Supporting Information

Towards an efficient methodology for the synthesis of functionalized dihydropyrans by silyl-Prins cyclization: access to truncated natural products

Laura F. Peña, Paula González-Andrés and Asunción Barbero*

Department of Organic Chemistry, Faculty of Science, University of Valladolid, 47011 Valladolid, SPAIN

email: asuncion.barbero@uva.es

List of Contents

1.	General Procedures	S1
2.	Experimental Section	S2
	2.1. Synthesis of <i>Z</i> -vinylsilyl alcohols 1	S2
	2.2. TMSOTf-promoted cyclization of <i>Z</i> -vinylsilyl alcohols 1	S4
	2.3. Synthesis of carboxylic acid 3	S11
	2.4. Synthesis of tetrahydropyran 4	S11
3.	¹ H and ¹³ C Spectra for new compounds	S13

1. GENERAL PROCEDURES

Unless otherwise noted, experiments were carried out with dry solvents under nitrogen atmosphere. Dichloromethane was dried with preactivated molecular sieves. Flash column chromatography was performed using Silica Gel 60 (230-400 mesh ASTM). Thin layer chromatography (TLC) was performed using aluminium backed plate, pre-coated with silica gel (0.20 mm, silica gel 60) with a fluorescent indicator (254 nm) from Macherey. NMR spectra were recorded at nuclear magnetic resonance service of the Laboratory of Instrumental Techniques (L.T.I., www.laboratoriotecnicasinstrumentales.es) University of Valladolid at Varian 400 MHz (¹H, 399.85 MHz; ¹³C, 100.61 MHz), Varian 500 MHz (¹H, 500.12 MHz; ¹³C, 100.61 MHz) spectrometers at room temperature (25 °C). Chemical shifts (δ) were reported in parts per million (ppm) relative to the residual solvent peaks recorded, rounded to the nearest 0.01 for ¹H-NMR and 0.1 for ¹³C-NMR (reference: CDCl₃ [¹H: 7.26, ¹³C: 77.2]). Spin-spin coupling constants (J) in ¹H-NMR were given in Hz to the nearest 0.1 Hz, and peak multiplicity was indicated as follows s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). ¹³C NMR were recorded with complete proton decoupling. Carbon types, structure assignments and attribution of peaks were determined from two-dimensional correlation experiments (HSQC, COSY and HMBC). Relative stereochemistry was assigned based on the 2D-NOE experiments. Highresolution mass spectra (HRMS) were measured at mass spectrometry service of the Laboratory of Instrumental Techniques, University of Valladolid, on a UPLC-MS system (UPLC: Waters ACQUITY H-class UPLC; MS: Bruker Maxis Impact) by electrospray ionization (ESI positive).

2. EXPERIMENTAL SECTION

2.1. Synthesis of Z-vinylsilyl alcohols 1

Step 1. To a suspension of 2.35 g of Zn (36 mmol, 1.2 equiv.) in 25 mL THF (1.4 M), cooled at 0 °C and under nitrogen atmosphere, 2.82 mL of propargyl bromide (30 mmol, 1 equiv.) and the corresponding aldehyde (36 mmol, 1.2 equiv.) were added dropwise. The mixture was stirred at 0 °C for one hour. Then, the reaction was quenched with 20 mL of NH₄Cl sat. and the aqueous phase was extracted three times with diethyl ether (3 x 20 mL). The organic phases were combined, washed with NaCl sat. (50 mL) and dried over anhydrous Na₂SO₄. The solvent was then evaporated under reduced pressure and the resulting crude product **1** was used in the next step without further purification.

Step 2. To a solution of alkynyl alcohol **A** (12 mmol, 1 equiv.) in THF (0.8 M), cooled to -78 °C and under nitrogen atmosphere, 16.5 mL of *n*-BuLi 1.6 M (26.4 mmol, 2.2 equiv.) were added dropwise and the mixture was stirred at -78 °C for 30 minutes. Then, 3.92 mL of chloro(dimethyl)phenylsilane (26.4 mmol, 2.2 equiv.) was added into the reaction and the temperature was allowed to rise to 0 °C. When the starting material was consumed, the reaction was quenched slowly with 15 mL HCl 1 M. The phases were separated and the aqueous phase was extracted three times with diethyl ether (3 x 15 mL). The organic phases were combined, washed with NaCl sat. (40 mL) and dried over anhydrous Na₂SO₄. The solvent was then evaporated under reduced pressure. The crude mixture was purified by column chromatography in silica gel, using a mixture of hexane-ethyl acetate (8:1) and yielding alkynylsilyl alcohols **B**.

Step 3. To a solution of alkynylsilyl alcohol **B** (6 mmol, 1 equiv.) in Et_2O (0.5 M) was added dropwise 16.4 mL of DIBAL-H 1.1 M at 0 °C and under nitrogen atmosphere. The resulting mixture was stirred at reflux (60 °C) for three-four hours. When the starting material was consumed, the reaction was quenched at 0 °C with 15 mL of HCl 1 M. The phases were separated and the aqueous phase was

extracted three times with diethyl ether (3 x 15 mL). The organic phases were combined, washed with NaCl sat. (40 mL) and dried over anhydrous Na_2SO_4 . The solvent was then evaporated under reduced pressure. The crude mixture is purified by column chromatography in silica gel, using a mixture of hexane-ethyl acetate (8:1) to afford Z-vinylsilyl alcohols **1**.

(Z)-5-(dimethyl(phenyl)silyl)pent-4-en-2-ol (**1a**) was obtained as a yellow oil in 83% chemical yield (1.1 g from 6 mmol of corresponding alkynyl alcohol **B**), following the general procedure 1, ¹**H NMR (500 MHz, CDCl₃)** δ 7.58 – 7.52 (m, 2H, Ar-*H*), 7.40 – 7.33 (m, 3H, Ar-*H*), 6.46 (dt, *J* = 14.1, 7.5 Hz, 1H, =C*H*), 5.84 (dt, *J* = 14.1, 1.4 Hz, 1H, *H*C=), 3.81 – 3.73 (m, 1H, *H*C-OH), 2.21 (ddd, *J* = 7.5, 6.3, 1.3 Hz, 2H, *CH*₂), 1.10 (d, *J* = 6.2 Hz, 3H, *CH*₃), 0.41 (s, 3H, Si-*CH*₃), 0.40 (s, 3H, Si-*CH*₃). ¹³**C NMR (101 MHz, CDCl**₃) δ 146.1 (=CH), 139.5 (C), 133.9 (CH), 130.6 (HC=), 129.1 (CH), 128.0 (CH), 67.7 (CH), 43.1 (CH₂), 23.0 (CH₃), -0.7 (CH₃), -0.8 (CH₃).

PhMe₂Si

 \square Ph (*Z*)-5-(dimethyl(phenyl)silyl)-1-phenylpent-4-en-2-ol (**1b**) was obtained as a yellow oil in 63% chemical yield (1.1 g from 6 mmol of corresponding alkynyl alcohol **B**) following the general procedure 1. ¹H NMR (**500** MHz, **CDCl**₃) 7.58 – 7.50 (m, 2H, Ar-*H*), 7.40 – 7.34 (m, 3H, Ar-*H*), 7.33 – 7.27 (m, 2H, Ar-*H*), 7.25 – 7.12 (m, 3H, Ar-*H*), 6.53 (dt, *J* = 14.1, 7.4 Hz, 1H, =C*H*), 5.86 (dt, *J* = 14.1, 1.4 Hz, 1H, *H*C=), 3.83 – 3.76 (m, 1H, *H*C-OH), 2.68 (dd, *J* = 13.6, 4.6 Hz, 1H, C*H*H-Ph), 2.58 (dd, *J* = 13.6, 8.1 Hz, 1H, CH*H*-Ph), 2.33 – 2.21 (m, 2H, C*H*₂), 0.39 (s, 3H, Si-C*H*₃), 0,38 (s, 3H, Si-C*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 146.1 (=CH), 139.6 (C), 138.4 (C), 133.9 (CH), 130.6 (HC=), 129.6 (CH), 129.1 (CH), 128.7 (CH), 128.0 (CH), 126.6 (CH), 72.4 (CH), 43.6 (CH₂), 40.7 (CH₂), - 0.8 (CH₃), -0.9 (CH₃).

PhMe₂Si

^{Ph} (*Z*)-4-(dimethyl(phenyl)silyl)-1-phenylbut-3-en-1-ol (**1c**) was obtained as a yellow oil in 70% chemical yield (1.2 g from 6 mmol of corresponding alkynyl alcohol **B**) following the general procedure 1. ¹**H NMR (500 MHz, CDCl**₃) δ 7.55 – 7.53 (m, 2H, Ar-*H*), 7.38 – 7.34 (m, 3H, Ar-*H*), 7.33 – 7.29 (m, 2H, Ar-*H*), 7.27 – 7.25 (m, 1H, Ar-*H*), 7.22 – 7.19 (m, 2H, Ar-*H*), 6.46 (ddd, *J* = 14.1, 7.9, 6.9 Hz, 1H, C=CH), 5.86 (dt, *J* = 14.1, 1.3 Hz, 1H, *H*C=C), 4.66 – 4.61 (m, 1H, *H*C-OH), 2.57 – 2.43 (m, 2H, CH₂), 0.39 (s, 3H, Si-CH₃), 0.38 (s, 3H, Si-CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 145.8 (=CH),

144.0 (C), 139.5 (C), 133.9 (CH), 131.0 (HC=), 129.1 (CH), 128.5 (CH), 128.1 (CH), 127.7 (CH), 125.9 (CH), 73.9 (CH), 43.3 (CH₂), -0.8 (CH₃), -0.8 (CH₃).

 $\langle (Z)$ -1-(dimethyl(phenyl)silyl)-6,7,10-trimethylundeca-1,9-dien-

4-ol (1d) was obtained as a yellow oil in 63% chemical yield (0.6 g from 2.75 mmol of corresponding alkynyl alcohol B) following the general procedure 1. ¹H NMR (400 MHz, CDCl₃) (both diastereomers a + b) δ 7.58 – 7.53 (m, 2H, Ar-H), 7.37 – 7.32 (m, 3H, Ar-H), 6.47 (ddd, *J* = 14.1, 7.9, 7.0 Hz, 1H, =CH), 5.83 (dt, *J* = 14.1, 1.0 Hz, 1H, HC=), 5.09 (t, *J* = 7.3 Hz, 1H, =CH), 3.72 – 3.61 (m, 1H, HC-OH), 2.30 – 2.08 (m, 2H, CH₂), 2.03 – 1.86 (m, 2H, CH₂), 1.76 – 1.53 (m, 1H, CH), 1.68 (s, 3H, CH₃), 1.60 (s, 3H, CH₃), 1.40 – 1.01 (m, 4H, CH₂), 0.87 (d, *J* = 6.3 Hz, 3H, CH₃), 0.41 (s, 3H, Si-CH₃), 0.40 (s, 3H, Si-CH₃).

Distinguishable signals of epimer: 0.85 (d, J = 6.3 Hz, 3H, CH_3).

2.2. TMSOTf-promoted cyclization of Z-vinylsilyl alcohols 1

A solution of the *Z*-vinylsilyl alcohol **1** (1.0 equiv.) and the corresponding aldehyde (1.2 equiv.) in dichloromethane (0.05 M) was cooled to -78 °C (under nitrogen). The Lewis acid TMSOTf (1.0 equiv) was then added dropwise and the mixture stirred at this temperature for 30 min while monitored by TLC. When starting materials were consumed, it was quenched with 5 mL of NaHCO₃ (sat). Phases are then separated, extracting the aqueous phase three times with dichloromethane (3 x 10 mL). The organic phases are combined, washed with NaCl sat. (20 mL) and dried over anhydrous Na₂SO₄. The solvent is then evaporated under reduced pressure. The crude mixture is purified by column chromatography in silica gel, using mixtures of hexane-ethyl acetate and yielding dihydropyrans **2**. Compounds **2a-b**, **2d-h** have been previously described.

 $(2R^*,6S^*)$ -6-cyclohexyl-2-methyl-3,6-dihydro-2*H*-pyran (**2c**). Following the general procedure, compound **2c** was obtained from vinylsilyl alcohol **1a** (79.3 mg, 0.36 mmol) and cyclohexaldehyde as a colourless oil (42.2 mg, 65%). ¹H NMR (**500** MHz, CDCl₃) δ 5.84 – 5.77 (m, 1H, *H*C=), 5.65 (dq, *J* = 10.3, 1.9 Hz, 1H, =*CH*), 3.96 – 3.89 (m, 1H, O-*CH*), 3.69 – 3.59 (m, 1H, *H*C-O),

1.94 – 1.89 (m, 2H), 1.80 – 1.69 (m, 4H), 1.68 – 1.61 (m, 1H), 1.51 – 1.42 (m, 1H), 1.28 – 1.22 (m, 1H), 1.21 (d, J = 6.2 Hz, 3H, CH₃), 1.18 – 1.04 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 128.7 (=CH), 125.3 (HC=), 79.2 (O-CH), 70.0 (HC-O), 42.9 (CH), 33.3 (CH₂), 28.6 (CH₂), 28.4 (CH₂), 26.8 (CH₂), 26.6 (CH₂), 26.4 (CH₂), 21.9 (CH₃). HRMS (ESI+) m/z calc. for C₁₂H₂₀NaO ([M+Na]⁺): 203.1406, found 203.1408.

 $(2R^*, 6R^*)$ -2-methyl-6-phenyl-3,6-dihydro-2*H*-pyran (**2i**). Following the general procedure, compound **2i** was obtained from vinylsilyl alcohol **1a** (79.3 mg, 0.36 mmol) and benzaldehyde as a colourless oil (22 mg, 35%). ¹H NMR (**500** MHz, **CDCl**₃) δ (ppm) 7.39 -7.31 (m, 4H, Ar-*H*), 7.29 – 7.25 (m, 1H, Ar-*H*), 5.93 – 5.88 (m, 1H, *H*C=), 5.73 (ddt, *J* = 10.1, 2.8, 1.5 Hz, 1H, =C*H*), 5.20 – 5.16 (m, 1H, O-C*H*), 3.95 – 3.85 (m, 1H, *H*C-O), 2.16 – 2.08 (m, 1H, C*H*H), 2.08 – 2.01 (m, 1H, CH*H*), 1.30 (d, *J* = 6.2 Hz, 3H, C*H*₃). ¹³C NMR (**101** MHz, CDCl₃) δ 141.8 (C), 130.2 (=CH), 128.6 (CH), 127.9 (CH), 127.4 (CH), 124.8 (HC=), 77.9 (O-CH), 70.7 (CH-O), 32.8 (CH₂), 22.0 (CH₃). HRMS (ESI+) m/z calc. for C₁₂H₁₄NaO ([M+Na]⁺): 197.0937, found 197.0936.

 $(2R^*, 6R^*) - 2 - \text{methyl} - 6 - (4 - \text{nitrophenyl}) - 3, 6 - \text{dihydro} - 2H - \text{pyran}$ (2j). Following the general procedure, compound 2j was obtained from vinylsilyl alcohol 1a (79.3 mg, 0.36 mmol) and 4-nitrobenzaldehyde as yellow solid (54 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 8.7 Hz, 2H, Ar-*H*), 7.55 (d, *J* = 8.7 Hz, 2H, Ar-*H*), 5.98 – 5.91 (m, 1H, *H*C=), 5.70 – 5.65 (m, 1H, =CH), 5.31 – 5.27 (m, 1H, O-CH), 3.96 – 3.87 (m, 1H, *H*C-O), 2.14 – 2.07 (m, 2H, CH₂), 1.32 (d, *J* = 6.2 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 149.2 (C), 147.5 (C), 128.7 (=CH), 127.9 (CH), 125.9 (HC=), 123.9 (CH), 76.8 (O-CH), 70.7 (CH-O), 32.5 (CH₂), 21.8 (CH₃). HRMS (ESI+) m/z calc. for C₁₂H₁₃NNaO₃ ([M+Na]⁺): 242.0788, found 242.0794. Melting point: 65.5 – 67.5 °C.

(2*S**,6*R**)-2-benzyl-6-(4-nitrophenyl)-3,6-dihydro-2*H*-pyran (**2k**).

Following the general procedure, compound **2k** was obtained from vinylsilyl alcohol **1b** (80 mg, 0.27 mmol) and 4-nitrobenzaldehyde as yellow solid (53 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, *J* = 8.7 Hz, 2H, Ar-*H*), 7.54 (d, *J* = 8.7 Hz, 2H, Ar-*H*), 7.31 – 7.22 (m, 5H, Ar-*H*), 5.94 – 5.88 (m, 1H, *H*C=), 5.72 – 5.65 (m, 1H, =C*H*), 5.30 – 5.26 (m, 1H, O-C*H*), 4.04 – 3.96 (m, 1H, *H*C-O), 3.05 (dd, *J* =

13.9, 6.4 Hz, 1H, Ph-CHH), 2.82 (dd, J = 13.9, 6.4 Hz, 1H, Ph-CHH), 2.22 – 2.13 (m, 1H, CHH), 2.06 – 1.97 (m, 1H, CHH). ¹³C NMR (101 MHz, CDCl₃) δ 149.2 (C), 147.5 (C), 138.2 (C), 129.6 (CH), 128.8 (=CH), 128.4 (CH), 127.7 (CH), 126.5 (CH), 125.8 (HC=), 123.9 (CH), 76.7 (O-CH), 75.3 (CH-O), 42.5 (CH₂), 30.4 (CH₂). HRMS (ESI+) m/z calc. for C₁₈H₁₇NNaO₃ ([M+Na]⁺): 318.1101, found 318.1104. Melting point: 83.7 – 85.5 °C.

 $(2R^*, 6R^*)$ -6-(4-chlorophenyl)-2-methyl-3,6-dihydro-2*H*-pyran (**2**I). Following the general procedure, compound **2**I was obtained from vinylsilyl alcohol **1a** (79.3 mg, 0.36 mmol) and 4-chlorobenzaldehyde as white solid (51 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.30 (s, 4H, Ar-*H*), 5.94 – 5.88 (m, 1H, *H*C=), 5.67 (ddt, *J* = 10.1, 2.6, 1.5 Hz, 1H, =CH), 5.17 – 5.12 (m, 1H, O-CH), 3.93 – 3.84 (m, 1H, *H*C=0), 2.14 – 2.00 (m, 2H, *CH*₂), 1.29 (d, *J* = 6.2 Hz, 3H, *CH*₃). ¹³C NMR (101 MHz, CDCl₃) δ 140.4 (C), 133.5 (C), 129.7 (=CH), 128.7 (CH), 128.7 (CH), 125.2 (HC=), 77.1 (O-CH), 70.6 (HC-O), 32.6 (CH₂), 21.9 (CH₃). HRMS (ESI+) m/z calc. for C₁₂H₁₃ClNaO ([M+Na]⁺): 231.0547, found 231.0551. Melting point: 39.0 – 40.1 °C.

 $(2R^*, 6R^*)$ -6-(4-fluorophenyl)-2-methyl-3,6-dihydro-2*H*-pyran (**2m**). Following the general procedure, compound **2m** was obtained from vinylsilyl alcohol **1a** (79.3 mg, 0.36 mmol) and 4-fluorbenzaldehyde as a colourless oil (35 mg, 50%). ¹H NMR (**500 MHz, CDCl**₃) δ 7.34 (dd, ³*J*_H-_H = 8.8 Hz, ⁴*J*_H-_F = 5.5 Hz, 2H, Ar-*H*), 7.02 (t, ³*J*_H-_H = ³*J*_H-_F = 8.8 Hz, 2H, Ar-*H*), 5.94 – 5.88 (m, 1H, *H*C=), 5.71 – 5.66 (m, 1H, =C*H*), 5.18 – 5.14 (m, 1H, O-C*H*), 3.93 – 3.85 (m, 1H, *H*C-O), 2.16 – 1.98 (m, 2H, C*H*₂), 1.29 (d, *J* = 6.3 Hz, 3H, C*H*). ¹³C NMR (**101 MHz, CDCl**₃) δ 162.5 (d, ¹*J*_C-_F = 245.4 Hz, C), 137.6 (d, ⁴*J*_C-_F = 3.1 Hz, C), 129.9 (=CH), 129.1 (d, ³*J*_C-_F = 8.2 Hz, CH), 125.1 (HC=), 115.4 (d, ²*J*_C-_F = 21.4 Hz, CH), 77.2 (O-CH), 70.7 (CH-O), 32.7 (CH₂), 21.9 (CH₃). HRMS (ESI+) m/z calc. for C₁₂H₁₃FNaO ([M+Na]⁺): 215.0843, found 215.0846.

((2*R**,6*S**)-6-benzyl-2-(isobutyryloxymethyl)-5,6-dihydro-2*H*-pyran

(2n). Following the general procedure, compound 2n was obtained from vinylsilyl alcohol 1b (80 mg, 0.27 mmol) and 2-(isobutyryloxymethyl)acetaldehyde as colourless oil (52 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ 8 7.31 – 7.17 (m, 5H, Ar-*H*), 5.92 – 5.85 (m, 1H, *H*C=), 5.63 – 5.57 (m, 1H, =C*H*), 4.39 – 4.32 (m, 1H, O-C*H*), 4.15 (dd, *J* = 11.3, 6.3 Hz, 1H, *H*HC-O), 4.11 (dd, *J* = 11.3, 4.8 Hz, 1H, HHC-

O), 3.83 – 3.74 (m, 1H, *H*C-O), 2.78 (dd, *J* = 13.8, 7.0 Hz, 1H, Ph-C*H*H), 2.72 (dd, *J* = 13.8, 6.2 Hz, 1H, Ph-CH*H*), 2.62 – 2.54 (m, 1H, C*H*), 2.11 – 2.01 (m, 1H, C*H*H), 1.96 – 1.87 (m, 1H, CH*H*), 1.17 (d, *J* = 7.0 Hz, 3H, C*H*₃), 1.16 (d, *J* = 7.0 Hz, 3H, C*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 177.1 (C), 138.6 (C), 129.5 (CH), 128.3 (CH), 127.1 (HC=), 126.3 (=CH), 126.1 (CH), 74.8 (CH-O), 73.4 (O-CH), 66.2 (CH₂-O), 42.4 (CH₂), 34.1 (CH), 30.8 (CH₂), 19.2 (CH₃), 19.1 (CH₃). HRMS (ESI+) m/z calc. for C₁₇H₂₂NaO₃ ([M+Na]⁺): 297.1461, found 297.1469.

2-methyl-1-oxaspiro[5.5]undec-4-ene (**2o**). Following the general procedure, compound **2o** was obtained from vinylsilyl alcohol **1a** (79.3 mg, 0.36 mmol) and cyclohexanone as a colourless oil (44 mg, 73%). ¹H NMR (**500 MHz, CDCl**₃) δ 5.73 – 5.63 (m, 2H, 2xHC=), 3.79 (sext, *J* = 6.2, 1H, HC-O), 1.92 – 1.87 (m, 2H, CH₂), 1.78 – 1.25 (m, 10H, 5xCH₂), 1.21 (d, *J* = 6.2 Hz, 3H, CH₃). ¹³C NMR (**101 MHz, CDCl**₃) δ 134.7 (=CH), 123.2 (HC=), 73.5 (O-C), 63.8 (HC-O), 38.3 (CH₂), 33.9 (CH₂), 33.2 (CH₂), 25.9 (CH₂), 22.1 (CH₂), 21.9 (CH₃), 21.8 (CH₂). Volatil compound. No HRMS.

2-benzyl-1-oxaspiro[5.5]undec-4-ene (**2p**). Following the general procedure, compound **2p** was obtained from vinylsilyl alcohol **1b** (80 mg, 0.27 mmol) and cyclohexanone as a colourless oil (46 mg, 70%). ¹H NMR (**500** MHz, CDCl₃) δ 7.30 – 7.24 (m, 4H, Ar-*H*), 7.22 – 7.17 (m, 1H, Ar-*H*), 5.67 (ddd, *J* = 10.2, 5.7, 2.0 Hz, 1H, *H*C=), 5.59 (ddd, *J* = 10.2, 2.7, 1.3 Hz, 1H, =CH), 3.84 – 3.77 (m, 1H, HC-O), 2.87 (dd, *J* = 13.5, 7.9 Hz, 1H, Ph-CHH), 2.73 (dd, *J* = 13.5, 5.2 Hz, 1H, Ph-CH*H*), 2.00 (ddt, *J* = 17.1, 10.3, 2.5 Hz, 1H, CHH_{Cy}), 1.89 (dddd, *J* = 17.1, 5.7, 3.3, 1.3 Hz, 1H, CHH_{Cy}), 1.71 – 1.63 (m, 2H, CH₂), 1.62 – 1.56 (m, 1H, CHH), 1.49 – 1.43 (m, 2H, CH₂c_y), 1.42 – 1.32 (m, 1H, CHH_{Cy}), 1.27 – 1.09 (m, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 139.4 (C), 135.4 (=CH), 129.7 (CH), 128.1 (CH), 123.9 (HC=), 73.5 (O-C), 69.1 (HC-O), 42.9 (CH₂), 38.3 (CH₂), 33.1 (CH₂), 31.5 (CH₂), 25.7 (CH₂), 21.6 (CH₂), 21.1 (CH₂). HRMS (ESI+) m/z calc. for C₁₇H₂₂NaO ([M+Na]⁺): 265.1563, found 265.1569.

 $(2S^*, 6S^*)$ -6-benzyl-2-phenyl-3,6-dihydro-2*H*-pyran (**2q**). Following the general procedure, compound **2q** was obtained from vinylsilyl alcohol **1c** (80 mg, 0.28 mmol) and phenylacetaldehyde as a colourless oil (35 mg, 50%). ¹H NMR (**500** MHz, **CDCl**₃) δ 7.41 – 7.33 (m, 4H, Ar-*H*), 7.32 – 7.26 (m, 5H, Ar-*H*), 7.25 – 7.20 (m, 1H, Ar-*H*), 5.92 – 5.82 (m, 1H, *H*C=), 5.76 – 5.69 (m, 1H, =C*H*), 4.62 (dd, *J* = 9.2, 4.8 Hz, 1H, *H*C-O), 4.59 – 4.52 (m, 1H, O-C*H*), 3.08 (dd, *J* = 13.5, 6.4

Hz, 1H, Ph-CHH), 2.84 (dd, J = 13.5, 7.2 Hz, 1H, Ph-CHH), 2.27 – 2.22 (m, 2H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 143.0 (C), 138.3 (C), 129.9 (CH), 129.5 (=CH), 128.4 (CH), 128.3 (CH), 127.4 (CH), 126.4 (CH), 125.8 (CH), 125.2 (=CH), 76.5 (O-CH), 75.8 (HC-O), 42.2 (CH₂), 33.4 (CH₂). HRMS (ESI+) m/z calc. for C₁₈H₁₈NaO ([M+Na]⁺): 273.1250, found 273.1256.

 $(2S^*, 6S^*)$ -6-phenethyl-2-phenyl-3,6-dihydro-2*H*-pyran (**2r**). Following the general procedure, compound **2r** was obtained from vinylsilyl alcohol **1c** (80 mg, 0.28 mmol) and 3-phenylpropionaldehyde as a colourless oil (58 mg, 78%). ¹H NMR (**500 MHz, CDCl**₃) δ 7.41 (d, J = 7.3 Hz, 2H, Ar-*H*), 7.37 (t, J = 7.3 Hz, 2H, Ar-*H*), 7.28 (t, J = 7.3 Hz, 3H, Ar-*H*), 7.23 (d, J = 7.3 Hz, 2H, Ar-*H*), 7.18 (t, J = 7.3 Hz, 1H, Ar-*H*), 5.96 – 5.89 (m, 1H, *H*C=), 5.76 – 5.70 (m, 1H, =C*H*), 4.63 (dd, J = 9.2, 4.7 Hz, 1H, *H*C-O), 4.39 – 4.33 (m, 1H, O-C*H*), 2.89 – 2.78 (m, 2H, C*H*₂-Ph), 2.31 – 2.25 (m, 2H, C*H*₂), 1.99 – 1.91 (m, 2H, C*H*₂-CH₂). ¹³C NMR (**101 MHz, CDCl**₃) δ 143.2 (C), 143.1 (C), 130.4 (=CH), 128.7 (CH), 128.4 (CH), 127.4 (CH), 125.8 (CH), 125.2 (HC=), 75.6 (HC-O), 74.7 (O-CH), 37.3 (CH₂), 33.4 (CH₂), 31.4 (CH₂). HRMS (ESI+) m/z calc. for C₁₉H₂₀NaO ([M+Na]⁺): 287.14096, found 287.1409.

 $(2S^*, 6S^*)$ -2-phenyl-6-propyl-3,6-dihydro-2*H*-pyran (**2s**). Following the general procedure, compound **2s** was obtained from vinylsilyl alcohol **1c** (80 mg, 0.28 mmol) and propionaldehyde as a colourless oil (42 mg, 75%). ¹H NMR (**500** MHz, **CDCl**₃) δ 7.42 – 7.38 (m, 2H, Ar-*H*), 7.37 – 7.32 (m, 2H, Ar-*H*), 7.29 – 7.24 (m, 1H, Ar-*H*), 5.92 – 5.87 (m, 1H, *H*C=), 5.75 – 5.70 (m, 1H, =C*H*), 4.61 (dd, *J* = 9.2, 4.8 Hz, 1H, *H*C-O), 4.37 – 4.30 (m, 1H, O-C*H*), 2.29 – 2.23 (m, 2H, C*H*₂), 1.67 – 1.57 (m, 2H, C*H*₂), 1.56 – 1.44 (m, 2H, C*H*₂), 0.96 (t, *J* = 7.2 Hz, 3H, C*H*₃). ¹³C NMR (**101** MHz, **CDCl**₃) δ 143.3 (C), 130.8 (=CH), 128.4 (CH), 127.3 (CH), 125.9 (CH), 124.7 (HC=), 75.6 (HC-O), 75.4 (O-CH), 37.9 (CH₂), 33.4 (CH₂), 18.4 (CH₂), 14.4 (CH₃). HRMS (ESI+) m/z calc. for C₁₄H₁₈NaO ([M+Na]⁺): 225.1250, found 225.1553.

 $(2S^*,6S^*)$ -6-cyclohexyl-2-phenyl-3,6-dihydro-2*H*-pyran (**2t**). Following the general procedure, compound **2t** was obtained from vinylsilyl alcohol **1c** (80 mg, 0.28 mmol) and cyclohexanecarbaldehyde as a colourless oil (52 mg, 76%). ¹H NMR (**500** MHz, **CDCl**₃) δ 7.40 – 7.37 (m, 2H, Ar-*H*), 7.36 – 7.31 (m, 2H, Ar-*H*), 7.28 – 7.23 (m, 1H, Ar-*H*), 5.96 – 5.89 (m, 1H, *H*C=), 5.75

(dq, J = 10.3, 1.9 Hz, 1H, =CH), 4.59 (t, J = 6.9 Hz, 1H, HC-O), 4.17 – 4.10 (m, 1H, O-CH), 2.26 – 2.19 (m, 2H, CH_{2Cy}), 1.87 – 1.62 (m, 4H), 1.71 – 1.65 (m, 1H, CHH), 1.61 – 1.55 (m, 1H), 1.32 – 1.11 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6 (C), 129.2 (=CH), 128.4 (CH), 127.2 (CH), 125.8 (CH), 125.2 (HC=), 79.6 (O-CH), 75.4 (HC-O), 43.1 (CH), 33.7 (CH₂), 28.8 (CH₂), 28.2 (CH₂), 26.8 (CH₂), 26.6 (CH₂), 26.5 (CH₂). HRMS (ESI+) m/z calc. for C₁₇H₂₂NaO ([M+Na]⁺): 265.1563, found 265.1569.

(2S*,6S*)-6-(4-hydroxyphenethyl)-2-phenyl-3,6-dihydro-2H-

pyran (**2u**). Following the general procedure, compound **2u** was obtained from vinylsilyl alcohol **1c** (80 mg, 0.28 mmol) and 3-(4-hydroxyphenyl)propanal as a yellow viscous oil (40 mg, 51%). ¹H NMR (**500 MHz, CDCl**₃) δ 7.45 – 7.40 (m, 2H, Ar-*H*), 7.40 – 7.35 (m, 2H, Ar-*H*), 7.32 – 7.27 (m, 1H, Ar-*H*), 7.09 (d, *J* = 8.6 Hz, 2H, Ar-*H*), 6.74 (d, *J* = 8.6 Hz, 2H, Ar-*H*), 5.96 – 5.91 (m, 1H, *H*C=), 5.73 (ddt, *J* = 10.2, 2.8, 1.5 Hz, 1H, =CH), 4.86 (br s, 1H, OH), 4.63 (dd, *J* = 9.7, 4.3 Hz, 1H, *H*C-O), 4.39 – 4.32 (m, 1H, O-CH), 2.77 (td, *J* = 7.5, 3.0 Hz, 2H, CH₂-Ph), 2.35 – 2.25 (m, 2H, CH₂), 1.95 – 1.87 (m, 2H, CH₂-CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 153.7 (C), 143.1 (C), 134.7 (C), 130.4 (=CH), 129.7 (CH), 128.5 (CH), 127.4 (CH), 125.9 (CH), 125.1 (HC=), 115.3 (CH), 75.6 (HC-O), 74.7 (O-CH), 37.5 (CH₂), 33.3 (CH₂), 30.4 (CH₂). HRMS (ESI+) m/z calc. for C₁₉H₂₀NaO₂ ([M+Na]⁺): 303.1356, found 303.1362.

 $(2S^*, 6R^*)$ -6-(4-nitrophenyl)-2-phenyl-3,6-dihydro-2*H*-pyran (2v). Following the general procedure, compound **2w** was obtained from vinylsilyl alcohol **1c** (80 mg, 0.28 mmol) and 4-nitrobenzaldehyde as a yellow oil (61 mg, 77%). ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 8.9 Hz, 2H, Ar-*H*), 7.63 (d, *J* = 8.9 Hz, 2H, Ar-*H*), 7.46 – 7.42 (m, 2H, Ar-H), 7.40 – 7.35 (m, 2H, Ar-*H*), 7.33 – 7.28 (m, 1H, Ar-*H*), 6.09 – 6.02 (m, 1H, *H*C=), 5.80 (ddt, *J* = 10.2, 2.8, 1.5 Hz, 1H, =C*H*), 5.52 – 5.48 (m, 1H, O-C*H*), 4.84 (dd, *J* = 10.4, 3.5 Hz, 1H, *H*C-O), 2.52 – 2.43 (m, 1H, C*H*H), 2.41 – 2.33 (m, 1H, CH*H*). ¹³C NMR (101 MHz, CDCl₃) δ 149.0 (C), 147.6 (C), 142.1 (C), 129.0 (CH), 128.7 (=CH), 127.9 (CH), 127.8 (CH), 126.0 (CH), 125.9 (HC=), 123.9 (CH), 77.4 (O-CH), 76.3 (CH-O), 32.9 (CH₂). HRMS (ESI+) m/z calc. for C₁₇H₁₅NNaO₃ ([M+Na]⁺): 304.0944, found 304.0939.

(2*R**,6*R**)-2-(isobutyryloxymethyl)-6-(2,6-dimethylhept-5en-1-yl)-3,6-dihydro-2*H*-pyran (**2w**). Following the general procedure, compound **2w**, as a mixture of epimers, was obtained from vinylsilyl alcohol **1d** (70 mg, 0.21 mmol) and 2(isobutyryloxy)acetaldehyde as a yellow oil (26 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 5.95 – 5.87 (m, 1H, HC=), 5.63 – 5.57 (m, 1H, =CH), 5.12 – 5.07 (m, 1H, =CH), 4.37 – 4.29 (m, 1H, O-CH), 4.16 – 4.05 (m, 2H, H_2 C-O), 3.68 – 3.58 (m, 1H, HC-O), 2.57 (sept, J = 7.2 Hz, 1H), 2.07 – 1.86 (m, 4H), 1.66 – 1.59 (m, 1H), 1.68 (s, 3H, CH₃), 1.60 (s, 3H, CH₃), 1.53 – 1.29 (m, 2H), 1.26 – 1.10 (m, 2H), 1.18 (s, 3H, CH₃), 1.16 (s, 3H, CH₃), 0.92 (d, J = 6.7 Hz, 3H, CH₃).¹³C NMR (101 MHz, CDCl₃) δ 177.2 (C), 131.3 (C), 127.5 (CH), 126.2 (CH), 125.1 (CH), 73.4 (O-CH), 72.5 (HC-O), 66.3 (CH₂), 43.4 (CH₂), 37.7 (CH₂), 34.1 (CH), 31.9 (CH₂), 29.4 (CH), 25.9 (CH₃), 25.7 (CH₂), 20.1 (CH₃), 19.2 (CH₃), 19.1 (CH₃), 17.8 (CH₃). HRMS (ESI+) m/z calc. for C₁₉H₃₂NaO₃ ([M+Na]⁺): 331.2444, found 331.2244.

Distinctive signals of epimer: ¹H NMR (400 MHz, CDCl₃) δ 0.89 (d, *J* = 6.5 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 177.1 (C), 131.2 (C), 127.4 (CH), 125.0 (CH), 71.9 (HC-O), 43.2 (CH₂), 37.3 (CH₂), 31.5 (CH₂), 25.6 (CH₂), 19.4 (CH₃).

Methyl 2-(($2S^*, 6R^*$)-6-(2, 6-dimethylhept-5-en-1-yl)-5, 6dihydro-2*H*-pyran-2-yl)acetate (**2x**). Following the general procedure, compound **2x**, as a mixture of epimers, was obtained from vinylsilyl alcohol **1d** (70 mg, 0.21 mmol) and methyl 3,3dimethoxypropionate as a yellow oil (27 mg, 46%). ¹H NMR (**400** MHz, CDCl₃) δ 5.87 – 5.80 (m, 1H, *H*C=), 5.67 – 5.61 (m, 1H, =C*H*), 5.09 (t, *J* = 7.0 Hz, 1H, =CH), 4.57 – 4.47 (m, 1H, O-C*H*), 3.69 (s, 3H, O-C*H*₃), 3.67 – 3.59 (m, 1H, *H*C-O), 2.56 (ddd, *J* = 15.0, 8.2, 1.4 Hz, 1H, C*H*H), 2.44 (dd, *J* = 15.0, 6.0 Hz, 1H, CH*H*), 2.05 – 1.85 (m, 4H), 1.68 (s, 3H, CH₃), 1.62 – 1.54 (m, 1H) 1.60 (s, 3H, CH₃), 1.48 – 1.37 (m, 1H), 1.38 – 1.28 (m, 1H), 1.26 – 1.11 (m, 2H), 0.90 (d, *J* = 6.5 Hz, 3H, CH₃).¹³C NMR (**101** MHz, CDCl₃) δ 171.8 (C), 131.2 (C), 129.0 (CH), 126.2 (CH), 125.1 (CH), 72.9 (HC-O), 71.9 (O-CH), 51.8 (O-CH₃), 43.3 (CH₂), 40.7 (CH₂), 37.6 (CH₂), 31.8 (CH₂), 29.5 (CH), 25.9 (CH₃), 25.7 (CH₂), 20.1 (CH₃), 17.8 (CH₃). HRMS (ESI+) m/z calc. for C₁₇H₂₈NaO₃ ([M+Na]⁺): 303.1931, found 303.1937.

Distinctive signals of epimer: ¹H NMR (400 MHz, CDCl₃) δ 0.88 (d, *J* = 6.5 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 171.7 (C), 126.1 (CH), 125.0 (CH), 72.1 (HC-O), 71.8 (O-CH), 51.7 (O-CH₃), 43.2 (CH₂), 37.3 (CH₂), 31.4 (CH₂), 28.9 (CH), 25.6 (CH₂), 19.4 (CH₃).

2.3. Synthesis of carboxylic acid 3

A solution of 72 mg (0.26 mmol, 1.0 equiv.) of the 2,6-*cis*-dihydropyran **2x** in 1 mL ethanol (0.26 M) was added a solution of NaOH 1.54 M. Then, the mixture was stirred at 80 °C for 20 min while monitored by TLC. When starting material was consumed, the heating was stopped and 5 mL of NaOH 2 M was added. The aqueous phase was washing two times with diethyl ether. Then, HCl 1 M was added dropwise to the aqueous phase until pH = 3. The organic compound **3** was dissolved in diethyl ether and extracted three times. The organic phases were combined, washed with NaCl sat., dried over anhydrous Na₂SO₄ and then, concentrated in *vacuo* to afford the crude carboxylic acid **3** (mixture of epimers) as a viscous white oil (56 mg) in 82% yield.

2-((2*S**,6*R**)-6-(2,6-dimethylhept-5-en-1-yl)-5,6-dihydro-2*H*-

pyran-2-yl)acetic acid. ¹H NMR (400 MHz, CDCl₃) δ 5.95 – 5.85 (m, 1H, *H*C=), 5.65 – 5.59 (m, 1H, =C*H*), 5.09 (t, *J* = 7.2 Hz, 1H, =CH), 4.58 – 4.49 (m, 1H, O-C*H*), 3.80 – 3.70 (m, 1H, *H*C-O), 2.66 (ddd, *J* = 15.8, 4.8, 2.0 Hz, 1H, C*H*H), 2.57 (dd, *J* = 15.8, 7.5 Hz, 1H, CH*H*), 2.10 – 1.91 (m, 4H), 1.69 (s, 3H, CH₃), 1.64 – 1.56 (m, 1H), 1.60 (s, 3H, CH₃), 1.52 – 1.12 (m, 4H), 0.92 (d, *J* = 6.6 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 175.7 (C), 131.4 (C), 128.2 (CH), 126.6 (CH), 124.9 (CH), 73.2 (HC-O), 71.5 (O-CH), 43.2 (CH₂), 40.5 (CH₂), 37.6 (CH₂), 31.6 (CH₂), 29.3 (CH), 25.8 (CH₃), 25.6 (CH₂), 20.1 (CH₃), 17.8 (CH₃). HRMS (ESI+) m/z calc. for C₁₆H₂₆NaO₃ ([M+Na]⁺): 289.1774, found 289.1774.

Distinctive signals of epimer: ¹H NMR (400 MHz, CDCl₃) δ 0.91 (d, *J* = 6.5 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 175.5 (C), 131.3 (C), 126.5 (CH), 72.6 (HC-O), 71.4 (O-CH), 43.1 (CH₂), 37.2 (CH₂), 31.2 (CH₂), 28.8 (CH), 25.5 (CH₂), 19.5 (CH₃).

2.4. Synthesis of tetrahydropyran 4

To a stirred solution of **2b** (130 mg, 0.64 mmol) in MeOH (3 mL) at 0 $^{\circ}$ C was added Pd/C (10 wt.%, 7 mg). The mixture was stirred at 0 $^{\circ}$ C under hydrogen atmosphere for 2 hours. The catalyst was then removed by filtration through celite and the filtrate was concentrated under reduced pressure to afford the desired product **4** as a colourless oil in 80% yield (104 mg).

 $(2R^*, 6R^*)$ -2-methyl-6-phenethyltetrahydro-2*H*-pyran (4). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H, Ar-*H*), 7.22 – 7.14 (m, 3H, Ar-*H*), 3.46 – 3.35 (m, 1H, O-C*H*), 3.30 – 3.22 (m, 1H, *H*C-O), 2.82 – 2.73 (m, 1H, *CH*H-Ph), 2.73 – 2.63 (m, 1H, CH*H*-Ph), 1.91 – 1.73 (m, 2H), 1.74 – 1.62 (m, 1H), 1.57 – 1.51 (m, 2H), 1.45 (tt, *J* = 13.0, 3.9 Hz, 1H), 1.31 – 1.13 (m, 2H), 1.20 (d, *J* = 6.2 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 142.6 (C), 128.7 (CH), 128.4 (CH), 125.7 (CH), 76.9 (O-CH), 74.0 (CH-O), 38.2 (CH₂), 33.5 (CH₂), 31.9 (CH₂), 31.5 (CH₂), 23.9 (CH₂), 22.4 (CH₃). HRMS (ESI+) m/z calc. for C₁₄H₂₀NaO ([M+Na]⁺): 227.1406, found 227.1403.

3. ¹H and ¹³C SPECTRA for new compounds

Compound 2c

¹H NMR (500 MHz, CDCl₃)

Compound 2i

¹H NMR (500 MHz, CDCl₃)

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm) Compound 2j

¹H NMR (500 MHz, CDCl₃)

Compound 2k

¹H NMR (500 MHz, CDCl₃)

8.22 8.22 8.24 9.25 9.25 9.26 9.27 9.27 9.27 9.27 9.27 9.26 9.27 9.27 9.27 9.27 9.27 9.27 9.27 17.25 9.27 17.25 9.27 17.25 9.27 17.25 17.26 <

¹³C NMR (101 MHz, CDCl₃)

	138.22	129.62 128.78 128.42 127.66 127.66 125.74 123.83	~75.24	42.52	30.36
--	--------	--	--------	-------	-------

Compound 2I

¹H NMR (500 MHz, CDCl₃)

Compound 2m

¹H NMR (500 MHz, CDCl₃)

Compound 2n (molecules)

¹H NMR (500 MHz, CDCl₃)

Compound 2o

¹H NMR (500 MHz, CDCl₃)

Compound 2p

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

139.46	135.36	2, 22, 22 11, 26, 10 10, 20 12, 92 12, 92	73.48 69.10	42.90	38.27	33.13	25.74	$<^{21.58}_{21.11}$
--------	--------	---	----------------	-------	-------	-------	-------	---------------------

Compound 2q

¹H NMR (500 MHz, CDCl₃)

[7,7,40] [7,7,33] [7,7,33] [7,7,33] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [7,7,34] [5,7,34]

43.	38.	29	50.	28.	28.	27.	26.	25.	ł
<u></u>	<u></u>	<u> </u>	-	-	-	-	<u> </u>	<u> </u>	
			- 4	-	1	2	4		-

42.21 ___33.41

Compound 2r

Compound 2s

¹H NMR (500 MHz, CDCl₃)

Compound 2t

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

143.57	129,16 128,36 127,24 125,26 125,24	79.59	43.06	33.74 28.82 28.82 26.84 26.59 26.59
--------	--	-------	-------	--

Compound 2u

¹H NMR (500 MHz, CDCl₃)

7,43 7,739 7,739 7,737 7,737 7,737 7,737 7,737 7,737 7,739 7

Compound 2v

¹H NMR (500 MHz, CDCl₃)

Compound 2x

¹H NMR (400 MHz, CDCl₃)

Compound 2y

¹H NMR (400 MHz, CDCl₃)

100 90 f1 (ppm)

Compound 3

¹H NMR (400 MHz, CDCl₃)

^{13}C NIVIR (101 MHZ, CDCI ₃)			
175.68 (175.49)	131.35 131.37 128.22 128.17 126.62 126.65 124.87	73.16 72.59 71.48 71.44	43.21 40.51 40.51 71.59 71.50 71.23 71.23 71.23 71.23 71.23 725.83 725.83 725.83 725.83 725.51 717.79

Compound 4

¹H NMR (400 MHz, CDCl₃)

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)