 δ_{H} (400 MHz, Chloroform-*d*) 9.56 (1H, s, 7-*H*), 8.15 (1H, s, 3-*H*), 7.69 (1H, s, 4-*H*), 2.81 (3H, s, C(O)CH₃); δ_{C} (101 MHz, Chloroform-*d*) 170.3 (*C*=O), 144.7 (*C*-5), 138.0 (*C*-7), 137.8 (*C*-3), 134.7 (*C*-7a), 133.8 (*C*-3a), 114.8 (*C*-4), 22.6 (C(O)CH₃); *V_{max}* (ATR) 1729 (C=O), 1390, 1353, 634 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 196.069, [M (³⁷Cl)+H]

198.007, [M (35 Cl) + H – COCH₃] 154.035, [M (37 Cl) + H – COCH₃] 156.011; HRMS (ESI) found [M+H]⁺ 196.0290, C₈H₇N₃O³⁵Cl requires *M* 196.0278. The analytical data were consistent with the literature.¹

Compound **4a** 5-chloro-1H-pyrazolo[3,4-c]pyridine

NaOMe (0.15 g, 2.8 mmol, 0.25 eq) was added to a solution of 1'-{5-chloro-1H-pyrazolo[3,4-c]pyridin-1-yl}ethan-1'-one **3a** (2.0 g, 10 mmol, 1.00 eq) in anhydrous MeOH (0.2 M, 50 mL) and stirred at room temperature for 15 minutes. The reaction was quenched by addition of HCl:MeOH 1:100 (8 mL) until acidic pH and concentrated under reduced pressure. The crude product was taken up in H₂O then adjusted to pH 10 by addition of aqueous NaOH then extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated to afford 5-chloro-1*H*-pyrazolo[3,4-c]pyridine **4a** as a white solid (1.5 g, 10 mmol, 95%) with mp 225-226 °C.

 $δ_{\rm H}$ (400 MHz, Methanol- d_4) 8.80 (1H, s, 7-H), 8.15 (1H, d, J = 1.2 Hz, 3-H), 7.82 (1H, d, J = 1.2 Hz, 4-H); $δ_{\rm C}$ (101 MHz, Methanol- d_4) 141.0 (*C*-5), 137.6 (*C*-7a), 135.1 (*C*-7), 134.2 (*C*-3), 131.2 (*C*-3a), 115.6 (*C*-4); V_{max} (ATR) 909, 736, 652 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 154.113, [M (³⁷Cl) + H] 156.128; HRMS (ESI) found [M+H]⁺ 154.0167, C₆H₅N₃³⁵Cl requires *M* 154.0172.

Compound **3b**

Br

1'-{5-bromo-1H-pyrazolo[3,4-c]pyridin-1-yl}ethan-1'-one

Ac₂O (2.5 mL, 27 mmol, 10.0 eq) was added to a solution of 6-bromo-4-methylpyridin-3-amine **2b** (0.500 g, 2.7 mmol) in DCE (10 mL) and stirred at room temperature for 45 minutes under a nitrogen atmosphere. NaNO₂ (0.738 g, 11 mmol, 4.00 eq) was added and the reaction mixture stirred at room temperature for 3 hours, then heated overnight at 90 °C. The reaction mixture was concentrated under reduced pressure then diluted with NaHCO₃ (40 mL). The product was extracted into EtOAc (4 x 25 mL) then washed with H₂O (2 x 25 mL) and brine (2 x 25 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to give 1'-{5-bromo-*1H*-pyrazolo[3,4-c]pyridin-1-yl}ethan-1'-one **3b** as a yellow solid (0.553 g, 2.3 mmol, 86%) mp 129-149 °C. No further purification was necessary.

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 9.54 (1H, t, *J* = 1.0 Hz, 7-*H*), 8.13 (1H, d, *J* = 1.0 Hz, 3-*H*), 7.85 (1H, d, *J* = 1.0 Hz, 4-*H*), 2.79 (3H, s, C(O)C*H*₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 170.2 (*C*=O), 138.5 (*C*-7), 137.5 (*C*-3), 135.0 (*C*-7a), 134.1 (*C*-1), 133.8 (*C*-3a), 118.7 (*C*-4), 22.5 (*C*H₃); *V*_{max} (ATR) 1711 (C=O), 1383, 1349, 889, 740 cm⁻¹; LC-MS (ESI) [M (⁷⁹Br) + H] 240.079, [M (⁸¹Br) + H] 242.093; HRMS (ESI) found [M+H]⁺ 239.9796, C₈H₇⁷⁹BrN₃O requires *M* 239.9772.

Compound **4b** 5-bromo-1H-pyrazolo[3,4-c]pyridine Br

NaOMe (0.027 g, 0.50 mmol, 0.25 eq) was added to a solution of 1-{5-bromo-1H-pyrazolo[3,4-c]pyridin-1yl}ethan-1-one **3b** (0.480 g, 2.0 mmol, 1.00 eq) in dry MeOH (8 mL) and stirred at room temperature for 30 minutes. The reaction was quenched by addition of HCl in MeOH (1:100) (5 mL), then concentrated under reduced pressure. The crude product was taken up in H_2O (25 mL) and adjusted to pH 10 by addition of

¹ D. Chapman and J. Hurst, Journal of the Chemical Society, Perkin Transactions 1, 1980, 2398-2404

aqueous NaOH. The product was extracted into EtOAc (3 x 25 mL) then washed with brine (25 mL), dried over MgSO4, filtered, and concentrated under reduced pressure. 5-bromo-1*H*-pyrazolo[3,4-c]pyridine **4b** (0.372 g, 1.9 mmol, 94%) was collected as a pale yellow solid with mp 238-239 °C without further purification.

 $\delta_{\rm H}$ (600 MHz, Methanol-*d*) 8.78 (1H, s, 7-*H*), 8.13 (1H, s, 3-*H*), 7.97 (1H, s 4-*H*); $\delta_{\rm C}$ (151 MHz, Methanol-*d*) 136.5 (*C*-5), 134.2 (*C*-7), 132.6 (*C*-3), 130.0 (*C*-7a), 128.6 (*C*-3a), 118.2 (*C*-4); *V_{max}* (ATR) 1462, 952, 873, 785, 753 cm⁻¹; LC-MS (ESI) [M (⁷⁹Br) + H]198.083, [M (⁸¹Br)+ H] 200.059; HRMS (ESI) found [M+H]⁺ 197.9680, C₆H₅⁷⁹BrN₃ require *M* 197.9667.

Protecting Groups and Alkylations

Mesylate protection

Compound **5a** 5-chloro-1-methanesulfonyl-1H-pyrazolo[3,4-c]pyridine

A solution of 5-chloro-*1H*-pyrazolo[3,4-c]pyridine **4a** (0.500 g, 5.3 mmol, 1.00 eq) in anhydrous THF (10 mL) was added slowly to a suspension of NaH (0.195 g, 8.1 mmol, 2.50 eq) in anhydrous THF (16 mL) at 0 °C under a nitrogen atmosphere. MsCl was added over 5 minutes then the reaction allowed to return to room temperature and stirred for 2 hours. The reaction was quenched with H₂O:propan-2-ol 1:1 (20 mL) then concentrated under reduced pressure. The reaction mixture was diluted with H₂O (20 mL) and extracted into DCM (4 x 20 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated to afford 5-chloro-1-methanesulfonyl-*1H*-pyrazolo[3,4-c]pyridine **5a** as a yellow solid (0.695 g, 3.0 mmol, 92%) with mp 157-158 °C.

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 9.26 (1H, t, *J* = 1.0 Hz, 7-*H*), 8.31 (1H, d, *J* = 1.0 Hz, 3-*H*), 7.73 (1H, d, *J* = 1.0 Hz, 4-*H*), 3.39 (3H, s, SC*H*₃); $δ_{\rm C}$ (151 MHz, Chloroform-*d*) 144.6 (*C*-5), 139.0 (*C*-3), 135.9 (*C*-7), 135.8 (*C*-7a), 132.8 (*C*-3a), 114.9 (*C*-4), 41.5 (SCH₃); *V*_{max} (ATR) 1364, 557, 515 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 232.097, [M (³⁷Cl) + H] 234.150; HRMS (ESI) found [M+H]⁺ 231.9941, C₇H₇N₃SO₂³⁵Cl requires *M* 231.9948.

THP Protection

Compound **6a** 5-bromo-1-(tetrahydropyran-2'-yl)-1H-pyrazolo[3,4-c]pyridine Br

DHP (0.28 mL, 3.0 mmol, 3.00 eq) then pTsOH·H₂O (0.019 g, 0.10 mmol, 0.100 eq) were added slowly to a solution of 5-bromo-*1H*-pyrazolo[3,4-c]pyridine **4b** (0.200 g, 1.0 mmol) in DCM (7 mL) over ice. After 5 minutes the reaction mixture was allowed to return to room temperature, then stirred for 2 hours. The reaction was diluted with DCM (20 mL) then washed with sat. NaHCO₃ (3 x 25 mL) and brine (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to a yellow oil. Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-25%) afforded 5-bromo-1-(tetrahydropyran-2'-yl)-*1H*-pyrazolo[3,4-c]pyridine **6a** as a white solid (0.233 g, 0.83 mmol, 82%) with mp 125-127 °C.

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 8.91 (1H, t, *J* = 1.0 Hz, 7-*H*), 8.00 (1H, d, *J* = 1.0 Hz, 3-*H*), 7.80 (1H, d, *J* = 1.0 Hz, 4-*H*), 5.80 (1H, dd, *J* = 9.2, 2.9 Hz, 2'-*H*), 3.97 (1H, ddt, *J* = 9.2, 5.4, 2.5 Hz, 6'-*H*), 3.82-3.73 (1H, m, 6'-*H*), 2.54 – 2.40 (1H, m, 3'-*H*), 2.20 – 2.08 (1H, m, 5'-*H*), 1.85 – 1.46 (2H, m, 4'-*H*), 1.85 – 1.46 (1H, m, 5'-*H*); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 135.8 (*C*-5), 134.9 (*C*-7), 132.2 (*C*-3), 131.8 (*C*-7a), 130.6 (*C*-3a), 118.4 (*C*-74), 86.6 (*C*-2'), 67.3 (*C*-6'), 29.6 (*C*-3'), 25.0 (*C*-4'), 22.0 (*C*-5'); *V*_{max} (ATR) 1465, 1047, 911, 733 cm⁻¹; LC-MS (ESI) [M (⁷⁹Br) + H] 282.150, [M (⁸¹Br) + H] 283.963, [M (⁷⁹Br) + H - C₅H₉O] 198.121, [M (⁸¹Br) + H - C₅H₉O] 200.097; HRMS (ESI) found [M+H]⁺ 282.0249, C₁₁H₁₃⁷⁹BrN₃O requires *M* 282.0242.

Compound **6b**

5-bromo-2-(tetrahydropyran-2'-yl)-2H-pyrazolo[3,4-c]pyridine

DHP (0.55 mL, 6.1 mmol, 3.00 eq) then pTsOH H_2O (0.038 g, 0.20 mmol, 0.10 eq) were added slowly to a solution of 5-bromo-*1H*-pyrazolo[3,4-c]pyridine **4b** (0.400 g, 2.0 mmol, 1.00 eq) in DCM (15 mL) over ice. After 5 minutes the reaction mixture was allowed to return to room temperature, then stirred for 2 hours. The reaction was diluted with DCM (20 mL) then washed with sat. NaHCO₃ (3 x 25 mL) and brine (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to a yellow oil. Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-40%) afforded 5-bromo-2-(tetrahydropyran-2'-yl)-*2H*-pyrazolo[3,4-c]pyridine **6b** as a white solid (0.426 g, 1.5 mmol, 75%) with mp 58-60 °C. 5-bromo-1- (tetrahydropyran-2'-yl)-*1H*-pyrazolo[3,4-c]pyridine **6a** (0.035 g, 0.13 mmol, 6.2%) was also collected. R_{f,6a} = 0.61 and R_{f,6b} = 0.37 in EtOAc:Hexanes 1:2.

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 9.05 (1H, t, *J* = 1.0 Hz, 7-*H*), 8.19 (1H, d, *J* = 1.0 Hz, 3-*H*), 7.76 (1H, d, *J* = 1.0 Hz, 4-*H*), 5.73 (1H, dd, *J* = 9.2, 2.9 Hz, 2'-*H*), 4.12 (1H, ddt, *J* = 9.2, 5.4, 2.5 Hz, 6'-*H*), 3.80 (1H, ddd, *J* = 11.7, 9.9, 3.3 Hz, 6'-*H*), 2.31 – 2.25 (1H, m, 3'-*H*), 2.18 – 2.08 (1H, m, 3'-*H*), 2.07 – 2.01 (1H, m, 5'-*H*), 1.83 – 1.66 (2H, m, 4'-*H*), 1.83 – 1.66 (1H, m, 5'-*H*); $δ_{\rm C}$ (151 MHz, Chloroform-*d*) 144.9 (*C*-7), 144.4 (*C*-5), 130.0 (*C*-7a), 126.3 (*C*-3a), 120.4 (*C*-3), 117.3 (*C*-4), 89.7 (*C*-2'), 68.0 (*C*-6'), 31.6 (*C*-3'), 24.9 (*C*-4'), 21.8 (*C*-5'); *V*_{max} (ATR) 1471, 1147, 1092, 1044, 918 cm⁻¹; LC-MS (ESI) [M (⁷⁹Br) + H] 282.112, [M (⁸¹Br)+ H] 283.898, [M (⁷⁹Br) + H – C₅H₉O] 198.083, [M (⁸¹Br) + H – C₅H₉O] 200.097; HRMS (ESI) found [M+H]⁺ 282.0250, C₁₁H₁₃⁷⁹BrN₃O requires *M* 282.0242.

Compound 7

DHP (0.36 mL, 3.9 mmol, 3.00 eq) then *p*TsOH (0.025 g, 0.13 mmol, 0.10 eq) in DCM (5 mL) were added slowly to a solution of 5-chloro-*1H*-pyrazolo[3,4-c]pyridine **XX** (0.200 g, 1.3 mmol, 1.00 eq) in DCM (3 mL) over ice. The reaction mixture was stirred for 5 minutes then allowed to return to room temperature and stirred for 3 hours. The reaction mixture was diluted with DCM (25 mL) then washed with sat. NaHCO₃ (3 x 20 mL), dried over

MgSO₄, filtered, and concentrated. Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-50%) afforded 5-chloro-2-(tetrahydropyran-2'-yl)-2*H*-pyrazolo[3,4-c]pyridine **7b** (0.206 g, 0.87 mmol, 66%) as a yellow oil and 5-chloro-1-(tetrahydropyran-2'-yl)-1*H*-pyrazolo[3,4-c]pyridine **7a** as a white solid (0.0434 g, 0.18 mmol, 14%) with mp 89-93 °C. . $R_{f,7a} = 0.76$ and $R_{f,7b} = 0.57$ in EtOAc:Hexanes 1:1.

Compound **7a**

5-chloro-1-(tetrahydropyran-2'-yl)-1H-pyrazolo[3,4-c]pyridine

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 8.91 (1H, t, *J* = 1.0 Hz, 7-*H*), 7.99 (1H, d, *J* = 0.8 Hz, 3-*H*), 7.62 (1H, d, *J* = 1.1 Hz, 4-*H*), 5.79 (1H, dd, *J* = 8.7, 2.7 Hz, 2'-*H*), 3.97 (1H, dtd, *J* = 11.7, 4.0, 1.5 Hz, 6'-*H*), 3.76 (1H, ddd, *J* = 11.7, 9.3, 3.4 Hz, 6'-*H*), 2.49 – 2.41 (1H, m, 3'-*H*), 2.16 – 2.08 (1H, m, 3'-*H*), 2.16 – 2.08 (1H, m, 4'-*H*), 1.81 – 1.74 (1H, m, 4'-*H*), 1.76 – 1.69 (1H, m, 5'-*H*), 1.72 – 1.67 (1H, m, 5'-*H*); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 141.3 (*C*-5), 135.5 (*C*-7a), 134.4 (*C*-7), 132.4 (*C*-3), 131.6 (*C*-3a), 114.4 (*C*-4), 86.6 (*C*-2'), 67.3 (*C*-6'), 29.6 (*C*-3'), 25.0 (*C*-5'), 22.0 (*C*-4'); *V*_{max} (ATR) 1466, 1418, 1063, 871 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 238.178, [M (³⁷Cl) + H] 240.193, [M (³⁵Cl) + H - C₅H₉O] 154.073, [M (³⁷Cl) + H - C₅H₉O] 156.087; HRMS (ESI) found [M+H]⁺ 238.0759, C₁₁H₁₃³⁵ClN₃O requires *M* 238.0747.

Compound **7b**

5-chloro-2-(tetrahydropyran-2'-yl)-2H-pyrazolo[3,4-c]pyridine

$$\underset{N > N}{\overset{2}{\underset{N}{\xrightarrow{2}}}} \overset{O}{\underset{N}{\xrightarrow{2}}}$$

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 9.07 (1H, t, *J* = 1.1 Hz, 7-*H*), 8.19 (1H, d, *J* = 1.1 Hz, 3-*H*), 7.57 (1H, d, *J* = 1.1 Hz, 4-*H*), 5.73 (1H, dd, *J* = 9.1, 2.9 Hz, 2'-*H*), 4.12 (1H, dtd, *J* = 11.7, 3.8, 1.6 Hz, 6'-*H*), 3.80 (1H, ddd, *J* = 11.7, 9.9, 3.3 Hz, 6'-*H*), 2.31 – 2.26 (1H, m, 3'-*H*), 2.14 (1H, dddd, *J* = 13.2, 11.0, 9.1, 4.2 Hz, 3'-*H*), 2.07 – 2.02 (1H, m, 4'-*H*), 1.82 – 1.72 (1H, m, 4'-*H*/5'-*H*), 1.72 – 1.70 (1H, m, 6'-*H*); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 144.7 (C-7), 144.3 (C-5), 140.7(C-7a), 125.9 (C-3a), 120.6 (C-3), 113.2 (C-4), 89.7 (C-2'), 68.0 (C-6'), 31.6 (C-3'), 24.9 (C-5'), 21.8 (C-4'); *V*_{max} (ATR) 1475, 1053 (C-O), 724 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 238.221, [M (³⁷Cl) + H] 240.273, [M (³⁵Cl) + H – C₅H₉O] 156.116; HRMS (ESI) found [M+H]⁺ 238.0736, C₁₁H₁₃³⁵ClN₃O requires *M* 238.0747.

SEM Protection Route 1

A solution of the starting 1*H*-pyrazolo[3,4-c]pyridine **4a** (1.00 eq) in anhydrous THF was added slowly to a suspension of NaH (1.50 eq) in anhydrous THF at 0 °C under a nitrogen atmosphere. The mixture was stirred at 0 °C for 30 minutes then SEM-Cl (1.50 eq) was added dropwise. The reaction mixture was allowed to return to room temperature then stirred until no starting material remained. The reaction was quenched by addition of H₂O:propan-2-ol 1:1 then concentrated under reduced pressure. The crude product was diluted with H₂O,

extracted with DCM, washed with brine, dried over MgSO₄, filtered, and concentrated. Purification by silica gel flash column chromatography with the stated solvent system afforded the two product isomers.

SEM Protection Route 2

Dicyclohexylmethylamine (1.20 eq) then SEM-Cl (1.20 eq) were added to a solution of the starting 1H-pyrazolo[3,4-c]pyridine **4a** (1.00 eq) in anhydrous THF nitrogen and the reaction mixture was stirred at room temperature overnight. The reaction was quenched by addition of NaOH solution then concentrated under reduced pressure to remove the THF. The crude product was extracted with EtOAc, washed with brine, dried over MgSO₄, filtered, and concentrated. The purification by silica gel flash column chromatography with the stated solvent system afforded the two product isomers.

Compound 8

SEM protection route 1 was applied to 5-bromo-1*H*-pyrazolo[3,4-c]pyridine **4b** (1.00 g, 5.1 mmol, 1.00 eq). Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-50%) afforded compound **8a** (0.785 g, 2.4 mmol, 47%) as a colourless oil and compound **8b** (0.435 g, 1.3 mmol, 26%) as a yellow solid with mp 61-62 °C. $R_{f,Ba} = 0.78$, $R_{f,Bb} = 0.43$ in EtOAc:Pet Ether 40-60 1:4.

SEM protection route 2 was applied to 5-bromo-*1H*-pyrazolo[3,4-c]pyridine **4b** (0.200 g, 1.0 mmol, 1.00 eq) then purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-50%) afforded compound **8a** (0.060 g, 0.18 mmol, 18%) as a colourless oil and compound **8b** (0.105 g, 0.32 mmol, 32%) as a yellow solid with mp 61-62 °C. $R_{f,Ba} = 0.78$, $R_{f,Bb} = 0.43$ in EtOAc:Pet Ether 40-60 1:4.

Compound 8a

5-bromo-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 8.89 (1H, t, *J* = 1.0 Hz, 7-*H*), 8.01 (1H, d, *J* = 1.0 Hz, 3-*H*), 7.84 (1H, d, *J* = 1.0 Hz, 4-*H*), 5.79 (2H, s, NCH₂O), 3.56 – 3.50 (2H, m, OCH₂CH₂), 0.91 – 0.85 (2H, m, OCH₂CH₂Si), -0.07 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 135.9 (*C*-5), 134.0 (*C*-7), 132.5 (*C*-3), 131.9 (*C*-7a), 131.9 (*C*-3a), 118.4 (*C*-4), 78.6 (NCH₂O), 67.0 (OCH₂CH₂), 17.7 (CH₂CH₂Si), -1.5 (SiCH₃); V_{max} (ATR) 1467, 1088, 865, 839, 779 cm⁻¹; LC-MS (ESI) [M(⁷⁹Br) +H] 328.211, [M(⁸¹Br)+H] 329.959; HRMS (ESI) found [M+H]⁺ 328.0478, C₁₂H₁₉⁷⁹BrN₃OSi requires *M* 328.0481.

Compound **8b** 5-bromo-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 9.08 (1H, t, *J* = 1.1 Hz, 7-*H*), 8.13 (1H, d, *J* = 1.1 Hz, 3-*H*), 7.78 (1H, d, *J* = 1.1 Hz, 4-*H*), 5.77 (2H, s, NCH₂O), 3.66 – 3.61 (2H, m, OCH₂CH₂), 0.98 – 0.91 (2H, m, OCH₂CH₂Si), -0.03 (9H, s, Si(CH₃)₃); $δ_{\rm C}$ (151 MHz, Chloroform-*d*) 144.9 (*C*-7), 144.5 (*C*-5), 130.2 (*C*-7a), 126.8 (*C*-3a), 121.6 (*C*-3), 117.1 (*C*-4), 82.6 (NCH₂O), 68.2 (OCH₂CH₂), 17.8 (CH₂CH₂Si), -1.5 (SiCH₃); V_{max} (ATR) 1105, 1041, 914, 840, 735 cm⁻¹; LC-MS (ESI) [M(⁷⁹Br) +H] 328.211, [M(⁸¹Br)+H] 329.997; HRMS (ESI) found [M+H]⁺ 328.0485, C₁₂H₁₉⁷⁹BrN₃OSi requires *M* 328.0481.

Compound **9**

SEM protection route 1 was applied to 5-chloro-*1H*-pyrazolo[3,4-c]pyridine **4a** (0.200 g, 1.3 mmol, 1.00 eq) then purification by silica gel flash column chromatography (EtOAc:Hexanes 0-25%) afforded compound **9a** (0.167 g, 0.59 mmol, 45%) as a colourless oil and compound **9b** (0.108 g, 0.38 mmol, 29%) as a yellow solid with mp 66.8-67.2 °C. $R_{f,9a} = 0.49$, $R_{f,9b} = 0.32$ in EtOAc:Hexane 1:4.

SEM protection route 2 was applied to 5-chloro-1*H*-pyrazolo[3,4-c]pyridine **4a** (0.330 g, 2.1 mmol, 1.00 eq) then purification by silica gel flash column chromatography (EtOAc:Hexanes 0-25%) afforded compound **9a** (0.127 g, 0.45 mmol, 21%) as a colourless oil and compound **9b** (0.270 g, 0.95 mmol, 44%) as a yellow solid with mp 66.8-67.2 °C. $R_{f,9a} = 0.49$, $R_{f,9b} = 0.32$ in EtOAc:Hexane 1:4.

Compound **9a**

С

5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine

 $δ_{\rm H}$ (400 MHz, Chloroform-*d*) 8.92 (1H, t, *J* = 1.0 Hz, 7-H), 8.04 (1H d, *J* = 1.0 Hz, 3-H), 7.70 (1H, d, *J* = 1.0 Hz, 4-H), 5.82 (2H, s, NCH₂O), 3.60 – 3.51 (2H, m, OCH₂C), 0.96 – 0.86 (2H, m, CH₂Si), -0.05 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (101 MHz, Chloroform-*d*) 141.7 (*C*-5), 135.7 (*C*-7), 133.7 (*C*-7a), 132.8 (*C*-3), 131.8 (*C*-3a), 114.6 (*C*-4), 78.7 (NCH₂O), 67.2 (OCH₂CH₂), 17.8 (CH₂Si(CH₃)₃), -1.4 (Si(CH₃)₃); *V_{max}* (ATR) 1469, 1079, 1061, 834, 801, 785 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 284.245, [M (³⁷Cl)+ H] 286.260; HRMS (ESI) found [M+H]⁺ 284.0992, C₁₂H₁₉N₃OSi³⁵Cl requires *M* 284.0986.

Compound 9b

5-chloro-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine

 $δ_{\rm H}$ (400 MHz, Chloroform-*d*) 9.10 (1H, t, *J* = 1.1 Hz, 7-H), 8.14 (1H, d, *J* = 1.1 Hz, 3-H), 7.60 (1H, d, *J* = 1.1 Hz, 4-H), 5.77 (2H, s, NCH₂O), 3.68 – 3.59 (2H, m, OCH₂CH₂), 1.00 – 0.90 (2H, m, CH₂Si), -0.03 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (101 MHz, Methanol-d4) 145.7 (*C*-5), 145.3 (*C*-7), 141.0 (*C*-7a), 127.8 (*C*-3a), 125.4 (*C*-3), 115.1 (*C*-4), 83.6 (NCH₂O), 68.9 (OCH₂CH₂), 18.6 (CH₂Si), -1.5 (Si(CH₃)₃); V_{max} (ATR) 1249, 1088, 1054, 854, 832 cm⁻¹; LCMS (ESI) [M (³⁵Cl) + H] 284.245, [M (³⁷Cl) + H] 286.260; HRMS (ESI) found [M+H]⁺ 284.0989, C₁₂H₁₉N₃OSi³⁵Cl requires *M* 284.0986.

Methylation

Compound 10

A cooled solution of 5-bromo-*1H*-pyrazolo[3,4-c]pyridine **4b** (0.500 g, 2.5 mmol, 1.00 eq) and NaH (0.121 g, 3.0 mmol, 1.20 eq) in THF (13 mL) was stirred for 30 minutes on ice under a nitrogen atmosphere. Mel (0.24 mL, 3.8 mmol, 1.50 eq) was added and the reaction mixture was allowed to return to room temperature. After 45 minutes the reaction was quenched with H₂O:propan-2-ol 1:1 (30 mL) then concentrated under reduced pressure. The product was extracted with DCM (4 x 25 mL) and the combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to form a yellow solid. Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-75%) gave 5-bromo-1-methyl-*1H*-pyrazolo[3,4-c]pyridine **10a** (0.191 g, 0.90 mmol, 36%) as a white solid with mp 109-110 °C, and 5-bromo-2-methyl-*2H*-pyrazolo[3,4-c]pyridine **10b** (0.268 g, 1.3 mmol, 50%) as a white solid with mp 175-178 °C. R_{f,10a} = 0.17 and R_{f,10b} = 0.58 in EtOAc:Pet Ether 40-60 1:1.

Compound 10a

5-bromo-1-methyl-1H-pyrazolo[3,4-c]pyridine

 $\delta_{\rm H}$ (700 MHz, Chloroform-*d*) 8.65 (1H, d, *J* = 1.0 Hz, 7-*H*), 7.91 (1H, d, *J* = 1.0 Hz, 3-*H*), 7.74 (1H, t, *J* = 1.0 Hz, 4-*H*), 4.11 (3H, s, NCH₃); $\delta_{\rm C}$ (176 MHz, Chloroform-*d*) 136.3 (*C*-5), 133.2 (*C*-7), 131.5 (*C*-3), 130.8 (*C*-7a), 130.0 (*C*-3a), 118.2 (*C*-4), 36.4 (*C*H₃); *V_{max}* (ATR) 1473, 1050, 765, 640, 428 cm⁻¹; LC-MS (ESI) [M(⁷⁹Br) +H] 212.031, [M(⁸¹Br)+H] 214.045; HRMS (ESI) found [M+H]⁺ 211.9835, C₇H₇⁷⁹BrN₃ requires *M* 211.9823.

Compound 10b

5-bromo-2-methyl-2H-pyrazolo[3,4-c]pyridine

 $\delta_{\rm H}$ (700 MHz, Chloroform-*d*) 8.93 (1H, s, 7-*H*), 7.85 (1H, s, 3-*H*), 7.64 (1H, s, 4-*H*), 4.22 (3H, s, NCH₃); $\delta_{\rm C}$ (176 MHz, Chloroform-*d*) 144.8 (*C*-5), 143.9 (*C*-7), 129.9 (*C*-7a), 127.0 (*C*-3a), 122.8 (*C*-3), 116.7 (*C*-4), 41.2 (NCH₃); V_{max} (ATR) 1154, 1043, 902, 489, 441 cm⁻¹; LC-MS (ESI) [M(⁷⁹Br) +H] 212.039, [M(⁸¹Br)+H] 214.025; HRMS (ESI) found [M+H]⁺ 211.9837, C₇H₇⁷⁹BrN₃ requires *M* 211.9823.

Compound 11

A cooled solution of 5-chloro-*1H*-pyrazolo[3,4-c]pyridine **4a** (0.100 g, 0.65 mmol, 1.00 eq) and NaH (0.031 g, 0.78 mmol, 1.20 eq) in THF (3 mL) was stirred for 30 minutes on ice under a nitrogen atmosphere. Mel (0.06 mL, 0.98 mmol, 1.50 eq) was added and the reaction mixture was allowed to return to room temperature. After 45 minutes the reaction was quenched with H₂O:IPA 1:1 (10 mL) then concentrated under reduced pressure. The product was extracted with DCM (3 x 15 mL) and the combined organic layers were washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to form a yellow solid. Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-60%) gave 5-chloro-1-methyl-*1H*-pyrazolo[3,4-c]pyridine **11a** (0.033 g, 0.20 mmol, 31%) as a white solid with mp 102-104 °C, and 5-chloro-2-methyl-*2H*-pyrazolo[3,4-c]pyridine **11b** as a white solid (0.046 g, 0.28 mmol, 42%) with mp 134-146°C. R_{f, 11a} = 0.50 and R_{f,11b} = 0.18 in EtOAc:Pet Ether 1:2.

Compound **11a** 5-chloro-1-methyl-1H-pyrazolo[3,4-c]pyridine

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 8.70 (1H, d, *J* = 1.0 Hz, 7-*H*), 7.95 (1H, d, *J* = 1.0 Hz, 3-*H*), 7.61 (1H, t, *J* = 1.0 Hz, 4-*H*), 4.16 (3H, s, NC*H*₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 140.7 (*C*-5), 136.0 (*C*-7a), 132.7 (*C*-7), 131.6 (*C*-3), 130.6 (*C*-3a), 114.2 (*C*-4), 36.3 (*C*H₃); *V*_{max} (ATR) 1545, 1539, 1346, 713 cm⁻¹; LC-MS (ESI) [M(³⁵Cl) +H] 168.059, [M(³⁷Cl)+H] 170.073; MS (ESI) found [M+H]⁺ 168.0338 C₇H₈³⁵ClN₃ requires *M* 168.0323. The analytical data were consistent with the literature .²

Compound **11b** 5-chloro-2-methyl-2*H*-pyrazolo[3,4-c]pyridine

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 9.01 (1H, t, *J* = 1.0 Hz, 7-*H*), 7.90 (1H, d, *J* = 1.0 Hz 3-*H*), 7.53 (1H, d, *J* = 1.0 Hz, 4-*H*), 4.27 (3H, s, NC*H*₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 144.7 (*C*-5), 143.6 (*C*-7), 140.5 (*C*-7a), 126.6 (*C*-3a), 122.9 (*C*-3), 112.6 (*C*-4), 41.1 (N*C*H₃); *V*_{max} (ATR) 1545, 1539, 1346, 713 cm⁻¹; LC-MS (ESI) [M(³⁵Cl) +H] 168.059, [M(³⁷Cl)+H] 170.111; HRMS (ESI) found [M+H]⁺ 168.0334 C₇H₈³⁵ClN₃ requires *M* 168.0323. The analytical data were consistent with the literature.³

Propylation

Compound 12

A cooled solution of 5-chloro-*1H*-pyrazolo[3,4-c]pyridine **4a** (0.200 g, 1.3 mmol, 1.00 eq) and NaH (0.047 g, 1.6 mmol, 1.20 eq) in THF (6.5 mL) was stirred for 30 minutes on ice under a nitrogen atmosphere. 1-iodopropane (0.19 mL, 2.0 mmol, 1.50 eq) was added and the reaction mixture was allowed to return to room temperature. After stirring overnight, the reaction was quenched with NH₄Cl (25 mL) then volatiles were removed under reduced pressure. The product was extracted with EtOAc (3 x 30 mL), and the combined organic layers washed with brine (30 mL), dried over MgSO₄, filtered, then concentrated under reduced pressure to give the crude product as an orange solid. The final products were purified by silica gel column chromatography (EtOAc:Hexanes 0-35%) affording compound **12a** as a white solid (0.068g, 0.35 mmol, 27%) with mp 53-55 °C and compound **12b** as a yellow solid (0.089g, 0.46 mmol, 35%) mp 56-60 °C. R_{f,12a} = 0.48 and R_{f, 12b} = 0.31 in EtOAc:Hexanes 1:3.

Compound **12a** 5-chloro-1-propyl-1*H*-pyrazolo[3,4-c]pyridine

5

 $\delta_{\rm H}$ (400 MHz, Chloroform-*d*) 8.73 (1H, s, 7-*H*), 7.99 (1H, s, 3-*H*), 7.63 (1H, s, 4-*H*), 4.42 (2H, t, *J* = 7.3 Hz, NCH₂CH₂), 1.98 (2H, s, *J* = 7.3 Hz, CH₂CH₃), 0.92 (3H, t, *J* = 7.3 Hz, CH₂CH₃); $\delta_{\rm C}$ (101 MHz, Chloroform-*d*) 140.6 (*C*-

² A. Papastathopoulos et al, European Journal of Medicinal Chemistry, 2021 (218), 113387

5), 135.7 (C-7a), 132.8 (C-7), 131.6 (C-3), 130.5 (C-3a), 114.3 (C-4), 51.5 (NCH₂CH₂), 23.4 (CH₂CH₃), 11.3 (CH₂CH₃); LC-MS (ESI) [M(35 CI)+H] 196.145, [M(37 CI)+H] 198.121; HRMS found [M+H]⁺ 196.0643, C₉H₁₁N₃³⁵CI requires *M* 196.0642.

Compound 12b

5-chloro-2-propyl-2H-pyrazolo[3,4-c]pyridine

 $δ_{\rm H}$ (400 MHz, Chloroform-*d*) 9.03 (1H, t, *J* = 1.1 Hz 7-*H*), 7.92 (1H, d, *J* = 1.1 Hz, 3-*H*), 7.54 (1H, d, *J* = 1.1 Hz, 4-*H*), 4.43 (2H, t, *J* = 7.3 Hz, NCH₂CH₂), 2.06 (2H, s, *J* = 7.3 Hz, CH₂CH₃), 0.95 (3H, t, *J* = 7.3 Hz, CH₂CH₃); $\delta_{\rm C}$ (101 MHz, Chloroform-*d*) 144.6 (*C*-5), 143.8 (*C*-7), 140.3 (*C*-7a), 126.3 (*C*-3a), 122.1 (*C*-3), 112.7 (*C*-4), 56.2 (NCH₂CH₂), 23.9 (CH₂CH₃), 11.1 (CH₂CH₃); LC-MS (ESI) [M(³⁵Cl)+H] 196.145, [M(³⁷Cl)+H] 198.121; HRMS found [M+H]⁺ 196.0644, C₉H₁₁N₃³⁵Cl requires *M* 196.0642.

Buchwald-Hartwig Amination

General Procedure A

For Buchwald-Hartwig Amination

Pd₂dba₃ (0.05 eq), *rac*-BINAP (0.12 eq), NaO^tBu (3.00 eq), and the stated protected pyrazolo[3,4-c]pyridine (1.00 eq) were sealed under a nitrogen atmosphere. The stated amine (1.10 eq) was added under nitrogen, followed by dry THF (0.1M). The deep red solution was stirred overnight at 55 °C until LCMS analysis confirmed complete conversion of the starting substrate. The reaction was cooled to room temperature, diluted with EtOAc and filtered through Celite®, washing the cake with additional EtOAc. This solution was concentrated under reduced pressure.

The product was purified by silica gel flash column chromatography using the stated solvent system.

Compound 13

4-[2'-(oxan-2"-yl)-2H-pyrazolo[3,4-c]pyridin-5'-yl]morpholine

General procedure A was applied to 5-bromo-2-(oxan-2'-yl)-2*H*-pyrazolo[3,4-c]pyridine **6b** (0.080 g, 0.28 mmol, 1.00 eq) with morpholine (0.03 mL, 0.31 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-100%), 4-[2'-(oxan-2''-yl)-2*H*-pyrazolo[3,4-c]pyridin-5'-yl]morpholine **13** was isolated as a dark green oil (0.051 g, 0.18 mmol, 62%).

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 9.05 (1H, t, *J* = 1.2 Hz, 7'-*H*), 7.99 (1H, d, *J* = 1.2 Hz, 3'-*H*), 6.58 (1H, d, *J* = 1.2 Hz, 4'-*H*), 5.66 (1H, dd, *J* = 8.2, 4.1 Hz, 2''-*H*), 4.13 – 4.07 (1H, m, 6''-*H*), 3.91 – 3.87 (4H, m, 2,6-*H*₂), 3.77 (1H, ddd, *J* = 11.7, 10.4, 3.0 Hz, 6''-*H*), 3.40 – 3.35 (4H, m, 3,5-*H*₂), 2.20 (2H, ddd, *J* = 10.0, 8.2, 4.1 Hz, 3''-H), 2.07 – 2.01 (1H, m, 4''-*H*), 1.79 – 1.63 (1H, m, 4''-*H*), 1.79 – 1.63 (2H, m, 5''-*H*); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 154.1 (*C*-5'), 143.3 (*C*-7'), 142.7 (*C*-7'a), 126.1 (*C*-3'a), 119.3 (*C*-3'), 91.8 (*C*-4), 89.2 (*C*- 2''), 67.8 (*C*-6''), 66.9 (*C*-2,6), 48.1 (*C*-3,5), 31.2 (*C*-3''), 24.9 (*C*-5''), 21.9 (*C*-4''); *V*_{max} (ATR) 1495, 1200, 0998, 729 cm⁻¹; LC-MS (ESI) [M + H] 289.294; HRMS (ESI) found [M+H]⁺ 289.1670, C₁₅H₂₁N₄O₂ requires *M* 298.1665.

Compound **14** *N*-butyl-2-(oxan-2'-yl)-2*H*-pyrazolo[3,4-c]pyridin-5-amine

General procedure A was applied to 5-bromo-2-(oxan-2'-yl)-2H-pyrazolo[3,4-c]pyridine **6b** (0.080 g, 0.28 mmol, 1.00 eq) with *N*-butylamine (0.03 mL, 0.31 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-80%), *N*-butyl-2-(oxan-2'-yl)-2H-pyrazolo[3,4-c]pyridine-5-amine **14** was isolated as a brown solid (0.049 g, 0.18 mmol, 63%) with mp 105-109 °C.

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 8.91 (1H, dd, *J* = 1.4, 0.9 Hz, 7-*H*), 7.89 (1H, d, *J* = 0.9 Hz, 3-*H*), 6.25 (1H, d, *J* = 1.4 Hz, 4-*H*), 5.65 – 5.62 (1H, m, 2'-*H*), 4.13 – 4.06 (1H, m, 6'-*H*), 3.76 (1H, ddd, *J* = 11.6, 10.3, 3.0 Hz, 6'-*H*), 3.13 (2H, t, *J* = 7.1 Hz, NHCH₂CH₂), 2.24 – 2.17 (2H, m, 3'-*H*), 2.08 – 2.02 (1H, m, 4'-*H*), 1.78 – 1.68 (1H, m, 4'-*H*), 1.78 – 1.68 (1H, m, 5'-*H*), 1.68 – 1.65 (2H, m, NHCH₂CH₂CH₂), 1.68 – 1.65 (1H, m, 5'-*H*), 1.53 – 1.42 (2H, m, CH₂CH₂CH₃), 0.96 (3H, t, *J* = 7.4 Hz, CH₂CH₂CH₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 152.5 (*C*-5), 143.7 (*C*-7), 142.4 (*C*-7a), 126.7 (*C*-3a), 118.2 (*C*-3), 89.1 (*C*-2'), 86.3 (*C*-4), 67.8 (*C*-6'), 43.4 (NHCH₂CH₂), 31.3 (NHCH₂CH₂), 31.1 (*C*-3'), 24.9 (*C*-5'), 21.9 (*C*-4'), 20.4 (CH₂CH₂CH₃), 13.9 (CH₂CH₂CH₃); *V_{max}* (ATR) 1635, 1507, 1089, 1048 cm⁻¹; LC-MS (ESI) [M + H] 275.309; HRMS (ESI) found [M+H]⁺ 275.1874, C₁₅H₂₂N₄O requires *M* 275.1872.

Compound 15

1-methyl-4-[2'-(oxan-2"-yl)-2H-pyrazolo[3,4-c]pyridin-5'-yl]piperazine

General procedure A was applied to 5-bromo-2-(oxan-2'-yl)-2H-pyrazolo[3,4-c]pyridine **6b** (0.080 g, 0.28 mmol, 1.00 eq) with *N*-methylpiperazine (0.04 mL, 0.31 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-100%, MeOH:EtOAc 0-30%), 1-methyl-4-[2'-(oxan-2''-yl)-2H-pyrazolo[3,4-c]pyridin-5'-yl]piperazine **15** was isolated as a green oil (0.064 g, 0.21 mmol, 75%).

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 9.04 (1H, t, *J* = 1.3 Hz, 7'-*H*), 7.97 (1H, t, *J* = 1.3 Hz, 3'-*H*), 6.59 (1H, d, *J* = 1.3 Hz, 4'-*H*), 5.65 (1H, ddd, *J* = 8.0, 4.4, 2.3 Hz, 2''-*H*), 4.09 (1H, ddt, *J* = 11.8, 3.6, 2.3 Hz, 6''-*H*), 3.80 – 3.73 (1H, m, 6''-*H*), 3.47 – 3.41 (4H, m, 3,5-*H*₂), 2.63 (4H, td, *J* = 5.1, 2.3 Hz, 2,6-*H*₂), 2.37 (3H, d, *J* = 2.3 Hz, NCH₃), 2.19 (2H, dd, *J* = 4.4, 2.3 Hz, 3''-*H*), 2.03 (1H, dtq, *J* = 10.9, 4.4, 2.3 Hz, 5''-*H*), 1.80 – 1.68 (1H, m, 4''-*H*), 1.80 – 1.68 (1H, m, 5''-*H*), 1.65 (1H, dt, *J* = 12.2, 2.9 Hz, 4''-*H*); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 154.2 (*C*-5'), 143.3 (*C*-7'), 142.5 (*C*-7'a), 126.2 (*C*-3'a), 119.2 (*C*-3'), 91.9 (*C*-4'), 89.2 (*C*-2''), 67.8 (*C*-6''), 54.9 (*C*-2,6), 47.6 (*C*-3,5), 46.0 (NCH₃), 31.2 (*C*-3''), 24.9 (*C*-4''), 21.9 (*C*-5''); *V*_{max} (ATR) 1632, 1496, 1215, 1203 cm⁻¹; LC-MS (ESI) [M + H] 302.368; HRMS (ESI) found [M+H]⁺ 302.1983, C₁₆H₂₄N₅O requires *M* 302.1981.

Compound 16

2-(oxan-2'-yl)-N-phenyl-2H-pyrazolo[3,4-c]pyridin-5-amine

General procedure A was applied to 5-bromo-2-(oxan-2'-yl)-2H-pyrazolo[3,4-c]pyridine **6b** (0.080 g, 0.28 mmol, 1.00 eq) with aniline (0.03 mL, 0.31 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-60%), 2-(oxan-2'-yl)-*N*-phenyl-2H-pyrazolo[3,4-c]pyridin-5-amine **16** was isolated as a green solid (0.063 g, 0.21 mmol, 75%) with mp 130-133 °C.

 δ_{H} (600 MHz, Chloroform-*d*) 9.02 (1H, t, *J* = 1.2 Hz, 7-*H*), 7.97 (1H, d, *J* = 1.2 Hz, 3-*H*), 7.34 – 7.28 (2H, m, 3",5"-*H*), 7.24 – 7.21 (2H, m, 2",6"-*H*), 7.08 (1H, d, *J* = 1.2 Hz, 4-*H*), 7.01 – 6.95 (1H, m, 4"-*H*), 6.62 (1H, s, N-*H*), 5.67

(1H, dd, J = 8.7, 3.4 Hz, 2'-H), 4.10 (1H, dtd, J = 11.8, 3.7, 1.6 Hz, 6'-H), 3.77 (1H, ddd, J = 11.6, 10.2, 3.1 Hz, 6'-H), 2.24 – 2.14 (2H, m, 3'-H), 2.07 – 2.01 (1H, m, 5'-H), 1.79 – 1.64 (2H, m, 4'-H), 1.79 – 1.64 (1H, m, 5'-H); δ_{C} (151 MHz, Chloroform-d) 147.8 (C-5), 143.7 (C-7), 142.9 (C-7a), 142.0 (C-1''), 129.5 (C-3'',5''), 126.4 (C-3a), 121.9 (C-4''), 119.3 (C-3), 119.1 (C-2'',6''), 92.4 (C-4), 89.4 (C-2'), 68.0 (C-6'), 31.4 (C-3'), 25.0 (C-4'), 22.0 (C-5'); V_{max} (ATR) 1633, 1603, 1493, 1089, 1047cm⁻¹; LC-MS (ESI) [M + H] 295.299; HRMS (ESI) found [M+H]⁺ 295.1578, C₁₇H₁₉N₄O requires *M* 295.1559.

Compound 17

4-[1'-(oxan-2"-yl)-1H-pyrazolo[3,4-c]pyridin-5'-yl]morpholine

General procedure A was applied to 5-bromo-1-(oxan-2-yl)-1H-pyrazolo[3,4-c]pyridine **6a** (0.080 g, 0.28 mmol, 1.00 eq) with morpholine (0.03 mL, 0.31 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-60%) followed by HPLC separation afforded 4-[1'-(oxan-2''-yl)-1H-pyrazolo[3,4-c]pyridin-5'-yl]morpholine **17** as a pink solid (0.036 g, 0.12 mmol, 43%) with mp 122-123 °C.

 $δ_{\rm H}$ (400 MHz, Chloroform-*d*) 8.84 (1H, t, *J* = 1.0 Hz, 7'-*H*), 7.89 (1H, d, *J* = 1.0 Hz, 3'-*H*), 6.79 (1H, d, *J* = 1.0 Hz, 4'-*H*), 5.74 (1H, dd, *J* = 9.0, 2.5 Hz, 2''-*H*), 3.99 (1H, dtd, *J* = 11.6, 3.8, 1.4 Hz, 6''-*H*), 3.93 – 3.86 (4H, m, 2,6-*H*₂), 3.75 (1H, ddd, *J* = 11.6, 9.6, 3.5 Hz, 6''-*H*), 3.42 (4H, td, *J* = 4.4, 1.7 Hz, 3,5-*H*₂), 2.56 – 2.41 (1H, m, 3''-*H*), 2.16 – 2.11 (1H, m, 3''-*H*), 2.11 – 2.06 (1H, m, 4''-*H*), 1.85 – 1.62 (1H, m, 4''-*H*), 1.85 – 1.62 (2H, m, 5''-*H*); $\delta_{\rm C}$ (101 MHz, Chloroform-*d*) 155.1 (*C*-5'), 132.8 (*C*-7'), 132.6 (*C*-7'a), 132.4 (*C*-3'), 132.1 (*C*-3'a), 95.1 (*C*-2''), 86.3 (*C*-4'), 67.4 (*C*-6''), 67.0 (*C*-2,6), 48.0 (*C*-3,5), 29.6 (*C*-3''), 25.2 (*C*-4''), 22.3 (*C*-5''); *V*_{max} (ATR) 1485, 1453, 1228, 1124, 1045, 970, 919 cm⁻¹; LC-MS (ESI) [M + H] 289.294; HRMS (ESI) found [M+H]⁺ 289.1664, C₁₅H₂₁N₄O₂ requires *M* 289.1664.

Compound 18

4-(1'-{[2"-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridin-5'-yl)morpholine

General procedure A was applied to 5-bromo-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **8a** (0.300 g, 0.91 mmol, 1.00 eq) with morpholine (0.09 mL, 1.0 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-30%), 4-(1'-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridin-5'-yl)morpholine **18** was isolated as a pale green solid (0.297 g, 0.89 mmol, 97%) with mp 86-88 °C.

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 8.79 (1H, t, *J* = 1.1 Hz, 7'-*H*), 7.88 (1H, d, *J* = 1.1 Hz, 3'-*H*), 6.81 (1H, d, *J* = 1.1 Hz, 4'-*H*), 5.73 (2H, s, NCH₂O), 3.92 – 3.88 (4H, m, 2,6-H₂), 3.55 – 3.49 (2H, m, OCH₂CH₂), 3.46 – 3.42 (4H, m, 3,5-H₂), 0.90 – 0.84 (2H, m, CH₂CH2Si), -0.07 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 155.1 (*C*-5'), 132.7 (*C*-3'a), 132.5 (*C*-3'), 132.1 (*C*-7'a), 131.9 (*C*-7'), 94.9 (*C*-4'), 78.3 (NCH₂O), 66.9 (*C*-2,6), 66.6 (OCH₂CH₂), 47.8 (*C*-3,5), 17.74 (CH₂CH₂Si), -1.5 (Si(CH₃)₃); *V_{max}* (ATR) 1483, 1081, 907, 840, 735 cm⁻¹; LC-MS (ESI) [M + H] 335.393; HRMS (ESI) found [M+H]⁺ 335.1931, C₁₆H₂₇N₄O₂Si requires *M* 335.1903.

Compound **19** 4-(2'-{[2''-(trimethylsilyl)ethoxy]methyl}-2*H*-pyrazolo[3,4-c]pyridin-5'-yl)morpholin

General procedure A was applied to 5-bromo-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **8b** (0.200 g, 0.61 mmol, 1.00 eq) with morpholine (0.06 mL, 0.67 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-60%), 4-(2'-{[2''-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridin-5'-yl)morpholine **19** was isolated as a green oil (0.123 g, 0.37 mmol, 60%).

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 9.07 (1H, d, *J* = 1.1 Hz, 7'-*H*), 7.94 (1H, d, *J* = 1.1 Hz, 3'-*H*), 6.60 (1H, s, 4'-*H*), 5.70 (2H, s, NCH₂O), 3.92 – 3.88 (4H, m, 2,6-*H*₂), 3.64 – 3.58 (2H, m, OCH₂CH₂), 3.42 – 3.38 (4H, m, 3,5-*H*₂), 0.96 – 0.90 (2H, m, OCH₂CH₂Si), -0.04 (9H, s, Si(CH₃)₃); $δ_{\rm C}$ (151 MHz, Chloroform-*d*) 154.2 (*C*-5'), 143.4 (*C*-7'), 142.9 (*C*-7'a), 126.9 (*C*-3'a), 120.7 (*C*-3'), 91.6 (*C*-4'), 82.2 (NCH₂O), 67.9 (OCH₂CH₂), 66.9 (*C*-2,6), 48.0 (*C*-3,5), 17.8 CH₂CH₂Si), -1.5 (Si(CH₃)₃); *V_{max}* (ATR) 1498, 1119, 1104, 914, 735 cm⁻¹; LC-MS (ESI) [M + H] 335.355; HRMS (ESI) found [M+H]⁺ 335.1911, C₁₆H₂₇N₄O₂Si requires *M* 335.1903.

Borylation and Suzuki-Miyaura cross-coupling

General Procedure B

For tandem Borylation and Suzuki-Miyaura cross-coupling

 $[Ir(COD)OMe]_2$ (0.025 eq), B_2pin_2 (1.10 eq), and dtbpy (0.05 eq) were sealed in an oven-dried microwave reaction vial and degassed with N_2 /vacuum cycling. A solution of the SEM-protected pyrazolo[3,4-c]pyridine in anhydrous MTBE (0.4 M) was added under nitrogen. The reaction mixture was heated in a microwave reactor at 100 °C until GCMS analysis showed complete borylation had occurred, then concentrated under reduced pressure to afford the crude boronate ester.

To the crude boronate ester was added Cs_2CO_3 (2.00 eq), Pd(dppf)Cl₂ (0.025 eq), the aryl halide (1.10 eq) and anhydrous DMAc (1 M) under nitrogen. The reaction mixture was heated in a microwave reactor at 120 °C until GCMS analysis showed no boronate ester remained.

The reaction mixture was filtered through Celite and the residue washed with EtOAc. The combined filtrates were concentrated under reduced pressure, and the residue was dissolved in H₂O then extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated.

The product was purified by silica gel flash column chromatography using the stated solvent system.

General Procedure C

For tandem Borylation and Suzuki-Miyaura cross-coupling with CuCl

 $[Ir(COD)OMe]_2$ (0.025 eq), B_2pin_2 (1.10 eq), and dtbpy (0.05 eq) were sealed in an oven-dried microwave reaction vial and degassed with N_2 /vacuum cycling. A solution of the SEM-protected pyrazolo[3,4-c]pyridine in anhydrous MTBE (0.4 M) was added under nitrogen.

The reaction mixture was heated in a microwave reactor at 100 °C until GCMS analysis showed complete borylation had occurred, then concentrated under reduced pressure to afford the crude boronate ester.

To the crude boronate ester was added Cs_2CO_3 (1.00 eq), $Pd(OAc)_2$ (0.025 eq), 1,1'-Bis(diphenylphosphino) ferrocene (dppf) (0.050 eq), CuCl (1.00 eq), the aryl halide (1.10 eq) and anhydrous DMAc (1 M) under nitrogen. The reaction mixture was heated in a microwave reactor at 120 °C until GCMS analysis showed no boronate ester remained.

The reaction mixture was filtered through Celite and the residue washed with EtOAc. The combined filtrates were concentrated under reduced pressure, and the residue was dissolved in H_2O then extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated.

The product was purified by silica gel flash column chromatography using the stated solvent system.

Compound **20** methyl 4'-(5-chloro-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridin-3-yl)benzoate

General procedure B was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.050 g, 0.009 mmol, 1.00 eq) with methyl 4-iodobenzoate (0.069 g, 0.26 mmol, 1.50 eq). After purification by silica gel flash column chromatography (EtOAc:Hexanes 0-15%) methyl 4'-(5-chloro-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridin-3-yl)benzoate **20** was isolated as an off-white solid (0.035g, 0.083 mmol, 47%) with mp 98-103°C.

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 8.92 (1H, d, *J* = 1.1 Hz, 7-H), 8.20 – 8.15 (2H, m, 3', 5'-H), 8.02 – 7.97 (2H, m, 2', 6'-H), 7.93 (1H, d, *J* = 1.1 Hz, 4-*H*), 5.84 (2H, s, NCH₂O), 3.95 (3H, s, OCH₃), 3.65 – 3.58 (2H, m, OCH₂CH₂), 0.94 – 0.87 (2H, m, *CH*₂Si), -0.07 (9H, s, Si(*CH*₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 166.6 (*C*=O), 142.7 (*C*-3), 142.5 (*C*-5), 137.1 (*C*-7a), 136.1 (*C*-1'), 134.1 (*C*-7), 130.3 (*C*-2', 6'), 130.2 (*C*-4'), 129.3 (*C*-3a), 126.9 (*C*-3', 5'), 114.6 (*C*-4), 78.9 (NCH₂O), 67.2 (OCH₂CH₂), 52.3 (OCH₃), 17.7 (CH₂Si), -1.5 (Si(CH₃)₃); *V*_{max} (ATR) 1714 (C=O), 1089, 833, 818, 701 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 418.287, [M (³⁷Cl)+ H] 42.301; HRMS (ESI) found [M+H]⁺ 418.1347, C₂₀H₂₅N₃O₃Si³⁵Cl requires *M* 418.1332.

Compound 21

5-chloro-3-[4'-(trifluoromethyl)phenyl]-1-{[2"-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine

General procedure B was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.150 g, 0.53 mmol, 1.00 eq) with 4-bromobenzotrifluoride (0.08 mL, 0.58 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Hexanes 0-15%), 5-chloro-3-[4'-(trifluoromethyl)phenyl]-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **21** was isolated as a white solid (0.127 g, 0.30 mmol, 56%) with mp 87-90 °C.

 $\delta_{\rm H}$ (700 MHz, Chloroform-*d*) 8.98 (1H, d, *J* = 1.2 Hz, 7-*H*), 8.08 (2H, d, *J* = 8.1 Hz, 2', 6'-*H*), 7.96 (1H, d, *J* = 1.2 Hz, 4-*H*), 7.82 (2H, d, *J* = 8.1 Hz, 3', 5'-*H*), 5.89 (2H, s, NCH₂O), 3.67 – 3.62 (2H, m, OCH₂CH₂), 0.98 – 0.93 (2H, m, CH₂SiMe₃), -0.03 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (176 MHz, Chloroform-*d*) 142.8 (*C*-3), 142.5 (*C*-5), 137.3 (*C*-7a), 135.5 (m, *C*-1'), 134.3 (*C*-7), 130.9 (q, *J*_{CF} = 32.5 Hz, *C*-4'), 129.4 (*C*-3a), 127.5 (*C*-2', 6'), 126.2 (q, *J*_{CF} = 3.8 Hz, *C*-3', 5'), 124.2 (q, *J*_{CF} = 272.8 Hz, *C*F₃), 114.6 (*C*-4), 79.1 (NCH₂O), 67.4 (OCH₂CH₂), 17.9 (CH₂SiMe₃), -1.3 (Si(CH₃)₃); $\delta_{\rm F}$ (376 MHz,

Chloroform-*d*) -62.66; *V_{max}* (ATR) 1324, 1164, 1066, 860, 825 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 428.282 [M (³⁷Cl)+ H] 430.296; HRMS (ESI) found [M+H]⁺ 428.1165, *M* C₁₉H₂₂N₃OSi³⁵ClF₃ requires 428.1173.

Compound 22

5-chloro-3-(4'-nitrophenyl)-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine

General procedure B was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.150g, 0.53 mmol, 1.00 eq) with 1-iodo-4-nitrobenzene (0.145 g, 0.58 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Hexanes 0-20%), 5-chloro-3-(4'-nitrophenyl)-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **22** was isolated as a white solid (0.129 g, 0.32 mmol, 60 %) with mp 111-113 °C.

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 8.96 (1H, d, J = 1.2 Hz, 7-*H*), 8.41 – 8.35 (2H, m, 3',5'-*H*), 8.15 – 8.09 (2H, m, 2',6'-*H*), 7.94 (1H, d, J = 1.2 Hz, 4-*H*), 5.86 (2H, s, NCH₂O), 3.64 – 3.59 (2H, m, OCH₂CH₂), 0.95 – 0.88 (2H, m, CH₂CH₂SiMe₃), -0.06 (9H, s, SiCH₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 147.7 (*C*-4'), 143.0 (*C*-5), 141.4 (*C*-3), 138.1 (*C*-1'), 137.1 (*C*-7a), 134.4 (*C*-7), 129.2 (*C*-3a), 127.6 (*C*-3', 5'), 124.4 (*C*-2', 6'), 114.3 (*C*-4), 79.1 (NCH₂O), 67.4 (OCH₂CH₂), 17.7 (CH₂CH₂Si), -1.5 (Si(CH₃)₃); *V*_{max} (ATR) 1516 (N=O asymmetric), 1349 (N=O symmetric), 1074, 857, 834, 821 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 405.282, [M (³⁷Cl) + H] 407.297; HRMS (ESI) found [M+H]⁺ 405.1153, C₁₈H₂₂N₄O₃Si³⁵Cl requires *M* 405.1150.

Compound 23

5-chloro-3-(3',5'-dimethylphenyl)-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine

General procedure B was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.200 g, 0.71 mmol, 1.00 eq) with 1-iodo-3,5-dimethylbenzene (0.11 mL, 0.78 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Hexanes 0-20%), 5-chloro-3-(3',5'-dimethylphenyl)-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **23** was isolated as a colourless oil (0.127 g, 0.33 mmol, 47%).

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 8.90 (1H, d, *J* = 1.1 Hz, 7-*H*), 7.92 (1H, d, *J* = 1.1 Hz, 4-*H*), 7.52 – 7.49 (2H, m, 2',6'-*H*), 7.12 – 7.09 (1H, m, 4'-*H*), 5.83 (2H, s, NCH₂O), 3.64 – 3.58 (2H, m, OCH₂CH₂), 2.43 (6H, q, *J* = 0.7 Hz, Ar-CH₃), 0.94 – 0.89 (2H, m, CH₂CH₂Si), -0.06 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 144.3 (*C*-3), 141.9 (*C*-5), 138.8 (*C*-3',5'), 137.0 (*C*-7a), 133.7 (*C*-7), 131.5 (*C*-1'), 130.7 (*C*-4'), 129.5 (*C*-3a), 125.0 (*C*-2',6'), 115.0 (*C*-4), 78.7 (NCH₂O), 67.0 (OCH₂CH₂), 21.4 (Ar-CH₃), 17.7 (CH₂CH₂Si), -1.47 (Si(CH₃)₃); *V*_{max} (ATR) 1089, 863, 839 cm⁻¹; LC-MS (ESI) [M

 $({}^{35}CI) + H]$ 388.371, [M $({}^{37}CI) + H]$ 390.385; HRMS (ESI) found [M+H]⁺ 388.1616, C₂₀H₂₇³⁵ClN₃OSi requires *M* 388.1612.

Compound 24

methyl 4'-(5-chloro-2-{[2"-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridin-3-yl)benzoate

General procedure C was applied to 5-chloro-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **9b** (0.150 g, 0.53 mmol, 1.00 eq) with methyl 4-iodobenzoate (0.152 g, 0.58 mmol, 1.10 eq). Purification by C₁₈-silica gel reverse phase flash column chromatography (MeOH:H₂O 0-100%) afforded methyl 4'-(5-chloro-2-{[2''-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine-3-yl)benzoate **24** as a yellow solid (0.088 g, 0.21 mmol, 40%) with mp 99 – 103 °C.

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 9.11 (1H, d, *J* = 1.3 Hz, 7-*H*), 8.23 (2H, d, *J* = 8.1 Hz, 2',6'-*H*), 7.81 (2H, d, *J* = 8.2 Hz, 3',5'-*H*), 7.61 – 7.56 (1H, d, *J* = 1.3 Hz, 4-*H*), 5.73 (2H, s, NCH₂O), 3.97 (3H, s, OCH₃), 3.90 – 3.83 (2H, m, OCH₂CH₂), 0.99 – 0.94 (2H, m, OCH₂CH₂), -0.01 (9H, s, Si(CH₃)₃); $δ_{\rm C}$ (151 MHz, Chloroform-*d*) 166.3 (*C*(=O)OCH₃), 144.9 (*C*-7), 143.8 (*C*-7a), 141.5 (*C*-5), 135.5 (*C*-3), 132.3 (*C*-4'), 130.8 (*C*-1'), 130.5 (*C*-2',6'), 129.4 (*C*-3',5'), 125.6 (*C*-3a), 112.9 (*C*-4), 80.1 (NCH₂O), 68.3 (OCH₂CH₂), 52.4 (OCH₃), 17.9 (OCH₂CH₂Si), -1.4 (Si(CH₃)₃); *V*_{max} (ATR) 1727 (C=O), 1279, 837, 741 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 418.318, [M (³⁷Cl) + H] 420.332; HRMS found [M+H]⁺ 418.1361, C₂₀H₂₅³⁵ClN₃O₃Si requires *M* 418.1354.

Compound 25

5-chloro-3-[4'-(trifluoromethyl)phenyl]-2-{[2''-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine

General procedure C was applied to 5-chloro-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **9b** (0.100 g, 0.35 mmol, 1.00 eq) with 1-bromo-4-(trifluoromethyl)benzene (0.087 g, 0.39 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Hexanes 0-20%), 5-chloro-3-[4'-(trifluoromethyl)phenyl]-2-{[2''-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **25** was isolated as a yellow solid (0.072 g, 0.17 mmol, 48 %) with mp 104-105 °C.

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 9.15 (1H, d, *J* = 1.3 Hz, 7-*H*), 7.89 (2H, d, *J* = 8.3 Hz, 2',6'-*H*), 7.85 (2H, d, *J* = 8.3 Hz, 3',5'-*H*), 7.59 (1H, d, *J* = 1.3 Hz, 4-*H*), 5.74 (2H, s, NCH₂O), 3.89 – 3.82 (2H, m, OCH₂CH₂), 1.00 – 0.93 (2H, m, CH₂SiMe₃), -0.01 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 145.0 (*C*-7), 143.8 (*C*-5), 141.7 (*C*-7a), 134.9 (*C*-3), 131.6 (d, *J*_{CF} = 1.4 Hz, *C*-1'), 131.4 (q, *J*_{CF} = 33.0 Hz, *C*-4'), 129.9 (*C*-2',6'), 126.3 (q, *J*_{CF} = 3.7 Hz, *C*-3',5'), 125.6 (*C*-3a), 123.7 (q, *J*_{CF} = 272.4 Hz, *C*F₃), 112.7 (*C*-4), 80.1 (NCH₂O), 68.4 (OCH₂CH₂), 17.9 (CH₂SiMe₃), -1.5 (Si(CH₃)₃); $\delta_{\rm F}$ (376 MHz, Chloroform-*d*) -62.84; *V*_{max} (ATR) 1323, 911, 732 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 428.236, [M (³⁷Cl) + H] 430.251; HRMS (ESI) found [M+H]⁺ 428.1177, C₁₉H₂₂N₃OSiF₃³⁵Cl requires *M* 428.1173.

Compound **26** 5-chloro-3-(4'-nitrophenyl)-2-{[2''-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine

General procedure C was applied to 5-chloro-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **9b** (0.150g, 0.53 mmol, 1.00 eq) with 1-iodo-4-nitrobenzene (0.145 g, 0.58 mmol, 1.10 eq). Purification by C_{18} -silica gel reverse phase flash column chromatography (MeOH:H₂O 0-100%) afforded 5-chloro-3-(4'-nitrophenyl)-2-{[2''-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **26** as a yellow oil (0.066 g, 0.16 mmol, 31%).

 $δ_{\rm H}$ NMR (600 MHz, Chloroform-*d*) 9.16 (1H, d, *J* = 1.3 Hz, 7-*H*), 8.46 – 8.43 (2H, m, 3',5'-*H*), 7.99 – 7.96 (2H, m, 2',6'-*H*), 7.60 (1H, d, *J* = 1.3 Hz, 4-*H*), 5.76 (2H, s, NCH₂O), 3.92 – 3.87 (2H, m, OCH₂CH₂), 1.02 – 0.97 (2H, m, CH₂SiMe₃), 0.01 (9H, s, Si(CH₃)₃); $δ_{\rm C}$ NMR (151 MHz, Chloroform-*d*) 148.0 (C-4'), 145.2 (C-7), 143.8 (C-7a), 142.3 (C-5), 134.3 (C-1'), 134.0 (C-3), 130.3 (C-2',6'), 125.8 (C-3a), 124.6 (C-3',5'), 112.5 (C-4), 80.4 (NCH₂O), 68.6 (OCH₂CH₂), 18.0 (OCH₂CH₂Si), -1.4 (Si(CH₃)₃); *V*_{max} (ATR) 1523 (N-O, asymmetric), 1349 (N-O, symmetric), 858, 838, 734, 698 cm⁻¹; [M(³⁵Cl)+H] 405.320, [M(³⁷Cl)+H] 407.297; HRMS found [M+H]⁺ 405.1146, C₁₈H₂₂³⁵ClN₄O₃Si requires *M* 405.1150.

Compound 27

5-chloro-3-(3',5'-dimethylphenyl)-2-{[2"-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine

General procedure C was applied to 5-chloro-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **9b** (0.100g, 0.35 mmol, 1.00 eq) with 1-iodo-3,5-dimethylbenzene (0.06 mL, 0.39 mmol, 1.10 eq). Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-20%) afforded 5-chloro-3-(3',5'-dimethylphenyl)-2-{[2''-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **27** as a yellow oil (0.065 g, 0.17 mmol, 48%).

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 9.11 (1H, d, *J* = 1.2 Hz, 7-*H*), 7.57 (1H, d, *J* = 1.2 Hz, 4-*H*), 7.30 – 7.27 (2H, m, 2',6'-*H*), 7.17 – 7.14 (1H, m, 4'-*H*), 5.72 (2H, s, NCH₂O), 3.86 – 3.80 (2H, m, OCH₂CH₂), 2.43 (6H, q, *J* = 0.7 Hz, Ar-CH₃), 0.98 – 0.93 (2H, m, CH₂CH₂Si), -0.01 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 144.6 (*C*-7), 143.9 (*C*-5), 140.6 (*C*-7a), 139.0 (*C*-3',5'), 137.2 (*C*-3), 131.3 (*C*-4'), 127.8 (*C*-1'), 127.3 (*C*-2',6'), 125.4 (*C*-3a), 113.5 (*C*-4), 79.8 (NCH2O), 68.1 (OCH₂CH₂), 21.4 (Ar-CH₃), 17.9 (CH₂CH₂Si), -1.4 (Si(CH₃)₃); *V_{max}* (ATR) 1465, 1106, 1085, 1061, 858, 838 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 388.333, [M (³⁷Cl) + H] 390.347; HRMS (ESI) found [M+H]⁺ 388.1598, C₂₀H₂₇³⁵ClN₃OSi requires *M* 388.1612.

Metal-base Chemistry

Preparation of TMPMgCl[•]LiCl

An oven dried RBF wrapped in foil to exclude light was charged with *turbo*-Grignard (isopropyl magnesium chloride lithium chloride complex 1.3 M in THF) under a nitrogen atmosphere in an ice + salt bath. Freshly distilled 2,2,6,6-tetramethylpiperidine (TMPH) (1.05 eq.) was added dropwise and the reaction stirred for 48 hours generating a dark grey solution. The concentration of the metal-base was calculated via titration against benzoic acid in THF conducted under a nitrogen atmosphere in an ice bath. The prepared TMPMgCl·LiCl solution was stored at -18 °C under a dry nitrogen atmosphere.

General Procedure D

For deproto-metalation by TMPMgCl·LiCl and trapping with an electrophile

An oven dried RBF was charged with a solution of the stated substrate (1.00 eq.) in dry THF (0.5 M) and cooled to -40 $^{\circ}$ C under a nitrogen atmosphere. TMPMgCl·LiCl in THF (2.00 eq.) was added dropwise and the reaction was stirred for 30 minutes at -40 $^{\circ}$ C. The corresponding electrophile was added at -40 $^{\circ}$ C, then the reaction was stirred at room temperature for the time stated. The reaction was quenched with NaHSO₃ sat. solution and the crude product extracted with EtOAc, then the combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The product was purified by silica gel flash column chromatography using the stated solvent system.

General Procedure E

For deproto-metalation by TMPMgCl·LiCl and transmetalation to Zn for Negishi cross-coupling

An oven-dried reaction vessel was charged with a solution of the substrate (1.00 eq.) in dry THF (0.5 M), the atmosphere was exchange to nitrogen, and the solution cooled to -40 °C. TMPMgCl·LiCl in THF (2.00 eq.) was added dropwise and the reaction was stirred for 30 minutes at -40 °C. A solution of $ZnCl_2$ (1.00 eq) in THF (1 M) was added and the reaction stirred for 30 minutes at -40 °C. In a separate oven-dried reaction vessel, a solution of the corresponding (hetero)aryl halide (1.50 eq) and Pd(PPh_3)₄ (0.05 eq) in THF (0.5 M) were stirred at room temperature for 30 minutes. This solution was added to the main reaction mixture at -40 °C, then the reaction was stirred at room temperature overnight. The reaction was quenched with NH₄Cl sat. solution and the crude product extracted with EtOAc, then the combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The product was purified by silica gel flash column chromatography using the stated solvent system.

Compound 28

 $\texttt{5-chloro-7-iodo-1-} \{ \texttt{[2'-(trimethylsilyl)ethoxy]methyl} \texttt{-} \texttt{1H-pyrazolo[3,4-c]pyridine} \}$

General procedure D was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.100g, 0.35 mmol, 1.00 eq) with electrophile I₂ (0.134 g, 0.53 mmol, 1.50 eq) for 1 hour. Purification by reverse phase column chromatography (MeOH:H₂O 0-100%) afforded 5-chloro-7-iodo-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **28** as a yellow oil (0.080g, 0.20 mmol, 55%).

 $\delta_{\rm H}$ (700 MHz, Chloroform-*d*) 8.06 (1H, s, 3-*H*), 7.66 (1H, s, 4-*H*), 6.14 (2H, s, NCH₂O), 3.66 – 3.61 (2H, m, OCH₂CH₂), 0.99 – 0.93 (2H, m, CH₂CH₂Si), 0.00 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (176 MHz, Chloroform-*d*) 140.1 (*C*-5), 138.3 (*C*-7a), 132.5 (*C*-3), 131.9 (*C*-3a), 114.1 (*C*-4), 96.3 (*C*-7), 77.7 (NCH₂O), 66.7 (OCH₂CH₂), 17.9 (CH₂CH₂Si), -1.3 (Si(CH₃)₃); *V_{max}* (ATR) 1082, 914, 798, 739 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 410.147, [M (³⁷Cl) + H] 412.161; HRMS found [M+H]⁺ 409.9954, C₁₂H₁₈³⁵ClIN₃OSi requires *M* 409.9952.

Compound 29

5-chloro-7-(phenylsulfanyl)-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine

General procedure D was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.150g, 0.53 mmol, 1.00 eq) with electrophile S₂Ph₂ (0.173 g, 0.79 mmol, 1.50 eq) for 18 hours. Purification by reverse phase column chromatography (MeCN:H₂O 0-100%) afforded 5-chloro-7-(phenylsulfanyl)-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **29** as a yellow oil (0.104 g, 0.27 mmol, 50%).

 $\delta_{\rm H}$ (700 MHz, Chloroform-*d*) 7.98 (1H, s, 3-*H*), 7.58 (2H, dd, *J* = 7.5, 2.1 Hz, 2",6"-*H*), 7.43 – 7.40 (2H, m, 3",5"-*H*), 7.43 – 7.40 (1H, m, 4"-*H*), 7.39 (1H, s, 4-*H*), 6.09 (2H, s, NCH₂O), 3.64 – 3.59 (2H, m, OCH₂CH₂), 0.95 – 0.90 (2H, m, OCH₂CH₂Si), -0.04 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (176 MHz, Chloroform-*d*) 143.1 (*C*-7), 140.9 (*C*-5), 134.4 (*C*-2",6"), 134.3 (*C*-7a), 133.1 (*C*-3), 132.3 (*C*-3a), 129.4 (*C*-1"), 129.3 (*C*-3",5"), 129.1 (*C*-4"), 111.6 (*C*-4), 79.9 (NCH₂O), 66.7 (OCH₂CH₂Si), 17.9 (OCH₂CH₂Si), -1.3 (Si(CH₃)₃); *V*_{max} (ATR) 1078, 856, 833, 796, 689 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 392.209, [M (³⁷Cl) + H] 394.223; HRMS found [M+H]⁺ 392.1020, C₁₈H₂₃³⁵ClN₃OSSi requires *M* 392.1020.

Compound **30**

(5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridin-7-yl)(4"-chlorophenyl)methanol

General procedure D was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.100 g, 0.35 mmol, 1.00 eq) with electrophile 4-chlorobenzaldehyde (0.111 g, 0.79 mmol, 2.25 eq) for 4 hours. Purification by reverse phase column chromatography (MeCN:H₂O 0-100%) afforded (5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridin-7-yl)(4''-chlorophenyl)methanol **30** as a yellow solid (0.072, 0.17 mmol, 48%) with mp 82-84 °C.

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 8.00 (1H, s, 3-*H*), 7.66 (1H, s, 4-*H*), 7.28 (2H, d, *J* = 8.4 Hz, 3'',5''-*H*), 7.18 (2H, d, *J* = 8.4 Hz, 2'',6''-*H*), 6.43 (1H, s, C(OH)*H*), 5.47 – 5.38 (2H, m, NCH₂O), 3.49 – 3.36 (2H, m, OCH₂CH₂), 0.93 – 0.75 (2H, m, CH₂CH₂Si), -0.07 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 145.7 (*C*-7), 140.9 (*C* -4''), 139.9 (*C*-5), 134.3 (*C*-1''), 133.7 (*C*-3a), 132.7 (*C*-3), 132.6 (*C*-7a), 129.2 (*C*-3',5'), 129.1 (*C*-2',6'), 114.3 (*C*-4), 79.8 (NCH₂O), 71.7 (*C*(OH)H), 66.5 (OCH₂CH₂), 17.6 (OCH₂CH₂Si), -1.6 (Si(CH₃)₃); *V_{max}* (ATR) 3410 (br, O-H), 2961, 1075, 833 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 424.208, [M (³⁷Cl) + H] 426.222; HRMS found [M+H]⁺ 424.1013, C₁₉H₂₄³⁵Cl₂N₃O₃Si requires *M* 424.1015.

Compound **31** (5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridin-7-yl)(phenyl)methanol

General procedure D was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.100 g, 0.35 mmol, 1.00 eq) with electrophile benzaldehyde (0.05 mL, 0.53 mmol, 1.50 eq) for 4 hours. Purification by reverse phase column chromatography (MeCN:H₂O 0-100%) afforded (5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridin-7-yl)(phenyl)methanol **31** as a yellow solid (0.090 g, 0.23 mmol, 66%) with mp 63-68 °C.

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 8.00 (1H, s, 3-*H*), 7.66 (1H, s, 4-*H*), 7.34 – 7.30 (2H, m, 3",5"-*H*), 7.30 – 7.28 (1H, m, 4"-*H*), 7.26 – 7.23 (2H, m, 2",6"-*H*), 6.47 (1H, s, C(OH)*H*), 5.46 – 5.37 (2H, m, NCH₂O), 5.29 (1H, br s, O-*H*),3.51-3.38 (2H, m, OCH₂CH₂), 0.96 – 0.78 (2H, m, OCH₂CH₂Si), -0.05 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 146.3 (*C*-7), 142.4 (*C*-1"), 139.8 (*C*-5), 133.6 (*C*-3a), 132.7 (*C*-7a), 132.7 (*C*-3), 129.1 (*C*-3",5"), 128.5 (*C*-4"), 127.7 (*C*-2",6"), 114.0 (*C*-4), 79.8 (NCH₂O), 72.4 (*C*(OH)H), 66.5 (OCH₂CH₂), 17.6 (OCH₂CH₂Si), -1.5 (Si(*C*H₃)₃); *V*_{max} (ATR) 3337 (br, O-H), 2958, 1085, 1070, 1063 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 390.271, [M (³⁷Cl) + H] 392.285; HRMS found [M+H]⁺ 390.1403, C₁₉H₂₅³⁵ClN₃O₂Si requires *M* 390.1405.

Compound 32

5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine-7-carbaldehyde

General procedure D was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.200 g, 0.70 mmol, 1.00 eq) with neat DMF (0.08 mL, 1.05 mmol, 1.50 eq) for 5 hours. Purification by silica gel flash column chromatography (EtOAc:Hexanes 5-25%) afforded 5-chloro-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine-7-carbaldehyde **32** as a cream solid (0.107 g, 0.34 mmol, 49%) with mp 60-62 °C.

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 10.16 (1H, s, C(=O)*H*), 8.18 (1H, s, 3-*H*), 7.94 (1H, s, 4-*H*), 6.25 (2H, s, NCH₂O), 3.47 – 3.41 (2H, m, OCH₂CH₂), 0.84 – 0.77 (2H, m, OCH₂CH₂Si), -0.11 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ NMR (151 MHz, Chloroform-*d*) 191.2 (*C*=O), 140.5 (*C*-5), 138.0 (*C*-7), 135.7 (*C*-3a), 133.6 (*C*-3), 132.2 (*C*-7a), 120.0 (*C*-4), 81.7 (NCH₂O), 66.5 (OCH₂CH₂), 17.7 (OCH₂CH₂Si), -1.6 (Si(CH₃)₃); V_{max} (ATR) 1717 (C=O), 1085, 1056, 838, 796 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 312.211, [M (³⁷Cl) + H] 314.187; HRMS found [M+H]⁺ 312.0938, C₁₃H₁₉³⁵ClN₃O₂Si requires *M* 312.0935.

Compound **33** 5-chloro-7-(4'-methoxyphenyl)-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1*H*-pyrazolo[3,4-c]pyridine

General procedure E was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1*H*-pyrazolo[3,4-c]pyridine **9a** (0.100 g, 0.35 mmol, 1.00 eq) with 1-iodo-4-methoxybenzene (0.124 g, 0.53 mmol, 1.50 eq). Purification by reverse phase column chromatography (MeCN:H₂O 0-100%) afforded 5-chloro-7-(4'-methoxyphenyl)-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1*H*-pyrazolo[3,4-c]pyridine **32** as a yellow oil (0.108 g, 0.28 mmol, 79%).

 $\delta_{\rm H}$ (600 MHz, Chloroform-*d*) 8.10 (1H, s, 3-*H*), 7.68 – 7.62 (2H, m, 2',6'- *H*), 7.61 (1H, s, 4- *H*), 7.05 – 7.00 (2H, m, 3',5'- *H*), 5.45 (2H, s, NCH₂O), 3.88 (3H, s, OCH₃), 3.39 – 3.33 (2H, m, OCH₂CH₂), 0.80 – 0.73 (2H, m, CH₂CH₂Si), - 0.08 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) 160.7 (*C*-4'), 145.4 (*C*-7), 140.7 (*C*-5), 134.2 (*C*-7a), 133.4 (*C*-3), 133.2 (*C*-3a), 130.7 (*C*-2',6'), 129.5 (*C*-1'), 113.9 (*C*-3',5'), 112.7 (*C*-4), 78.2 NCH₂O), 66.5 (OCH₂CH₂), 55.4 (O(CH₃), 17.7 NCH₂CH₂), -1.5 (Si(*C*H₂); *V*_{max} (ATR) 1253 (Ar-O), 1078 (O-Me), 838, 800 cm⁻¹; LC-MS (ESI) [M (³⁵CI) + H] 390.271, [M (³⁷Cl) + H] 392.285; HRMS found [M+H]⁺ 390.1416, C₁₉H₂₅³⁵ClN₃O₂Si requires M 390.1405.

Compound **34**

4-(5'-chloro-1'-((2''-(trimethylsilyl)ethoxy)methyl)-1H-pyrazolo[3,4-c]pyridin-7'-yl)benzonitrile

General procedure E was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.100 g, 0.35 mmol, 1.00 eq) with 4-iodobenzonitrile (0.121 g, 0.55 mmol, 1.50 eq). Purification by reverse phase column chromatography (MeCN:H₂O 50-100%) afforded 4-(5'-chloro-1'-((2''-(trimethylsilyl)ethoxy)methyl)-1H-pyrazolo[3,4-c]pyridin-7'-yl)benzonitrile **34** as a cream solid (0.113 g, 0.29 mmol, 83%) with mp 90-94 °C.

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 8.13 (1H, s, 3'-*H*), 7.85 (2H, d, *J* = 7.9 Hz, 2,6-*H*), 7.81 (2H, d, *J* = 7.9 Hz, 3,5-*H*), 7.71 (1H, s, 4'-*H*), 5.38 (2H, s, NCH₂O), 3.40 (2H, m, OCH₂CH₂), 0.77 (2H, m, OCH₂CH₂Si), -0.07 (9H, s, Si(CH₃)₃); $δ_{\rm C}$ (151 MHz, Chloroform-*d*) 143.0 (*C*-7'), 141.4 (*C*-4), 140.9 (*C*-5'), 133.7 (*C*-3'a), 133.6 (*C*-7'a), 133.4 (*C*-3'), 132.1 (*C*-2,6), 130.2 (*C*-3,5), 118.3 (*C*=N), 114.3 (*C*-4'), 113.4 (*C*-1), 78.4 (NCH₂O), 66.8 (OCH₂CH₂), 17.7 (OCH₂CH₂Si), - 1.5 (Si(CH₃)₃); *V*_{max} (ATR) 2230 (C=N), 1070, 856, 837, 815 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 385.330, [M (³⁷Cl) + H] 387.307; HRMS found [M+H]⁺ 385.1250, C₁₉H₂₂³⁵ClN₄OSi requires *M* 385.1251.

Compound **35** 5-chloro-7-(pyridin-2'-yl)-1-((2''-(trimethylsilyl)ethoxy)methyl)-1*H*-pyrazolo[3,4-c]pyridine

General procedure E was applied to 5-chloro-1-{[2'-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **9a** (0.100 g, 0.35 mmol, 1.00 eq) with 2-iodopyridine (0.06 mL, 0.55 mmol, 1.50 eq). Purification by reverse phase column chromatography (MeCN:H₂O 0-80%) afforded 5-chloro-7-(pyridin-2'-yl)-1-((2''-(trimethylsilyl) ethoxy)methyl)-1H-pyrazolo[3,4-c]pyridine **35** as a yellow oil (0.091 g, 0.25 mmol, 71%).

 $δ_{\rm H}$ (700 MHz, Chloroform-*d*) 8.74 (1H, ddd, *J* = 4.8, 1.8, 0.9 Hz, 6'-*H*), 8.11 (1H, s, 3-*H*), 8.08 (1H, dt, *J* = 7.8, 0.9 Hz, 3'-*H*), 7.91 (1H, td, *J* = 7.8, 1.8 Hz, 4'-*H*), 7.72 (1H, s, 4-*H*), 7.42 (1H, ddd, *J* = 7.8, 4.8, 0.9 Hz, 5'-*H*), 6.02 (2H, s, NCH₂O), 3.14 – 3.05 (2H, m, OCH₂CH₂Si), 0.59 – 0.49 (2H, m, OCH₂CH₂Si), -0.22 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (176 MHz, Chloroform-*d*) 156.0 (*C*-2'), 148.3 (*C*-6'), 143.7 (*C*-7), 140.3 (*C*-5), 137.4 (*C*-4'), 134.7 (*C*-3a), 133.5 (*C*-7a), 133.1 (*C*-3), 125.2 (*C*-3'), 124.1 (*C*-5'), 114.7 (*C*-4), 80.9 (NCH₂O), 66.0 (OCH₂CH₂Si), 17.6 (OCH₂CH₂Si), -1.5 (Si(CH₃)₃); V_{max} (ATR) 1078, 863, 837, 796 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 361.274, [M (³⁷Cl) + H] 362.288; HRMS found [M+H]⁺ 361.1253, C₁₇H₂₂³⁵ClN₄OSi requires *M* 361.1251.

Compound 36

5-chloro-3-iodo-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine

.∕−Si′

TMPMgCl·LiCl in THF (1.20 eq.) was added dropwise to a cooled solution of 5-chloro-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **9b** (0.040g, 0.14 mmol, 1.00 eq) and the reaction was stirred for 1 hour at -78 °C under a nitrogen atmosphere. A solution of I₂ in THF (1.50 eq, 0.5 M) was added, then the reaction was stirred at room temperature for 1 hour. The reaction was quenched with NH₄Cl sat. solution (10 mL) and the crude product extracted with EtOAc (3 x 10 mL), then the combined organic layers were washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-20%) afforded 5-chloro-3-iodo-2-{[2'-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine **36** as a white solid (0.0063 g, 0.015 mmol, 11%) with mp 101-103 °C.

 δ_{H} (600 MHz, Chloroform-*d*) 8.85 (1H, d, *J* = 1.1 Hz, 7-*H*), 7.45 (1H, d, *J* = 1.1 Hz, 4-*H*), 5.78 (2H, s, NCH₂O), 3.59 – 3.53 (2H, m, OCH₂CH₂), 0.92 – 0.85 (2H, m, CH₂CH₂Si), -0.05 (9H, s, Si(CH₃)₃); δ_{C} (151 MHz, Chloroform-*d*) 142.3 (C-5), 136.4 (C-3), 136.2 (C-7a), 133.9 (C-7), 114.9 (C-4), 90.3 (C-3), 79.0 (NCH₂O), 67.3 (OCH₂CH₂), 17.7 (CH₂CH₂Si), -1.5 (Si(CH₃)₃); *V_{max}* (ATR) 1463, 1085, 816, 736 cm⁻¹; LC-MS (ESI)) [M (³⁵Cl) + H] 410.147, [M (³⁷Cl) + H] 412.161; HRMS found [M+H]⁺ 409.9952, C₁₂H₁₈³⁵ClIN₃OSi requires *M* 409.9952.

Multi-vector Elaboration

SEM

Compound 37 5-chloro-1-methyl-3-[4'-(trifluoromethyl)phenyl]-1H-pyrazolo[3,4-c]pyridine CF₃ 5 N Route 1 CF₃ CF₃ CI [Me₃O][BF₄] TFA €N N N N

Trimethoxonium tetrafluoroborate (0.036 g, 0.23 mmol, 2.00 eq) and 5-chloro-3-[4'-(trifluoromethyl)phenyl]-1-{[2"-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine 21 (0.050 g, 0.12 mmol, 1.0 eq) were sealed under a nitrogen atmosphere. Anhydrous EtOAc (1.5 mL) was added and the reaction stirred at room temperature for 8 hours. The reaction mixture was concentrated under reduced pressure to afford a white solid. The crude salt was taken up in anhydrous DCM (1.0 mL) then TFA (2.0 mL) was added dropwise under a nitrogen atmosphere, and the reaction stirred at room temperature for 3 days. The reaction was diluted with DCM (10 mL) then washed with sat. NaHCO3 (3 x 15 mL) and brine (20 mL), then dried over MgSO4, filtered, and concentrated. Purification by silica gel flash column chromatography (MeOH:DCM 0-30%) afforded 5-chloro-1methyl-3-[4'-(trifluoromethyl)phenyl]-1H-pyrazolo[3,4-c]pyridine **37** as a red semi-solid (0.024 g, 0.075 mmol, 66%).

SEM

CF₃

CI

DCM, rt, 88 hr

Route 2

CI

EtOAc, rt, 8 hr

Trimethoxonium tetrafluoroborate (0.026 g, 0.18 mmol, 1.50 eq) and 5-chloro-3-[4'-(trifluoromethyl)phenyl]-2-{[2"-(trimethylsilyl)ethoxy]methyl}-2H-pyrazolo[3,4-c]pyridine 25 (0.050 g, 0.12 mmol, 1.00 eq) were sealed under a nitrogen atmosphere. Anhydrous EtOAc (3.0 mL) was added and the reaction stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure then washed with minimal H₂O. Purification by silica gel flash column chromatography (MeOH:DCM 0-30%) afforded 5-chloro-1methyl-3-[4'-(trifluoromethyl)phenyl]-1H-pyrazolo[3,4-c]pyridine 37 as a red semi-solid (0.018 g, 0.059 mmol, 50%).

 $\delta_{\rm H}$ (600 MHz, DMSO) 9.85 (1H, s, 7-*H*), 8.77 (1H, s, 4-*H*), 8.34 (2H, d, *J* = 8.1 Hz, 2',6'-*H*), 7.83 (2H, d, *J* = 8.1 Hz, 3',5'-*H*), 4.35 (3H, s, NCH₃); $\delta_{\rm C}$ (151 MHz, DMSO) 142.1 (*C*-3)*, 138.3 (*C*-5)*, 137.9 (*C*-7), 135.2 (*C*-1'), 132.24 (*C*-7a), 128.6 (q, *J*_{C-F} = 31.8 Hz, C-4'), 127.3 (*C*-2',6'), 126.9 (*C*-3a)*, 126.0 (q, *J*_{C-F} = 3.9 Hz, C-3',5'), 126.3 (*C*F₃, q, *J*_{C-F} = 272.1 Hz), 118.8 (*C*-4), 47.3 (NCH₃); $\delta_{\rm F}$ (376 MHz, DMSO) -62.91; *V*_{max} (ATR) 1329, 1071, 1018, 847 cm⁻¹; LC-MS (ESI): [M (³⁵Cl) + H] 312.217, [M (³⁷Cl)+ H] 314.269; HRMS (ESI) found [M+H]⁺ 312.0504, C₁₄H₁₀N₃³⁵ClF₃ requires *M* 312.0515.

*resolved in ¹³C NMR at 90 °C.

Compound 40

5-chloro-1-methyl-3-(4'-nitrophenyl)-1H-pyrazolo[3,4-c]pyridine

Trimethoxonium tetrafluoroborate (0.027 g, 0.19 mmol, 1.50 eq) and 5-chloro-3-[4'-nitrophenyl]-1-{[2''-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **22** (0.050 g, 0.12 mmol, 1.00 eq) were sealed under nitrogen. Anhydrous EtOAc (3.0 mL) was added and the reaction stirred at room temperature for 6 hours, a pale precipitate was generated. TFA (2.0 mL) was added dropwise and the reaction stirred at room temperature overnight. The reaction mixture was diluted with EtOAc (2.0 mL) then concentrated under reduced pressure. EtOAc (3 x 10 mL) was used as an azeotroping agent to remove the TFA by concentrating the product under reduced pressure 3 times to afford a white solid, the trifluoroacetate salt. Reaction with NH₃ in MeOH (1.0 mL) and washing with minimal H₂O afforded 5-chloro-1-methyl-3-(4'-nitrophenyl)-1H-pyrazolo[3,4-c]pyridine **40** as a bright yellow solid (0.034 g, 0.12 mmol, 95%) which is thermally unstable above 170 °C.

 $\delta_{\rm H}$ (400 MHz, DMSO) 9.73 (1H, s, 7-*H*), 8.65 (1H, s, 4-*H*), 8.42 (2H, d, *J* = 9.0 Hz, 3',5'-*H*), 8.29 (2H, d, *J* = 9.0 Hz, 2',6'-*H*), 4.30 (3H, s, NC*H*₃); $\delta_{\rm H}$ (600 MHz, DMSO + TFA) 10.10 (1H, s, 7-*H*), 9.15 (1H, s, 4-*H*), 8.40 (2H, d, *J* = 8.9 Hz, 3',5'-*H*), 8.37 (2H, d, *J* = 8.9 Hz, 2',6'-*H*), 4.46 (3H, s, NC*H*₃); $\delta_{\rm C}$ (400 MHz, DMSO + TFA) 147.6 (*C*-4'), 142.2 (*C*-3), 137.7 (*C*-7), 137.7 (*C*-5), 136.4 (*C*-1'), 134.2 (*C*-7a), 128.2 (*C*-3',5'), 127.2 (*C*-3a), 124,4 (*C*-2',6'), 119.7 (*C*-4), 47.9 (NCH₃); *V_{max}* (ATR) 1592 (N=O, asymmetric), 1503, 1329 (N=O, symmetric), 856 cm⁻¹; LC-MS (ESI): [M (³⁵Cl) + H] 289.104, [M (³⁷Cl)+ H] 291.157; HRMS (ESI) found [M+H]⁺ 289.0509, C₁₃H₁₀N₄O₂³⁵Cl requires *M* 289.0492.

Compound 41

 $\label{eq:2.1} 5-chloro-7-iodo-3-(4'-(trifluoromethyl)phenyl)-1-((2''-(trimethylsilyl)ethoxy)methyl)-1H-pyrazolo[3,4-c]pyridine (2,2,2,2,2), and (3,4,2,2), below (3,4,2,2), and (3,4,2), and (3,4,2)$

General procedure D was applied to 5-chloro-3-[4-(trifluoromethyl)phenyl]-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrazolo[3,4-c]pyridine **21** (0.140 g, 0.33 mmol, 1.00 eq) with electrophile I₂ (0.125 g, 0.49 mmol, 1.50 eq) for 1 hour. Purification by reverse phase column chromatography (MeOH:H₂O 50-100%) afforded 5-chloro-7iodo-3-(4-(trifluoromethyl)phenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazolo[4,3-d]pyridine **41** as a yellow oil (0.119 g, 0.22 mmol, 66%).

 $\delta_{\rm H}$ (700 MHz, Chloroform-*d*) 7.98 (2H, d, *J* = 8.1 Hz, 2',6'-*H*), 7.83 (1H, s, 4-*H*), 7.79 (2H, d, *J* = 8.1 Hz, 3',5'-*H*), 6.16 (2H, s, NCH₂O), 3.70 – 3.65 (2H, m, OCH₂CH₂), 0.94 (2H, m, OCH₂CH₂Si), -0.04 (9H, s, Si(CH₃)₃); $\delta_{\rm C}$ (176 MHz, Chloroform-*d*) 142.2 (*C*-3), 141.0 (*C*-5), 139.6 (*C*-7a), 134.8 (q, *J*_{*C*-*F*} = 1.4 Hz, *C*-1'), 131.2 (q, *J*_{*C*-*F*} = 32.7 Hz, *C*-4'), 129.5 (*C*-3a), 127.8 (*C*-2',6'), 126.3 (q, *J* = 3.8 Hz, *C*-3',5'), 124.1 (q, *J* = 272.2 Hz, *C*F₃), 114.0 (*C*-4), 97.1 (*C*-7), 77.9 (NCH₂O), 66.8 (OCH₂CH₂), 17.9 (CH₂CH₂Si), -1.3 (Si(*C*H₃)₃); $\delta_{\rm F}$ (376 MHz, Chloroform-*d*) -62.72; *V*_{max} (ATR) 1327, 1078, 840, 826 cm⁻¹; LC-MS (ESI) [M (³⁵Cl) + H] 554.14, [M (³⁷Cl) + H] 556.16, [M (³⁵Cl) + H – I] 428.27, [M (³⁷Cl) + H – I] 430.21; HRMS found [M+H]⁺ 554.0149, C₁₉H₂₁³⁵ClF₃IN₃OSi requires *M* 554.0139.

Compound 42

4-{1'-methyl-1H-pyrazolo[3,4-c]pyridin-5'-yl}morpholine

General procedure A was applied to 5-bromo-1-methyl-*1H*-pyrazolo[3,4-c]pyridine **10a** (0.150 g, 0.71 mmol, 1.00 eq) with morpholine (0.07 mL, 0.78 mmol, 1.10 eq). After purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-70%), 4-{1'-methyl-*1H*-pyrazolo[3,4-c]pyridin-5'-yl}morpholine **42** was isolated as a yellow solid (0.297 g, 0.89 mmol, 97%).

 $δ_{\rm H}$ (600 MHz, Chloroform-*d*) 8.63 (1H, t, *J* = 1.0 Hz, 7'-*H*), 7.83 (1H, d, *J* = 1.0 Hz, 3'-*H*), 6.77 (1H, d, *J* = 1.0 Hz, 4'-*H*), 4.10 (3H, s, N-CH₃), 3.91 – 3.86 (4H, m, 2,6-*H*₂), 3.42 – 3.38 (4H, m, 3,5-*H*₂); $\delta_{\rm C}$ (151 MHz, Chloroform-*d*) δ 154.7 (*C*-5'), 133.4 (*C*-7'a), 131.3 (*C*-7'), 131.1 (*C*-3'), 130.9 (*C*-3'a), 94.9 (*C*-4'), 66.9 (*C*-2,6), 48.0 (*C*-3,5), 36.0 (N-CH₃); *V_{max}* (ATR) 1492, 1225, 1116, 967 cm⁻¹; LC-MS (ESI) [M + H] 219.214; HRMS (ESI) found [M+H]⁺ 219.1254, C₁₁H₁₅N₄O requires *M* 219.1246.

Compound 43

4-[3'-(3",5"-dimethylphenyl)-1'-methyl-1H-pyrazolo[3,4-c]pyridin-5'-yl]morpholine

General procedure B was applied to 4-{1'-methyl-1*H*-pyrazolo[3,4-c]pyridin-5'-yl}morpholine **42** (0.130 g, 0.60 mmol, 1.00 eq) with 1-iodo-3,5-dimethylbenzene (0.09 mL, 0.66 mmol, 1.10 eq). Purification by silica gel flash column chromatography (EtOAc:Pet Ether 40-60 0-80%) afforded 4-[3'-(3'',5''-dimethylphenyl)-1'-methyl-1*H*-pyrazolo[3,4-c]pyridin-5'-yl]morpholine **43** as a yellow solid (0.106 g, 0.33 mmol, 55%) with mp 118-120 °C.

 $\delta_{\rm H}$ (700 MHz, Chloroform-*d*) 8.70 (1H, d, *J* = 1.3 Hz, 7'-*H*), 7.55 (2H, m, 2",6"-*H*), 7.11 – 7.09 (1H, m, 4"-*H*), 7.08 (1H, d, *J* = 1.3 Hz, 4'-*H*), 4.20 (3H, s, NCH₃), 3.99 – 3.95 (4H, m, 2,6-*H*₂), 3.52 – 3.48 (4H, m, 3,5-*H*₂), 2.47 (6H, q, *J* = 0.8 Hz, Ar-CH₃); $\delta_{\rm C}$ (176 MHz, Chloroform-*d*) 155.1 (*C*-5'), 142.7 (*C*-3'), 138.5 (*C*-3",5"), 134.8 (*C*-7a), 133.0 (*C*-1"), 131.6 (*C*-7), 129.7 (*C*-4"), 128.5 (*C*-3a), 124.8 (*C*-2",6"), 95.3 (*C*-4'), 66.9 (*C*-2,6), 48.1 (*C*-3,5), 36.1 (NCH₃), 21.5 Ar-CH₃); *V*_{max} (ATR) 1617, 1488, 1451, 1231, 1122, 963 cm⁻¹; LC-MS (ESI) [M + H] 323.346; HRMS (ESI) found [M+H]⁺ 323.1876, C₁₉H₂₃N₄O requires *M* 323.1872.

¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (101 MHz, Chloroform-d) of compound **3a**

¹H NMR (400 MHz, Methanol-d) and ¹³C NMR (101 MHz, Methanol-d) of compound 4a

¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (151 MHz, Chloroform-*d*) of compound **3b**

¹H NMR (600 MHz, Methanol-d) and ¹³C NMR (151 MHz, Methanol-d) of compound **4b**

¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (151 MHz, Chloroform-d) of compound **5a**

¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (151 MHz, Chloroform-d) of compound **6a**

¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (151 MHz, Chloroform-d) of compound **6b**

¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (151 MHz, Chloroform-d) of compound **7a**

¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (151 MHz, Chloroform-*d*) of compound **7b**

¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (151 MHz, Chloroform-*d*) of compound **8b**

¹H NMR (400 MHz, Chloroform-d) and ¹³C NMR (101 MHz, Chloroform-d) of compound **9b**

¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (151 MHz, Chloroform-*d*) of compound **13**

¹H NMR (400 MHz, Chloroform-*d*) and ¹³C NMR (101 MHz, Chloroform-*d*) of compound **17**

¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (151 MHz, Chloroform-d) of compound **19**

¹H NMR (600 MHz, Chloroform-d) and ¹³C NMR (151 MHz, Chloroform-d) of compound 23

¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (151 MHz, Chloroform-*d*) of compound **27**

¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (151 MHz, Chloroform-*d*) of compound **32**

¹H NMR (600 MHz, Chloroform-*d*) and ¹³C NMR (151 MHz, Chloroform-*d*) of compound **36**

¹H NMR (700 MHz, Chloroform-*d*) and ¹³C NMR (176 MHz, Chloroform-*d*) of compound **43**

