Electronic supplementary information

Ball milling synthesis of Fe₃O₄ nanoparticles-functionalized porous boron nitride with enhanced cationic dye removal performance

Jie Li^{1,2}, Chuanhui Wang^{1,2}, Xinqi Chen^{1,2}, Yunxiu Ma^{1,2}, Chu Dai^{1,2}, Hui Yang^{1,2}, Qian Li², Junhui Tao^{1,2,*}, Tian Wu^{1,2}

 ¹ School of Physics and Mechanical & Electronical Engineering, Institute for Functional Materials, Hubei University of Education, Wuhan, 430205, P.R. China
² Institute of Materials Research and Engineering, Hubei Expert workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education, Wuhan, 430205, P.R. China.
* Corresponding author. Tel.: +86-27-52363361; fax: +86-27-52363361

E-mail address: junhuitao@hue.edu.cn (J. Tao)

Fig. S1 (a) XRD patterns of Fe₃O₄/PBN2 and Fe₃O₄/PBN3. (b) FTIR spectra of Fe₃O₄/PBN2 and Fe₃O₄/PBN3.

Fig. S2 Effect of temperature on the adsorption performance of Fe₃O₄/PBN1 for MB.

Fig. S3 Effect of the different water sources on the adsorption performance of Fe_3O_4/PBN for MB.

Fig. S4 Schematic diagram of the interaction mechanism between the dye molecules and the Fe_3O_4/PBN .

Fig. S5 Reusability of Fe_3O_4 /PBN1 for MB regenerated by catalytic degradation method with the assistance of H_2O_2 .

Fig. S6 Zeta-potential *vs.* pH values of the regenerative Fe₃O₄/PBN1 after the tenth cycle.