Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Synthesis, Characterization and NLO Properties of 1,4-phenylenediamine Based Schiff's Bases: A Combined Theoretical and Experimental Approach

Muhammad Tahir,^a Hina Aftab,^a Iqra Shafiq,^{b,c} Muhammad Khalid, ^{*b,c} Saadia Haq,^{b,c} Attalla F. El-kott,^{d,e} Mohamed Abdellatif Zein^{f,g}, Umme-Hani^{b,c} and Zahid Shafiq^{*a}

^aInstitute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
^bInstitute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
^cCentre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
^d Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia.
^e Zoology Department, College of Science, Damanhour University, Egypt
^f Chemistry Department, University College of AlWajh, University of Tabuk, Tabuk, Saudi Arabia

^g Chemistry Department, Faculty of Science, Damanhour University, Egypt

Corresponding Authors

Prof. Dr. Zahid Shafiq: <u>zahidshafiq@bzu.edu.pk</u> Dr. Muhammad Khalid: <u>khalid@iq.usp.br; muhammad.khalid@kfueit.edu.pk</u>

Figure S1: FT- IR spectrum of 3a compound

Figure S2: UV-Vis spectra of 3a in various media

Figure S3: ¹HNMR and ¹³CNMR spectral representation of 3a compound

Figure S4: FT- IR spectrum of 3b compound

Figure S5: UV-Vis spectra of 3b in various media

Figure S6: ¹HNMR and ¹³CNMR spectral representation of **3b** compound

Figure S7: FT- IR spectral representation of 3c compound

Figure S8: UV-Vis spectral_representation of 3c in various media

Figure S9: ¹HNMR and ¹³CNMR spectral_representation of 3c compound

Figure S10: Optimized structures of studied compounds.

Table S1: Calculate	d energies (E) and	l energy gap (2	ΔE) of HOMO-1, 1	LUMO+1, HOMO-2
and LUMO+2 for 3a	-3c.			

Compound	HOMO-1	LUMO+1	ΔE	НОМО-2	LUMO+2	ΔE
3 a	-6.817	-1.399	5.418	-6.957	-0.334	6.623
3 b	-6.425	-1.340	5.085	-6.475	-0.326	6.149
3c	-6.624	-1.161	5.463	-6.955	-0.278	6.677

 Table S2: Natural bond orbital (NBO) analysis of 3a.

Donor(i)	Туре	Acceptor(j)	Туре	E(2) [kcal/mol]	<i>E(j)-E(i)</i> [<i>a.u</i>]	F(i,j) [a.u]
C29-C32	π	C26-C27	π^*	26.25	0.29	0.081
C28-C30	π	C29-C32	π^*	25.89	0.3	0.079
C22-C23	π	C17-C19	π^*	25.87	0.29	0.08
C18-C20	π	C22-C23	π^*	25.85	0.29	0.078
C26-C27	π	C28-C30	π^*	24.86	0.3	0.079
C17-C19	π	C18-C20	π^*	24.11	0.31	0.079
C2-C3	π	C1-C6	π*	22.68	0.3	0.074

C18-C20	π	C17-C19	π^*	17.73	0.29	0.066
N12-C13	π	C2-C3	π^*	10.62	0.38	0.062
C1-C6	π	N11-C15	π^*	8.61	0.3	0.048
C2-C3	π	N12-C13	π^*	8.22	0.3	0.047
N11-C15	π	C17-C19	π^*	7.57	0.37	0.052
N12-C13	π	C26-C27	π^*	7.09	0.37	0.05
C17-C19	π	C17-C19	π^*	1.97	0.29	0.022
C26-C27	π	C26-C27	π^*	1.95	0.29	0.021
C19-C22	σ	C17-C19	σ*	5.29	1.29	0.074
O37-H38	σ	C26-C27	σ^*	5.21	1.31	0.074
C27-C29	σ	C26-C27	σ*	5.15	1.28	0.073
C18-H21	σ	C17-C19	σ^*	4.95	1.08	0.065
O35-H36	σ	C17-C19	σ^*	4.82	1.32	0.072
C28-H31	σ	C26-C27	σ^*	4.79	1.08	0.064
C13-H14	σ	C26-C27	σ^*	4.76	1.09	0.065
C1-C6	σ	C5-C6	σ*	4.7	1.29	0.069
C2-C3	σ	C3-C4	σ^*	4.68	1.29	0.069
C15-C17	σ	C6-N11	σ^*	4.65	1.14	0.065
C27-C29	σ	С32-Н34	σ^*	2.15	1.15	0.044
С23-Н25	σ	C20-C23	σ^*	0.64	1.11	0.024
N11-C15	σ	C15-H16	σ*	0.62	1.26	0.025
C15-H16	σ	N11-C15	σ*	0.6	1.15	0.024
C22-H24	σ	C19-C22	σ*	0.6	1.1	0.023
C27-C29	σ	O37-H38	σ*	0.57	1.14	0.023
С29-Н33	σ	C27-C29	σ*	0.57	1.09	0.022
N12-C13	σ	C13-H14	σ*	0.56	1.26	0.024
C19-C22	σ	C19-O35	σ*	0.56	1.09	0.022
C27-C29	σ	C27-O37	σ*	0.54	1.1	0.022
C19-C22	σ	O35-H36	σ*	0.52	1.14	0.022
N12	LP(1)	C13-H14	σ*	13.09	0.72	0.088
N11	LP(1)	C15-H16	σ*	12.45	0.73	0.087
N11	LP(1)	C1-C6	σ*	6.97	0.93	0.073
O35	LP(1)	C19-C22	σ*	6.35	1.19	0.078
N12	LP(1)	C13-C26	σ*	2.5	0.85	0.042
N11	LP(1)	C5-C6	σ*	0.81	0.94	0.025
N12	LP(1)	C3-C4	σ*	0.71	0.93	0.024
O37	LP(2)	C26-C27	π^*	33.73	0.37	0.107
O35	LP(2)	C17-C19	π^*	31.62	0.37	0.105
N12	LP(1)	C2-C3	π^*	5.56	0.39	0.045
N11	LP(1)	C1-C6	π^*	4.61	0.39	0.041

Table S3: Natural bond orbital (NBO) analysis of 3b.

Donor(i)	Туре	Acceptor(j)	Туре	<i>E</i> (2)	E(j)- $E(i)$	F(i,j)
				[kcal/mol]	[<i>a</i> . <i>u</i>]	[<i>a</i> . <i>u</i>]
C2-C3	π	C4-C51	π^*	9.85	0.3	0.07
C25-C26	π	C28-C31	π^*	9.6	0.3	0.068
C17-C19	π	N11-C15	π^*	9.38	0.31	0.073
C17-C19	π	C22-C23	π^*	9.33	0.3	0.068
C28-C31	π	C27-C29	π^*	9.04	0.32	0.07
C22-C23	π	C18-C20	π^*	8.83	0.32	0.07

C1-C6	π	N11-C15	π*	8.45	0.3	0.047
N11-C15	π	C1-C61	π*	0.76	0.38	0.062
C27-C29	π	C28-C31	π*	0.66	0.29	0.071
C28-C31	π	C25-C26	π*	0.61	0.31	0.073
C18-C20	π	C22-C23	π*	0.46	0.29	0.071
C22-C23	π	C17-C19	π*	0.39	0.31	0.073
N12-C13	π	C2-C31	π*	0.36	0.38	0.061
C1-C6	π	C4-C52	π*	0.02	0.3	0.071
C26-C28	σ	C13-C25	σ*	3.49	1.22	0.058
C26-C28	σ	C25-C26	σ*	5.04	1.28	0.072
C26-C28	σ	C26-O35	σ*	0.5	1.09	0.021
C26-C28	σ	C28-C31	σ*	5.1	1.3	0.073
C26-C28	σ	C28-O39	σ*	0.81	1.09	0.026
C26-C28	σ	C31-H32	σ*	2.31	1.13	0.046
C26-C28	σ	O35-H36	σ*	0.62	1.14	0.024
C26-C28	σ	O39-C48	σ*	3.89	1.01	0.056
C26-O35	σ	C25-C26	σ*	1.86	1.52	0.048
C26-O35	σ	C25-C27	σ*	1.54	1.52	0.043
N11-C15	σ	N11-C15	σ*	0.69	0.58	0.062
N12-C13	σ	N12-C13	σ*	0.77	0.58	0.064
O40	LP(2)	C22-C23	π*	9.82	0.37	0.1
O39	LP(2)	C28-C31	π*	9.35	0.37	0.099
N12	LP(1)	C2-C3	π*	5.92	0.39	0.046
N11	LP(1)	C1-C6	π*	5.13	0.39	0.043
O35	LP(2)	C25-C26	π*	4	0.37	0.107
O33	LP(2)	C17-C19	π*	1.99	0.37	0.105
O40	LP(1)	C22-C23	σ*	7.19	1.16	0.082
O39	LP(1)	C28-C31	σ*	7.06	1.16	0.081
N11	LP(1)	C1-C6	σ*	6.77	0.94	0.072
O40	LP(1)	C41-H43	σ*	0.63	0.95	0.022
O40	LP(1)	C41-H42	σ*	0.62	0.95	0.022
O39	LP(1)	C48-H49	σ*	0.61	0.95	0.022

 Table S4: Natural bond orbital (NBO) analysis of 3c.

Donor(<i>i</i>)	Туре	Acceptor(j)	Туре	<i>E</i> (2)	$\overline{E(j)}$ - $\overline{E(i)}$	F(i,j)
				[kcal/mol]	[<i>a</i> . <i>u</i>]	[<i>a</i> . <i>u</i>]
C1-C6	π	C2-C3	π^*	22.34	0.3	0.073
C1-C6	π	C4-C5	π^*	20.06	0.3	0.071
C1-C6	π	N11-C15	π^*	8.49	0.3	0.047
C2-C3	π	C1-C6	π^*	22.62	0.3	0.074
C2-C3	π	C4-C5	π*	19.9	0.3	0.07
C2-C3	π	N12-C13	π^*	8.2	0.3	0.047
C4-C5	π	C1-C6	π^*	20.75	0.3	0.072
C17-C19	π	C18-C20	π^*	27.76	0.3	0.083
C24-C26	π	C28-C30	π^*	15.4	0.28	0.06
C25-C27	π	C24-C26	π^*	13.61	0.3	0.059
C25-C27	π	C25-C27	π^*	1.88	0.3	0.022
C25-C27	π	C28-C30	π^*	29.06	0.3	0.085
C28-C30	π	C24-C26	π^*	31.78	0.3	0.088
C28-C30	π	C25-C27	π^*	14.99	0.29	0.059

C28-C30	π	C28-C30	π^*	2.18	0.29	0.023
C1-C2	σ	C1-C6	σ*	3.97	1.29	0.064
C1-C2	σ	C1-H7	σ*	1.34	1.13	0.035
C1-C2	σ	C2-C3	σ*	3.97	1.29	0.064
C1-C2	σ	С2-Н8	σ*	1.33	1.13	0.035
C1-C2	σ	C3-N12	σ*	4.06	1.17	0.062
C1-C2	σ	C6-N11	σ*	4.11	1.17	0.062
C1-C6	σ	C1-C2	σ*	3.94	1.31	0.064
C1-C6	σ	C1-H7	σ*	1.22	1.12	0.033
C1-C6	σ	С2-Н8	σ*	2.35	1.13	0.046
C1-C6	σ	C5-C6	σ*	4.67	1.29	0.069
C28-H36	σ	C28-C30	σ*	0.62	1.09	0.023
C28-H36	σ	C30-O41	σ*	1.03	0.9	0.027
C30-O41	σ	C25-C27	σ*	1.51	1.54	0.043
C30-O41	σ	C26-C28	σ*	1.09	1.57	0.037
C30-O41	σ	C27-C30	σ*	1.08	1.54	0.037
C30-O41	σ	C28-C30	σ*	1.21	1.53	0.039
O31-H32	σ	C17-C19	σ*	4.78	1.32	0.071
O33-H34	σ	C24-C25	σ*	5.16	1.31	0.074
O39-H40	σ	C22-C23	σ*	4.79	1.33	0.072
O41-H42	σ	C27-C30	σ*	4.81	1.33	0.072
N11	LP(1)	C1-C6	σ*	6.99	0.93	0.073
N11	LP(1)	C5-C6	σ*	0.79	0.93	0.025
O33	LP(1)	C25-C27	σ*	6.2	1.2	0.077
O39	LP(1)	C20-C23	σ*	6.54	1.19	0.079
O41	LP(1)	C28-C30	σ*	6.59	1.19	0.079
N11	LP(1)	C1-C6	π^*	4.65	0.39	0.041
N12	LP(1)	C2-C3	π^*	5.52	0.39	0.044
O31	LP(2)	C17-C19	π^*	32.5	0.37	0.107
O33	LP(2)	C25-C27	π^*	35.86	0.37	0.109
O39	LP(2)	C22-C23	π^*	33.92	0.37	0.107
O41	LP(2)	C28-C30	π*	33.75	0.37	0.107

Table S5: Wavelength, excitation energy and oscillator strength of investigated compound **3a** at**M06/6-311G(d,p)** in solvent phase.

NO	DFT λ (nm)	E(eV)	$f_{ m OS}$	MO contributions
1	384.757	3.222	1.104	H→L (94%),
2	326.652	3.796	0.010	H→L+1 (79%), H-6→L (8%), H-5→L+1 (3%), H- 4→L (4%)
3	306.497	4.045	0.072	H-2 \rightarrow L (35%), H-1 \rightarrow L (46%), H-2 \rightarrow L+1 (8%), H-1 \rightarrow L+1 (2%)
4	302.305	4.101	0.119	H-2 \rightarrow L (38%), H-1 \rightarrow L (35%), H-1 \rightarrow L+1 (10%), H- 6 \rightarrow L+1 (2%), H-2 \rightarrow L+1 (5%)
5	282.469	4.389	0.006	H-5 \rightarrow L (10%), H-4 \rightarrow L (46%), H \rightarrow L+2 (19%), H- 6 \rightarrow L (6%), H \rightarrow L+1 (9%)
6	278.779	4.447	0.262	H-5 \rightarrow L (25%), H-4 \rightarrow L (12%), H-3 \rightarrow L (17%), H- 7 \rightarrow L (5%), H-6 \rightarrow L (7%), H-6 \rightarrow L+1 (6%), H- 4 \rightarrow L+1 (3%), H-3 \rightarrow L+1 (5%), H-2 \rightarrow L (3%), H- 1 \rightarrow L+1 (3%), H \rightarrow L+2 (5%)

MO=molecular orbital, H=HOMO, L=LUMO, f_{os} = oscillator strength, wavelength= λ (*nm*)

NO	DFT λ (nm)	E(eV)	$f_{ m OS}$	MO contributions
1	378.635	3.275	1.234	H→L (93%)
2	330.722	3.749	0.047	H-2 \rightarrow L (29%), H-1 \rightarrow L (52%), H-2 \rightarrow L+1 (9%), H \rightarrow L+1 (7%)
3	327.256	3.789	0.041	H-2→L (53%), H-1→L (27%), H-1→L+1 (13%),
4	323.204	3.836	0.002	$H \rightarrow L+1$ (68%), $H-6 \rightarrow L$ (8%), $H-5 \rightarrow L$ (4%), $H-4 \rightarrow L+1$ (5%), $H-2 \rightarrow L+1$ (5%), $H-1 \rightarrow L$ (4%)
5	284.648	4.356	0.436	H-6 \rightarrow L+1 (10%), H-4 \rightarrow L (52%), H-7 \rightarrow L (9%), H- 5 \rightarrow L (5%), H-5 \rightarrow L+1 (4%), H-3 \rightarrow L (7%), H- 3 \rightarrow L+1 (5%)
6	282.000	4.397	0.026	H-5 \rightarrow L (42%), H \rightarrow L+1 (16%), H \rightarrow L+2 (11%), H- 6 \rightarrow L (6%), H-4 \rightarrow L (7%), H-4 \rightarrow L+1 (3%), H- 2 \rightarrow L+1 (4%), H-1 \rightarrow L (3%), H-1 \rightarrow L+1 (2%)
М	O=molecula	ar orbital, H=	=HOMO, L	=LUMO, f_{os} = oscillator strength, wavelength= λ (<i>nm</i>)

Table S6: Wavelength, excitation energy and oscillator strength of investigated compound **3b** at**M06/6-311G(d,p)** in solvent phase.

Table S7: Wavelength, excitation energy and oscillator strength of investigated compound **3c** at**M06/6-311G(d,p)** in solvent phase.

NO	DFT λ (nm)	E(eV)	$f_{ m OS}$	MO contributions
1	382.172	3.244	1.332	H→L (94%),
2	319.926	3.875	0.012	H→L+1 (80%), H-6→L (7%), H-5→L (3%), H- 2→L+1 (4%)
3	298.664	4.151	0.090	H-2 \rightarrow L (21%), H-1 \rightarrow L (59%), H-3 \rightarrow L (3%), H-2 \rightarrow L+1 (4%)
4	292.913	4.233	0.230	H-2 \rightarrow L (50%), H-1 \rightarrow L (23%), H-7 \rightarrow L (4%), H- 6 \rightarrow L+1 (4%), H-2 \rightarrow L+1 (3%), H-1 \rightarrow L+1 (5%)
5	279.988	4.428	0.006	H-5→L (43%), H→L+2 (44%), H→L+1 (4%)
6	276.417	4.485	0.100	H-4 \rightarrow L (55%), H-3 \rightarrow L+1 (11%), H-7 \rightarrow L (3%), H- 3 \rightarrow L (6%), H-1 \rightarrow L+1 (3%), H-1 \rightarrow L+4 (3%), H \rightarrow L+3 (4%) H \rightarrow L+4 (5%)
				11 /L+3 (+/0), 11 /L+4 (3/0)

MO=molecular orbital, H=HOMO, L=LUMO, f_{os} = oscillator strength, wavelength= λ (*nm*)

 Table S8: Dipole polarizability and major contributing tensor (e.s.u.) of 3a-3c

 Dipole moment

	3a	3b	3c
μ_{x}	0.3510	-0.1877	0.0997
$\mu_{ m y}$	4.4568	4.2557	4.7915
μ_{z}	0.0940	0.1085	0.0158
$\mu_{ m total}$	4.4716	4.2612	4.7926
Polarizability			
α_{xx}	1.02×10 ⁻²²	1.15×10 ⁻²²	1.10×10 ⁻²²
α_{yy}	5.12×10 ⁻²³	5.30×10 ⁻²³	5.17×10 ⁻²³
$lpha_{zz}$	2.16×10 ⁻²³	4.10×10 ⁻²³	2.24×10 ⁻²³
α_{total}	5.83×10 ⁻²³	6.99×10 ⁻²³	6.16×10 ⁻²³

2 nd Hyper	pol.				
γx	7.16×10)-34 7	'.42×10⁻³⁴	8.13×10 ⁻³⁴	
$\gamma_{\rm Y}$	1.11×10) ⁻³⁵ 1	.79×10 ⁻³⁵	1.08×10 ⁻³⁵	
γz	9.17×10	0-37 8	.22×10-36	1.00×10 ⁻³⁶	
Average<	γ> 7.28×10) ⁻³⁴ 7	.68×10 ⁻³⁴	8.24×10 ⁻³⁴	
Magnitude	of γ 7.16×10)-34 7	.42×10 ⁻³⁴	8.13×10 ⁻³⁴	
Table S9: Frequency	dependent Second	hyperpolariza	bility (<i>e.s.u.</i>) o	f 3a-3c	
Parameters	Frequency ω	3a	3	b	3c
γ(-ω,ω,0,0)	0.000	7.28×10 ⁻³⁴	7.68	×10 ⁻³⁴	8.24×10 ⁻³⁴
	1907.21 <i>nm</i>	6.26×10 ⁻³⁴	6.80	×10 ⁻³⁴	7.12×10 ⁻³⁴
γ(-2ω,ω,ω,0)	0.000	7.28×10 ⁻³⁴	7.68	×10 ⁻³⁴	8.24×10 ⁻³⁴
	1907.21 <i>nm</i>	6.80×10 ⁻³⁴	7.45	×10 ⁻³⁴	7.76×10 ⁻³⁴

 Table S10: The computed first hyperpolarizability (β_{tot}) and major contributing tensors (*e.s.u.*) of **3a-3c**

Polarizability	3a	3b	3c
β_{xxx}	8.48×10 ⁻³⁰	8.57×10 ⁻³⁰	3.76×10-30
β_{xxy}	-9.09×10 ⁻³⁰	-3.28×10 ⁻³⁰	-8.23×10 ⁻³¹
β_{xyy}	-1.00×10 ⁻³⁰	-2.96×10 ⁻³⁰	6.33×10 ⁻³¹
β_{yyy}	-1.58×10 ⁻³⁰	3.03×10 ⁻³⁰	-3.07×10 ⁻³⁰
β_{xxz}	4.26×10-30	4.77×10-30	4.42×10-30
β_{yyz}	2.12×10 ⁻³¹	1.93×10 ⁻³⁰	1.11×10 ⁻³⁰
β_{xzz}	-6.47×10 ⁻³²	1.22×10 ⁻³⁰	-8.41×10 ⁻³²
β_{yzz}	-1.09×10 ⁻³¹	-1.33×10 ⁻³⁰	-5.51×10 ⁻³²
β_{zzz}	-8.59×10 ⁻³²	3.49×10 ⁻³⁰	-8.38×10 ⁻³²
β_{total}	1.40×10 ⁻³⁰	1.23×10 ⁻³⁰	8.00×10 ⁻³⁰

1.40×10 ⁻²⁹	1.23×10 ⁻²⁹	8.00×10 ⁻³⁰
1.40×10 ⁻²⁹	1.23×10 ⁻²⁹	8.00×10 ⁻³⁰
5.05×10 ⁻²³	6.14×10 ⁻²³	5.36×10 ⁻²³
5.05×10 ⁻²³	6.14×10 ⁻²³	5.36×10 ⁻²³
	1.40×10 ⁻²⁹ 5.05×10 ⁻²³ 5.05×10 ⁻²³	1.40×10^{-29} 1.23×10^{-29} 5.05×10^{-23} 6.14×10^{-23} 5.05×10^{-23} 6.14×10^{-23}

номо

LUMO

HOMO -1

LUMO +1

HOMO -2

LUMO +2

(3a)

HOMO

LUMO

HOMO -1

LUMO +1

HOMO -2

LUMO +2

(**3b**)

номо

LUMO

LUMO +1

HOMO -2

LUMO +2

(3c)

Figure S11: The MO surfaces of 3a-3c

Atom	X-axis	Y-axis	Z-axis
C	-0.70891	0.194841	0.71501
С	0.675732	0.230824	0.71556
С	1.415265	-0.73314	0.02331
С	0.725912	-1.76124	-0.6283
С	-0.6536	-1.79609	-0.6297
С	-1.39646	-0.80534	0.02119
Н	-1.26452	0.926939	1.29409
Н	1.192898	0.990609	1.29472
Н	1.303507	-2.52901	-1.1343
Н	-1.18985	-2.5922	-1.1376
Ν	-2.79105	-0.91421	-0.0027
Ν	2.813734	-0.76859	0.00715
С	3.458691	0.327179	-0.0812
Н	2.925744	1.285981	-0.2053
С	-3.50793	0.140965	-0.0369
Н	-3.0609	1.141791	-0.1073
С	-4.96439	0.091027	-0.0049
С	-5.64402	-1.12529	0.11108
С	-5.71568	1.274331	-0.0930
С	-7.0233	-1.18037	0.13809
Н	-5.0461	-2.02877	0.17850
С	-7.10711	1.220997	-0.0642
С	-7.7535	0.002583	0.04978
Н	-7.67658	2.144285	-0.1331

Н	-8.83848	-0.02345	0.070431
С	4.907235	0.477992	-0.05965
С	5.833434	-0.57048	0.1163
С	5.408174	1.775414	-0.22784
С	7.19827	-0.28982	0.113287
С	6.761666	2.051769	-0.22907
Н	4.692145	2.582568	-0.36124
С	7.659108	1.004295	-0.05714
Н	7.900988	-1.10878	0.248494
Н	8.72794	1.193225	-0.05438
0	-5.04698	2.441549	-0.20514
Н	-5.6695	3.174856	-0.25119
0	5.385803	-1.82639	0.286512
Н	6.138842	-2.41692	0.401776
Η	-7.53321	-2.13336	0.228217
Н	7.116101	3.06778	-0.36186

 Table S12: Cartesian coordinates of 3e compound.

Atom	X-axis	Y-axis	Z-axis
С	-0.7553	0.191977	-0.60908
С	0.611844	0.397599	-0.53493
С	1.470136	-0.63908	-0.15523
С	0.915147	-1.88383	0.159607
С	-0.44391	-2.09834	0.050755
С	-1.30609	-1.05845	-0.31251
Н	-1.40449	1.004351	-0.92365
Н	1.020977	1.380029	-0.75387
Н	1.582596	-2.68293	0.468132
Н	-0.87286	-3.07225	0.267276
Ν	-2.67418	-1.33835	-0.39421
Ν	2.855525	-0.48828	-0.03766
С	3.478291	0.215548	-0.89862
Н	2.946644	0.651345	-1.76211
С	-3.52261	-0.45056	-0.04788
Н	-3.20946	0.513589	0.375935

С	-4.95951	-0.65611	-0.17228
С	-5.48809	-1.83503	-0.7225
С	-5.83651	0.336371	0.262167
С	-6.84743	-2.01133	-0.83204
Н	-4.79136	-2.59663	-1.05596
С	-7.22645	0.151912	0.145367
С	-7.72865	-1.01475	-0.39744
Н	-8.79853	-1.16308	-0.48945
С	4.902968	0.518146	-0.88996
С	5.801654	0.091747	0.093722
С	5.395372	1.29715	-1.95288
С	7.160302	0.450783	-0.00294
С	6.72413	1.642691	-2.03985
Н	4.694592	1.626446	-2.715
С	7.619544	1.217515	-1.05684
Н	8.666724	1.489346	-1.12386
0	-5.36641	1.480408	0.796275
Н	-6.1277	2.031191	1.027582
0	5.411801	-0.65502	1.13822
Н	6.19977	-0.81856	1.67774
Н	-7.24936	-2.92449	-1.25782
Н	7.083457	2.244307	-2.86736
0	7.91103	-0.02928	1.01976
0	-7.94852	1.201904	0.607342
С	-9.36989	1.135457	0.536715
Н	-9.72045	0.26469	1.107734
Н	-9.67417	0.998332	-0.51011
С	-9.9135	2.416755	1.102182
Н	-11.0055	2.409324	1.067674
Н	-9.60206	2.541951	2.142762
Н	-9.55601	3.274744	0.526389
С	9.302608	0.273948	1.050032
Н	9.777632	-0.11301	0.138066
Н	9.435266	1.36451	1.064221
С	9.879844	-0.36417	2.281584

Н	9.739466	-1.44819	2.256373
Н	10.95064	-0.15659	2.345501
Н	9.398014	0.028299	3.181176

 Table S13 Cartesian coordinates of 3g compound.

Atom X-axis Y-axis	Z-axis
C = 0.70265 = 0.124002	0.715011
C = -0.70365 = 0.124003	0./10911
C 0.681714 0.134914	0.717512
C 1.406103 -0.83733	0.020303
C 0.696529 -1.84866	-0.63676
C -0.68358 -1.85865	-0.63916
C -1.41076 -0.85866	0.016082
Н -1.24588 0.863027	1.299126
Н 1.211514 0.882144	1.301828
Н 1.260006 -2.62382	-1.14779
Н -1.23325 -2.64193	-1.15299
N -2.80689 -0.93932	-0.01074
N 2.803313 -0.89719	0.003599
C 3.466426 0.190822	-0.07338
Н 2.94521 1.157487	-0.19017
C -3.4993 0.134606	-0.04356
Н -3.02416 1.12294	-0.11311
C -4.95063 0.129893	-0.01213
C -5.67355 -1.06106	0.107081
C -5.67522 1.332728	-0.10563
C -7.05033 -1.08315	0.132472
Н -5.10821 -1.98487	0.179368
C -7.06262 1.325821	-0.08093
C -7.7494 0.123641	0.036419
C 4.911109 0.326993	-0.04816
C 5.835806 -0.72842	0.121737
C 5.432461 1.617296	-0.20622
	0 12210
С 7.198787 -0.46691	0.12219
C 7.198787 -0.46691 C 6.784023 1.888061	-0.20542

С	7.675973	0.828457	-0.04002
0	-4.97599	2.479731	-0.21991
Η	-5.57686	3.230812	-0.26865
0	5.377675	-1.98003	0.283838
Η	6.124103	-2.57951	0.396002
Η	-7.59396	-2.01875	0.226808
Η	7.153307	2.901654	-0.32996
Η	7.912073	-1.27704	0.250634
Η	-7.62536	2.25223	-0.15431
0	-9.0938	0.184123	0.052654
Η	-9.46178	-0.7028	0.131136
0	9.010998	0.994388	-0.02727
Η	9.227852	1.925239	-0.14744