-Electronic Supplementary Information (ESI)-

Stereoselective total synthesis of (3Z)- and (3E)-elatenynes

Soo Yeon Kwak,^{a‡} Iljin Shin,^{a‡} Hongjun jang,^a Youngjik Park,^a Seongju Lim,^a Dongjoo Lee,^a Hyoungsu Kim,^{*a} and Deukjoon Kim^b

^aCollege of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST),

Ajou University, Suwon 16499, Korea

^bThe Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea

[‡]These authors contributed equally to this work.

* E-mail: hkimajou@ajou.ac.kr

Table of Contents

ESI (Part A): Experimental Procedures and compounds	
Characterizations	S1 ~ S29
ESI (Part B): Copies of NMR Spectra	S30 ~ S113
ESI (Part C): Copies of HRMS Spectra	S114 ~ S140

- Electronic Supplementary Information -

Part A (S1 ~ S29)

Experimental Procedures and Product Characterizations

General & Note	S3
Construction of Key 7-Hydroxy-6, 7- <i>threo</i> -6,9- <i>cis</i> -THF 10	
Construction of Key C(15)-C(4) Adjacent Bis-THF 21	S11 ~ S18
Construction of 7,12-Dibromo Adjacent bis-THF 6	S18 ~ S24
Completion of Total Synthesis of (3Z)- and (3E)-Elatenyne 1a and 1b.	
References	

General & Note: S3

General

Proton (¹H) and carbon (¹³C) NMR spectra were obtained on Varian Mercury 400 and ECZ600R. Chemical shifts are reported in ppm units with Me4Si or CHCl3 as the internal standard. Structural assignments were made with additional information from gCOSY, gHSQC, gHMQC, and gHMBC experiments. Specific rotation was obtained on a Jasco P-2000 (light source, WI 589 nm). High resolution mass spectra (HRMS) were recorded using electronionization (EI) and fast atom bombardment (FAB). All reactions were routinely carried out under an inert atmosphere of dry nitrogen. All reactions that required heating were carried out using oil bath. Reactions were checked by thin layer chromatography (Kieselgel 60 F254, Merck). Spots were detected by viewing under a UV light, and by colorizing with charring after dipping in *p*-anisaldehyde solution in a mixture of acetic acid, sulfuric acid, and methanol. In aqueous work-up, all organic solutions were dried over anhydrous sodium sulfate and filtered prior to rotary evaporation. The crude compounds were purified by column chromatography on a silica gel (Kieselgel 60, 70-230 mesh, Merck and Kieselgel 60, 63-200 mesh, Merck). Unless otherwise noted, materials and all solvents were obtained from commercial suppliers and were used without purification. Toluene and methylene chloride were dried with 4Å molecular sieve.

Note: The present Supporting Information A includes modified versions of the experimental procedures that have been already described in the literature in case the experimental procedures were improved in terms of reaction conditions, yields, selectivity, and so on, or where additional spectroscopic data are available.

Construction of Key 7-Hydroxy-6, 7-*threo*-6,9-*cis*-THF 10: S4 ~ S10 Scheme ESI-01. Stereoselective Synthesis of Key 6,7-*cis*-6,9-*cis*-THF 10 via IAEA

Determination of *ee* Value and Confirmation of C(6) Absolute Stereochemistry of Secondary Alcohol 12¹

To a solution of secondary epoxy alcohol 12 in CH₂Cl₂ were successively added (R)- or (S)- α methoxy- α -trifluoromethylphenylacetyl chloride (5.0 eq), Et₃N (6.0 eq), and DMAP (0.4 eq) at room temperature. After stirring for 1 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃, diluted with Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combine layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/(ethyl acetate, 6 : 1) to afford the crude (S)-MTPA ester SI-A-01 or (R)-MTPA ester SI-A-02 as a colorless oil: [For (S)-Mosher Derivative SI-**A-01** ¹H NMR (600 MHz, CDCl₃) δ 7.56–7.55 (m, 2 H), 7.42–7.37 (m, 3 H), 7.36–7.33 (m, 2 H), 7.32–7.28 (m, 3 H), 5.06 (q, J = 6.8 Hz, 1 H), 4.42 (AB, $J_{AB} = 11.8$ Hz, $\Delta v_{AB} = 24.4$ Hz, 2 H), 3.59 (s, 3 H), 3.46 (dt, J = 9.4, 5.7 Hz, 1 H), 3.38 (dt, J = 9.6, 6.4 Hz, 1 H), 3.17 (ddd, J =7.0, 4.1, 2.5 Hz, 1 H), 2.85 (dd, J = 4.8, 4.1 Hz, 1 H), 2.68 (dd, J = 4.9, 2.6 Hz, 1 H), 1.99 (q, J = 6.3 Hz, 2 H) [For (*R*)-Mosher Derivative SI-A-02] ¹H NMR (600 MHz, CDCl₃) δ 7.56– 7.55 (m, 2 H), 7.42–7.37 (m, 3 H), 7.36–7.34 (m, 2 H), 7.32–7.28 (m, 3 H), 5.13 (q, J = 6.6 Hz, 1 H), 4.48 (AB, $J_{AB} = 11.8$ Hz, $\Delta v_{AB} = 15.3$ Hz, 2 H), 3.59–3.55 (m, 1 H), 3.52–3.49 (m, 1 H), 3.51 (s, 3 H), 3.12 (ddd, J = 6.6, 4.1, 2.6 Hz, 1 H), 2.76 (t, J = 4.5 Hz, 1 H), 2.58 (dd, J = 4.9, 2.6 Hz, 1 H), 2.06 (q, *J* = 6.1 Hz, 2 H).

Preparation of Epoxy Amide 13

To a cooled (0 °C) solution of known epoxy alcohol **12** (6.04 g, 28.99 mmol) in DMF (290 mL, 0.1 M) was added 2-chloro-*N*,*N*-dimethylacetamide (3.58 mL, 34.79 mmol) and sodium hydride (2.32 g, 60% dispersion in mineral oil, 57.98 mmol). After being stirred for 12 h at

room temperature, the reaction mixture was quenched with saturated aqueous NH4Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 1 : 2) to afford the epoxy amide **13** (10.12 g, 94%) as a colorless oil: $[\alpha]^{24}_{D}$ = +0.027 (*c* 0.95, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.26 (m, 5 H), 4.52–4.47 (m, 2 H), 4.33 (AB, *J*_{AB} = 13.9 Hz, Δv_{AB} = 94.69 Hz, 2 H), 3.69–3.62 (m, 2 H), 3.23 (td, *J* = 7.8, 4.9 Hz, 1 H), 3.05 (ddd, *J* = 7.3, 4.2, 2.7 Hz, 1 H), 2.96 (s, 3 H), 2.95 (s, 3 H), 2.74–2.73 (m, 1 H), 2.46 (dd, *J* = 4.8, 2.7 Hz, 1 H), 2.00 (ddt, *J* = 13.9, 8.1, 5.7 Hz, 1 H), 1.92–1.86 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 137.9, 128.0, 127.3, 127.2, 79.0, 72.7, 68.2, 66.0, 54.4, 42.9, 36.0, 35.2, 32.4; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₁₆H₂₃NO4 293.1627; Found 293.1624.

Preparation of Bromohydrin Amide 14

To a solution of epoxy amide **13** (8.50 g, 28.97 mmol) in CHCl₃ (116 mL, 0.25 M) was added tetrabutylammonium bromide (14.01 g, 43.46 mmol) and magnesium nitrate hexahydrate (5.20 g, 20.28 mmol) in portions. After being stirred for 3 h at 80 °C, the reaction mixture was quenched with saturated aqueous H₂O and diluted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 1 : 5) to afford the bromohydrin amide **14** (10.42 g, 96%) as a colorless oil: $[\alpha]^{23}_{D} = -0.60$ (*c* 0.95, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.32 (m, 4 H), 7.30–7.27 (m, 1 H), 6.15 (d, *J* = 1.4 Hz, 1 H), 4.52 (AB, *J*_{AB} = 11.8 Hz, $\Delta v_{AB} = 59.35$ Hz, 2 H), 4.26 (AB, *J*_{AB} = 15.7 Hz, $\Delta v_{AB} = 121.75$ Hz, 2 H), 3.81 (tt, *J* = 6.7, 3.2 Hz, 1 H), 3.68 (ddd, *J* = 9.7, 8.4, 4.5 Hz, 1 H), 3.65–3.61 (m, 3 H), 3.45 (ddd, *J* = 10.9, 4.1, 1.0 Hz, 1 H), 2.94 (s, 3 H), 2.77 (s, 3 H), 2.00–1.95 (m, 1 H), 1.74–1.68 (m, 1 H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 138.1, 128.4, 127.7, 82.6, 72.9, 72.6, 68.6, 65.8, 35.73, 35.70, 31.2; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₁₆H₂₄BrNO4 373.0889; Found 373.0884.

Preparation of PMB-Protected Bromo Amide 11

To a solution of bromohydrin amide **14** (10.45 g, 27.92 mmol) in CH₂Cl₂ (280 mL, 0.1 M) was added *p*-methoxybenzyl-2,2,2-trichloroacetimidate (29.00 g, 139.61 mmol) and PTSA (1.06 g, 5.58 mmol) in portions at the room temperature. The resulting mixture was stirred for 13 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ and diluted with CH₂Cl₂. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, 2 : 1) to afford the PMB-protected bromo amide **11** (12.14 g, 88%) as a colorless oil: $[\alpha]^{24}$ D = +0.47 (*c* 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.28 (m, 4 H), 7.27–7.25 (m, 3 H), 6.85–6.82 (m, 2 H), 4.58 (AB, *J*_{AB} = 11.2 Hz, Δ v_{AB} = 46.87 Hz, 2 H), 4.46 (s, 2 H), 4.20 (d, *J* = 5.0 Hz, 2 H), 3.82–3.75 (m, 2 H), 3.78 (s, 3 H), 3.66 (dd, *J* = 10.6, 4.3 Hz, 1 H), 3.59–3.48 (m, 2 H), 3.42 (dd, *J* = 10.6, 6.0 Hz, 1 H), 2.90 (s, 3 H), 2.86 (s, 3 H), 1.99–1.91 (m, 1 H), 1.82–1.74 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 158.9, 130.0, 129.6, 129.5, 128.0, 127.3, 127.2, 113.4, 79.6, 77.6, 72.7, 72.5, 69.5, 66.3, 55.1, 36.1, 35.3, 32.0, 29.9; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₂₄H₃₂BrNO₅ 493.1464; Found 493.1462.

Preparation of 7-OPMB-6,7-cis-6,9-cis-THF 10

To a cooled (-78 °C) solution of 7-OPMB-6,7-*syn-w*-bromo amide **11** (1.57 g, 3.18 mmol) in THF (635 mL, 0.005 M) was dropwise added LiHMDS (9.53 mL, 1.0 M solution in THF, 9.53 mmol). After being stirred for 1 h at the same temperature, the reaction mixture was quenched with saturated aqueous NH₄Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with

saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, 4 : 1) to afford 7-OPMB-6,7-*cis*-6,9-*cis*-THF **10** (1.27 g, 97%, *cis* only, see page S39 & S57) as a colorless oil: $[\alpha]^{24}_{D} = -0.19$ (*c* 0.97, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.34–7.30 (m, 4 H), 7.28–7.26 (m, 1 H), 7.23–7.21 (m, 2 H), 6.86–6.83 (m, 2 H), 4.51–4.47 (m, 3 H), 4.43 (AB, *J*_{AB} = 11.6 Hz, $\Delta v_{AB} = 162.9$ Hz, 2 H), 3.97–3.94 (m, 2 H), 3.79 (s, 3 H), 3.62–3.55 (m, 2 H), 3.09 (s, 3 H), 2.94 (s, 3 H), 2.70 (ddd, *J* = 13.5, 6.6, 2.7 Hz, 1 H), 2.23–2.17 (m, 1 H), 2.07–1.97 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 158.8, 138.3, 130.1, 129.1, 128.1, 127.4, 127.3, 113.5, 80.1, 77.5, 75.8, 72.8, 70.1, 67.3, 55.2, 37.1, 36.1, 33.8, 29.2; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₂₄H₃₁NO₅413.2202; Found 413.2205.

Preparation of TIPS-Protected Bromo Amide 15

To a cooled (-15 °C) solution of bromohydrin amide **14** (1.42 g, 3.80 mmol) in CH₂Cl₂ (38 mL, 0.1 M) was added 2,6-lutidine (2.65 mL, 22.77 mmol) and triisopropylsilyl trifluoromethansulfonate (TIPSOTf, 2.02 mL, 11.40 mmol). The resulting mixture was stirred for 2 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ and diluted with EtOAc. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, 3 : 1) to afford the TIPS-protected bromo amide **15** (1.60 g, 80%) as a colorless oil: $[\alpha]^{24}{}_{\rm D}$ = -18.2 (*c* 0.88, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.34–7.31 (m, 4 H), 7.29–7.25 (m, 1 H), 4.52–4.48 (m, 2 H), 4.23 (dt, *J* = 7.4, 4.2 Hz, 1 H), 4.22–4.17 (m, 2 H), 3.73 (ddd, *J* = 9.3, 4.3, 3.1 Hz, 1 H), 3.68 (dd, *J* = 10.4, 4.0 Hz, 1 H), 3.62 (dd, *J* = 7.4, 5.4 Hz, 2 H), 3.35 (dd, *J* = 10.4, 6.4 Hz, 1 H), 2.94 (s, 3 H), 2.91 (s, 3 H), 2.07 (dtd, *J* = 14.5, 7.4, 3.1 Hz, 1 H), 1.73 (ddt, *J* = 14.7, 9.4, 5.4 Hz, 1 H), 1.13–1.05 (m, 21 H); ¹³C NMR (150 MHz, CDCl₃) δ 169.0, 138.5, 128.3, 127.6, 127.5, 79.8, 73.5, 72.9, 70.2, 66.9, 36.4, 35.4, 34.6, 29.3, 18.1, 12.7; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₂₅H₄₄BrNO₄Si 529.2223; Found 529.2225.

Preparation of 7-OTIPS-6,7-cis-6,9-trans-THF 16

To a cooled (-78 °C) solution of TIPS-protected bromo amide **15** (52.4 mg, 0.0988 mmol) in THF (20 mL, 0.005 M) was dropwise added KHMDS (0.42 mL, 0.7 M solution in toluene, 0.30 mmol). After being stirred for 1 h at the same temperature, the reaction mixture was quenched with saturated aqueous NH₄Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄ filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, 1 : 2) to afford 7-OTIPS-6,7-*cis*-6,9-*trans*-THF **16** (35.6 mg, 80%, *trans*:*cis* > 41 : 1, see page S48) as a colorless oil: $[\alpha]^{23}_{D} = -12.8$ (*c* 0.89, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33–7.32 (m, 4 H), 7.28–7.26 (m, 1 H), 4.81 (t, *J* = 7.4 Hz, 1 H), 4.51 (s, 2 H), 4.50–4.48 (m, 1 H), 4.08 (ddd, *J* = 7.8, 5.4, 3.9 Hz, 1 H), 3.65–3.58 (m, 2 H), 3.08 (s, 3 H), 2.95 (s, 3 H), 2.56 (ddd, *J* = 13.0, 7.7, 5.2 Hz, 1 H), 2.05 (ddd, *J* = 13.1, 7.1, 2.6 Hz, 1 H), 1.96–1.91 (m, 2 H), 1.08–1.04 (m, 21 H); ¹³C NMR (150 MHz, CDCl₃) δ 171.2, 138.6, 128.3, 127.6, 127.4, 80.5, 74.1, 73.7, 73.0, 67.9, 38.5, 37.0, 35.8, 29.9, 18.09, 18.05, 12.4; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₂₅H₄₃NO₄Si 449.2961; Found 449.2961.

Preparation of Alcohol SI-A-03

To a cooled (0 °C) solution of 7-OTIPS-6,7-*threo*-6,9-*trans*-THF **16** (0.36 g, 0.79 mmol) in anhydrous THF (8 mL, 0.1 M) was added tetrabutylammonium fluoride (TBAF, 0.79 mL, 0.79 mmol). After being stirred for 1 h at the room temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ and diluted with Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue

was purified by column chromatography (silica gel, ethyl acetate only) to afford alcohol **SI-A-03** (0.14 g, 60%) as a colorless oil: $[\alpha]^{23}D = -21.4$ (*c* 0.31, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.37–7.34 (m, 2 H), 7.32–7.29 (m, 3 H), 4.92 (dd, J = 8.4, 7.1 Hz, 1 H), 4.53 (AB, $J_{AB} = 11.7$ Hz, $\Delta v_{AB} = 13.4$ Hz, 2 H), 4.35 (dt, J = 5.4, 2.7 Hz, 1 H), 4.04 (ddd, J = 9.8, 5.1, 3.0 Hz, 1 H), 3.67 (ddd, J = 9.5, 4.7, 3.4 Hz, 1 H), 3.49 (ddd, J = 10.6, 9.4, 2.5 Hz, 1 H), 3.25 (t, J = 2.1 Hz, 1 H), 3.08 (s, 3 H), 2.95 (s, 3 H), 2.50 (dddd, J = 13.7, 8.4, 5.1, 1.6 Hz, 1 H), 2.19–2.15 (m, 1 H), 2.12–2.06 (m, 1 H), 2.05–2.00 (m, 1 H); ¹³C NMR (150 MHz, CDCl₃) δ 171.6, 137.3, 128.6, 128.0, 127.8, 83.5, 73.8, 73.7, 72.6, 66.9, 37.2, 36.9, 35.8, 29.3; HRMS (EI-magnetic sector) *m*/*z*: [M]⁺ Calcd for C₁₆H₂₃NO₄ 293.1627; Found 293.1624.

Preparation of 7-OPMB-6,7-cis-6,9-trans-THF 17

To a solution of alcohol SI-A-03 (0.13 g, 0.45 mmol) in THF/DMF (3 : 1, 4.4 mL, 0.3 M) was added p-methoxybenzyl chloride (0.26 mL, 1.80 mmol) and sodium hydride (63 mg, 60% dispersion of mineral oil, 1.575 mmol) in portions at the room temperature. The resulting mixture was stirred for 15 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO3 and diluted with CH2Cl2. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 3 : 1) to afford the 7-OPMB-6,7-cis-6,9-trans-THF 17 (0.184 g, 99%) as a colorless oil: $[\alpha]^{23}_{D} = -$ 13.6 (c 0.90, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.34–7.30 (m, 4 H), 7.28–7.26 (m, 1 H), 7.24–7.21 (m, 2 H), 6.87–6.85 (m, 2 H), 4.82 (t, J = 7.6 Hz, 1 H), 4.48 (AB, $J_{AB} = 12.0$ Hz, $\Delta v_{AB} = 11.2 \text{ Hz}, 2 \text{ H}), 4.44 \text{ (AB, } J_{AB} = 11.6 \text{ Hz}, \Delta v_{AB} = 104.7 \text{ Hz}, 2 \text{ H}), 4.09 \text{ (ddd, } J = 7.8, 5.7,$ 3.6 Hz, 1 H), 4.03–4.02 (m, 1 H), 3.80 (s, 3 H), 3.56 (td, J = 6.7, 2.4 Hz, 2 H), 3.08 (s, 3 H), 2.95 (s, 3 H), 2.49 (ddd, J = 13.1, 7.9, 5.0 Hz, 1 H), 2.20 (ddd, J = 13.3, 7.3, 1.5 Hz, 1 H), 2.06-1.98 (m, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 159.2, 138.5, 130.2, 129.2, 128.3, 127.6, 127.5, 113.7, 80.0, 79.1, 74.1, 72.9, 71.0, 67.7, 55.2, 37.0, 35.8, 34.3, 29.4; HRMS (EImagnetic sector) m/z: [M]⁺ Calcd for C₂₄H₃₁NO₅413.2202; Found 413.2202.

Construction of 7,12-Dihydroxy Adjacent Bis-THF 21

Scheme ESI-02. Construction of 7,12-Dihydroxy Adjacent Bis-THF 21

Preparation of (10S)-Alcohol SI-A-04 by Direct Ketone Synthesis/L-Selectride Sequence

[Direct Ketone Synthesis]³ To a cooled (-78 °C) solution of 7-OPMB-6,7-cis-6,9-cis-THF 10 (438.1 mg, 1.06 mmol) in anhydrous THF (20 mL, 0.1 M) was dropwise added allylmagnesium chloride (1.06 mL, 2.0 M solution in THF, 2.12 mmol). After being stirred at the same temperature for 1 h, the reaction mixture was quenched with saturated aqueous NH₄Cl, and diluted with Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to afford the crude ketone 18 as a colorless oil. [L-Selectride Reduction] To a cooled (-78 °C) solution of the above crude ketone 18 in THF (20 mL) was added lithium tri-sec-butylborohydride (L-Selectride, 3.2 mL, 1.0 M in THF, 3.2 mmol). After being stirred for 1 h at the same temperature, the reaction mixture was quenched with MeOH, and H₂O₂ (5.0 mL, 1.0 M in H₂O, 5.0 mmol) and NaOH (5 mL, 2.0 M in H₂O, 10.0 mmol) were added. The resulting mixture was vigorously stirred for 12 h at room temperature and diluted with Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 10 : 1) to afford (10S)-9,10-syn homoallylic alcohol 9 (259.6 mg, 59%, dr = 8 : 1, see page S59) as a colorless oil.

Preparation of (10*S*)-9,10-*syn* Homoallylic Alcohol 9 by a Sequential Ate Complex/Keck Allylation

[Ate Complex Reduction] Ate Complex Generation: To a cooled (-78 °C) solution of n-BuLi (1.0 mL, 1.6 M in hexane) in THF (13.3 mL) was added DIBAL-H (1.7 mL, 1.0 M in toluene) and stirred for 30 min at the same temperature. To a cooled (0 °C) solution of 7-OPMB-6,7-cis-6,9-cis-THF 10 (96.7 mg, 0.23 mmol) in dry THF (23.4 mL, 0.01 M) were added dropwise ate complex solution (4.67 mL, 0.47 mmol). After being stirred at the same temperature for 1 h, the reaction mixture was quenched with MeOH and diluted with Et₂O and saturated aqueous NH₄Cl. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to afford the crude aldehyde **19**, which was immediately employed to the next step without further purification. [Keck Allylation]² To a cooled (-15 °C) solution of the above crude aldehyde 19 in dry CH₂Cl₂ (4.7 mL, 0.05 M) was added MgBr₂•OEt₂ (0.30 g, 1.17 mmol). The resulting mixture was stirred for 10 min, and then allyltributyltin (0.29 mL, 0.94 mmol) was added dropwise. After being stirred for 14 h at 0 °C, the reaction mixture was quenched with saturated aqueous NaHCO₃, and diluted with CH₂Cl₂. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was filtrated by column chromatography (silica gel, hexanes/ethyl acetate/dichloromethane, 4 : 1 : 1) to afford (10S)-9,10-syn homoallylic alcohol **9** (81.1 mg, 84%, dr = 46 : 1, see page S61) as colorless oils: [For 9] $[\alpha]^{24}D = -0.15$ (c 0.93, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.31 (m, 4 H), 7.29–7.27 (m, 1 H), 7.22–7.19 (m, 2 H), 6.86–6.84 (m, 2 H), 5.88 (ddt, J = 17.2, 10.2, 7.0 Hz, 1 H), 5.13–5.05 (m, 2 H), 4.49 (AB, $J_{AB} = 12.0 \text{ Hz}, \Delta v_{AB} = 15.73 \text{ Hz}, 2 \text{ H}), 4.38 \text{ (AB, } J_{AB} = 11.5 \text{ Hz}, \Delta v_{AB} = 148.63 \text{ Hz}, 2 \text{ H}), 3.95 \text{--}$ 3.92 (m, 1 H), 3.93–3.90 (m, 2 H), 3.80 (s, 3 H), 3.61–3.54 (m, 3 H), 3.00 (d, *J* = 5.1 Hz, 1 H),

2.29 (tq, J = 7.2, 1.4 Hz, 2 H), 2.14 (ddd, J = 14.0, 8.8, 5.4 Hz, 1 H), 2.06–1.95 (m, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 138.5, 135.3, 129.8, 129.4, 128.3, 127.7, 127.5, 116.9, 113.8, 79.7, 79.4, 78.6, 73.2, 72.9, 70.6, 67.6, 55.3, 38.6, 33.9, 29.4; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₂₅H₃₂O₅ 412.2250; Found 412.2242. [For SI-A-04] [α]²⁴_D = +26.6 (*c* 0.77, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.30 (m, 4 H), 7.29–7.27 (m, 1 H), 7.22–7.20 (m, 2 H), 6.87–6.84 (m, 2 H), 5.85 (ddt, *J* = 17.2, 10.2, 7.0 Hz, 1 H), 5.13–5.07 (m, 2 H), 4.48 (AB, *J*_{AB} = 12.0 Hz, Δ v_{AB} = 21.82 Hz, 2 H), 4.40 (AB, *J*_{AB} = 11.5 Hz, Δ v_{AB} = 177.83 Hz, 2 H), 3.98 (ddd, *J* = 8.5, 5.3, 2.8 Hz, 1 H), 3.90–3.84 (m, 3 H), 3.80 (s, 3 H), 3.60–3.54 (m, 2 H), 2.82 (d, *J* = 1.7 Hz, 1 H), 2.27–2.22 (m, 1 H), 2.19–2.14 (m, 2 H), 2.04 (ddt, *J* = 13.8, 7.9, 5.8 Hz, 1 H), 2.01–1.94 (m, 2 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 138.5, 134.7, 129.9, 129.4, 128.3, 127.7, 127.5, 117.2, 113.8, 80.0, 79.6, 78.2, 73.0, 71.3, 70.4, 67.7, 55.3, 38.1, 30.2, 29.3; HRMS (FAB-magnetic sector) *m/z*: [M+H]⁺ Calcd for C₂₅H₃₃O₅ 413.2328; Found 413.2328.

Confirmation of C(10) Absolute Stereochemistry in Secondary Alcohol 9

To a solution of (10*S*)-alcohol **9** in CH₂Cl₂ were successively added (*R*)- or (*S*)- α -methoxy- α -trifluoromethylphenylacetyl chloride (5.0 eq), Et₃N (6.0 eq), and DMAP (0.4 eq) at room temperature. After stirring for 40 min at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃, diluted with Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combine layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 10:1) to afford the crude (*S*)-MTPA ester **SI-A-05** or (*R*)-MTPA ester **SI-A-06** as a colorless oil: [**For** (*S*)-**Mosher Derivative SI-A-05**] ¹H NMR (600 MHz, CDCl₃) δ 7.63–7.61 (m, 2 H), 7.37–7.35 (m, 3 H), 7.34–7.27 (m, 5 H), 7.23–7.21 (m, 2 H), 6.88–6.86 (m, 2 H), 5.64–5.57 (m, 1 H), 5.31 (td, *J* = 7.8, 3.7 Hz, 1 H), 4.97 (s, 1 H), 4.95 (d, *J* = 6.3 Hz, 1 H), 4.47–4.42 (m, 2 H), 4.40 (AB, *J*_{AB} = 11.7 Hz, Δ v_{AB} = 85.1 Hz, 2 H), 3.99–3.96 (m, 3 H), 3.80 (s, 3 H), 3.58 (s, 3 H), 3.54 (t, *J* = 6.4 Hz, 2 H), 2.42–2.38 (m, 1 H), 2.22 (dt, *J* = 15.2, 7.8 Hz, 1 H), 2.18–2.13 (m, 1 H), 1.98 (q, *J* = 6.8 Hz, 2 H),

1.83–1.79 (m, 1 H); HRMS (FAB-magnetic sector) m/z: [M+H]⁺ Calcd for C₃₅H₄₀F₃O₇ 629.2726; Found 629.2719. [For (*R*)-Mosher Derivative SI-A-06] ¹H NMR (600 MHz, CDCl₃) δ 7.59–7.58 (m, 2 H), 7.37–7.36 (m, 3 H), 7.34–7.27 (m, 5 H), 7.20–7.17 (m, 2 H), 6.87–6.84 (m, 2 H), 5.81–5.74 (m, 1 H), 5.32 (ddd, J = 8.1, 6.9, 3.9 Hz, 1 H), 5.12–5.08 (m, 2 H), 4.46–4.42 (m, 2 H), 4.34 (AB, $J_{AB} = 11.6$ Hz, $\Delta v_{AB} = 89.9$ Hz, 2 H), 3.96–3.90 (m, 3 H), 3.80 (s, 3 H), 3.51 (s, 3 H), 3.53–3.50 (m, 2 H), 2.52–2.48 (m, 1 H), 2.33 (dt, J = 15.5, 8.1 Hz, 1 H), 2.04 (ddd, J = 13.6, 7.8, 5.9 Hz, 1 H), 1.96–1.86 (m, 2 H), 1.74 (ddd, J = 13.5, 7.0, 3.4 Hz, 1 H); HRMS (FAB-magnetic sector) m/z: [M+H]⁺ Calcd for C₃₅H₄₀F₃O₇ 629.2726; Found 629.2722.

Preparation of Alkene 20

To a solution of (10*S*)-alcohol **9** (670.8 mg, 1.626 mmol) in dry CH₂Cl₂ (16.3 mL, 0.1 M) were added *cis*-3-hexene (2.01 mL, 16.3 mmol) and second-generation Grubb's catalyst [(H₂IMes)(Cy₃P)Cl₂Ru=CHPh, **G-II**, 138.0 mg, 0.163 mmol]⁴ at room temperature. After being stirred for 4 h at the same temperature, the reaction mixture was quenched with dimethyl sulfoxide (0.5 mL), stirred for 15 h, and concentrated *in vacuo*. Purification of the residue by column chromatography (silica gel, hexanes/ethyl acetate, 5 : 1) to afford the *inseparable mixture* of alkene **20** (680.5 mg, 95% yield, E/Z = 6 : 1, see page S69) as a colorless oil; [**For** (**12***E*)-**20**] ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.31 (m, 4 H), 7.29–7.26 (m, 1 H), 7.22–7.19 (m, 2 H), 6.87–6.84 (m, 2 H), 5.58–5.53 (m, 1 H), 5.50–5.45 (m, 1 H), 4.53–4.47 (m, 3 H), 4.27 (d, *J* = 11.4 Hz, 1 H), 3.94–3.90 (m, 3 H), 3.80 (s, 3 H), 3.62–3.55 (m, 2 H), 3.53–3.48 (m, 1 H), 3.51 (tt, *J* = 6.4, 4.6 Hz, 1 H), 2.10–1.96 (m, 4 H), 0.97 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 138.5, 134.7, 129.9, 129.3, 128.3, 127.6, 127.5, 125.2, 113.8, 79.7, 79.4, 78.6, 73.7, 72.9, 70.6, 67.7, 55.3, 37.3, 34.0, 29.5, 25.6, 13.7; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₂₇H₃₆O₅ 440.2563; Found 440.2558.

Preparation of Diol 8

[Tosylation]To a cooled (0 °C) solution of inseparable mixture of (E)/(Z)-hex-3-enol **20** (680.5) mg, 1.55 mmol) in dry CH₂Cl₂ (20 mL, 0.077 M) was added triethylamine (2.15 mL, 15.5 mmol) and *p*-toluenesulfonyl anhydride (Ts₂O, 210.8 mg, 4.63 mmol). After being stirred for 12 h at room temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ and diluted with H₂O. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 6:1) to afford the inseparable mixture of tosylate SI-A-07 (878.4 mg, 96%) as a colorless oil: [For (12*E*)-Tosylate SI-A-07] $[\alpha]^{25}_{D} = -$ 0.70 (c 0.79, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.78–7.76 (m, 2 H), 7.35–7.30 (m, 4 H), 7.29-7.26 (m, 1 H), 7.24-7.22 (m, 2 H), 7.20-7.18 (m, 2 H), 6.88-6.85 (m, 2 H), 5.46 (dtt, J =15.3, 6.3, 1.3 Hz, 1 H), 5.21 (dddt, J = 15.7, 8.1, 6.7, 1.6 Hz, 1 H), 4.61–4.58 (m, 1 H), 4.46 $(AB, J_{AB} = 11.9 \text{ Hz}, \Delta v_{AB} = 16.57 \text{ Hz}, 2 \text{ H}), 4.34 (AB, J_{AB} = 11.6 \text{ Hz}, \Delta v_{AB} = 116.40 \text{ Hz}, 2 \text{ H}),$ 4.02 (dt, *J* = 8.2, 6.4 Hz, 1 H), 3.89 (ddd, *J* = 6.0, 4.5, 2.9 Hz, 1 H), 3.84 (dt, *J* = 8.4, 4.7 Hz, 1 H), 3.81 (s, 3 H), 3.49–3.43 (m, 2 H), 2.54–2.49 (m, 1 H), 2.39 (s, 3 H), 2.25–2.20 (m, 1 H), 2.08 (ddd, J = 13.9, 8.2, 6.0 Hz, 1 H), 1.95–1.87 (m, 3 H), 1.85–1.82 (m, 1 H), 1.81–1.75 (m, 1 H), 0.91 (t, J = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 144.1, 138.6, 136.1, 134.3, 130.2, 129.4, 129.0, 128.3, 128.0, 127.6, 127.5, 122.6, 113.7, 83.8, 79.3, 78.3, 76.9, 72.9, 70.6, 67.5, 55.2, 34.1, 33.0, 29.4, 25.5, 21.5, 13.5; HRMS (EI-magnetic sector) m/z: [M]⁺ Calcd for C34H42O7S 594.2651; Found 594.2654. [Sharpless Asymmetric Dihydroxylation] To a cooled (0 °C) solution of inseparable mixture of tosylate SI-A-07 (530.7 mg, 0.892 mmol) in tert-butanol/H₂O (1 : 1, 10.0 mL, 0.089 M) was added methanesulfonamide (349.2 mg, 3.671 mmol), K₂CO₃ (634.3 mg, 4.589 mmol). The reaction mixture was stirred for 30 min at same temperature and AD-mix β (2.12 g, 1.22 mmol) was added. After being stirred at the same temperature for 14 h, the reaction mixture was quenched with saturated aqueous Na₂S₂O₃, and diluted with Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O.

The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was filtered through a short column of silica gel (hexanes/ethyl acetate, 1 : 1) to afford the *pure* diol **8** (337.4 mg, 60% for two steps) as a colorless oil: $[\alpha]^{25} = +1.31$ (*c* 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.79–7.77 (m, 2 H), 7.35–7.27 (m, 5 H), 7.26–7.25 (m, 2 H), 7.20–7.18 (m, 2 H), 6.87–6.85 (m, 2 H), 4.86 (dt, *J* = 6.6, 4.5 Hz, 1 H), 4.45 (AB, *J*_{AB} = 12.0 Hz, $\Delta v_{AB} = 16.70$ Hz, 2 H), 4.34 (AB, *J*_{AB} = 11.4 Hz, $\Delta v_{AB} = 118.84$ Hz, 2 H), 4.09 (ddd, *J* = 8.3, 6.8, 4.6 Hz, 1 H), 3.90 (ddd, *J* = 6.0, 4.4, 2.8 Hz, 1 H), 3.87 (dt, *J* = 8.7, 4.5 Hz, 1 H), 3.80 (s, 3 H), 3.63 (ddd, *J* = 9.1, 4.7, 3.3 Hz, 1 H), 3.49–3.45 (m, 2 H), 3.17 (dt, *J* = 8.7, 4.5 Hz, 1 H), 2.40 (s, 3 H), 2.11 (ddd, *J* = 14.1, 8.3, 6.0 Hz, 1 H), 2.05 (ddd, *J* = 14.9, 9.1, 4.5 Hz, 1 H), 1.98 (ddd, *J* = 13.9, 6.8, 2.8 Hz, 1 H), 1.92–1.82 (m, 2 H), 1.74 (ddd, *J* = 14.9, 9.1, 4.5 Hz, 1 H), 1.45–1.38 (m, 1 H), 1.39–1.31 (m, 1 H), 0.89 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.0, 144.5, 138.4, 133.9, 130.0, 129.5, 129.0, 128.2, 127.7, 127.5, 127.4, 113.6, 80.6, 79.6, 78.0, 77.3, 75.3, 72.8, 70.4, 69.6, 67.3, 55.1, 35.5, 33.0, 29.1, 26.1, 21.4, 9.9; HRMS (FAB-magnetic sector) *m/z*: [M+H]⁺ Calcd for C₃₄H₄₅O₉S 629.2784; Found 629.2787.

Preparation of Adjacent Bis-THF 21

To a cooled (0 °C) solution of diol **8** (51.1 mg, 0.0813 mmol) in THF/DMF (1 : 1, 8.13 mL, 0.01 M) was added sodium hydride (16.26 mg, 0.406 mmol). After being stirred for 16 h at room temperature, the reaction mixture was quenched with saturated aqueous NH₄Cl and diluted with Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 2 : 1) to afford the adjacent bis-THF **21** (31.2 mg, 84%) as a colorless oil: $[\alpha]^{24}_{D}$ = +18.1 (*c* 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.34–7.29 (m, 4 H), 7.28–7.25 (m, 1 H), 7.21–7.18 (m, 2 H), 6.87–6.85 (m, 2 H), 4.50–4.43 (m, 3 H), 4.25 (d, *J* = 11.7 Hz, 1 H), 4.18–4.13 (m, 2 H), 3.99–3.96 (m, 2 H), 3.90 (ddd, *J* = 6.1, 4.0, 1.7 Hz, 1 H), 3.83 (d, *J* = 11.1 Hz, 1 H), 3.80 (s, 3 H), 3.58–3.52 (m, 3 H), 2.28 (dd, *J* = 14.0, 2.6 Hz, 1 H), 2.19

(ddd, J = 13.9, 8.9, 6.4 Hz, 1 H), 2.16–2.08 (m, 2 H), 2.06–2.01 (m, 1 H), 1.78–1.66 (m, 2 H), 1.61 (ddd, J = 14.1, 7.0, 1.7 Hz, 1 H), 0.97 (t, J = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 138.5, 130.1, 129.0, 128.3, 127.7, 127.5, 113.8, 86.2, 80.5, 79.3, 78.6, 78.2, 72.9, 70.7, 70.4, 67.4, 55.3, 34.5, 33.6, 28.9, 21.9, 10.5; HRMS (EI-magnetic sector) m/z: [M]⁺ Calcd for C₂₇H₃₆O₆ 456.2512; Found 456.2510.

Preparation of Adjacent Bis-THF 21⁵

Diol 8 (178.4 mg, 0.284 mmol) was dissolved in pyridine (28 mL, 0.01 M), and the resulting solution was refluxed for 7 h. The reaction mixture was cooled to room temperature, concentrated *in vacuo*, and diluted with Et₂O and H₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 3 : 1) to afford the adjacent bis-THF **21** (110.9 mg, 86%) as a colorless oil.

Construction of 7,12-Dibromo Adjacent bis-THF 6: S18 ~ S23

Scheme ESI-03. Synthesis of 7,12-Dibromo-Adjacent Bis-THF 6 in Step-By-Step Manner

Preparation of 12-Bromo-Adjacent bis-THF SI-A-09

[Chloromethanesulfonylation] To a cooled (0 °C) solution of 12-hydroxy-adjacent bis-THF 21 (272.9 mg, 0.598 mmol) in CH₂Cl₂ (6 mL, 0.1 M) were dropwise added 2,6-lutidine (1.11 mL, 9.56 mmol) and chloromethanesulfonyl chloride (McCl, 0.434 mL, 4.78 mmol). The resulting mixture was stirred for 1 h at the same temperature, quenched with saturated aqueous NaHCO₃, and diluted with CH₂Cl₂. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with H₂O and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was filtered through a short pad of silica gel (hexanes/ethyl acetate, 4 : 1) to afford the crude chloromethanesulfonate SI-A-08 (296.0 mg, 92%) as a brown oil: $[\alpha]^{24}_{D} = +15.4$ (c 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) & 7.35–7.31 (m, 4 H), 7.29–7.27 (m, 1 H), 7.22–7.20 (m, 2 H), 6.87–6.84 (m, 2 H), 5.23 (ddd, J = 6.0, 3.3, 1.4 Hz, 1 H), 4.56 (s, 2 H), 4.49 (AB, $J_{AB} = 11.9$ Hz, $\Delta v_{AB} = 21.76$ Hz, 2 H), 4.39 (AB, $J_{AB} = 11.5$ Hz, $\Delta v_{AB} = 138.66$ Hz, 2 H), 3.94–3.87 (m, 4 H), 3.80 (s, 3 H), 3.67 (ddd, *J* = 7.2, 6.1, 3.3 Hz, 1 H), 3.59–3.56 (m, 2 H), 2.49–2.44 (m, 1 H), 2.35 (ddd, *J* = 15.2, 5.0, 1.4 Hz, 1 H), 2.20 (ddd, J = 13.4, 7.5, 5.7 Hz, 1 H), 2.05 (ddd, J = 13.7, 4.8, 1.9 Hz, 1 H), 2.01–1.98 (m, 2 H), 1.79–1.71 (m, 2 H), 1.03 (t, J = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 138.6, 130.3, 129.1, 128.3, 127.6, 127.5, 113.7, 85.6, 83.7, 79.9, 79.7, 79.3, 78.7, 72.8, 70.4, 67.6, 55.2, 54.2, 36.4, 34.7, 29.6, 22.2, 10.5. [S_N2 Displacement] To a solution of the above crude chloromethanesulfonate SI-A-08 in THF (30 mL, 0.018 M) was added tetrabutylammonium bromide (TBAB, 1.78 g, 5.54 mmol). After being stirred at 50 °C for 2 h, the reaction mixture was cooled to room temperature, quenched with H₂O, and diluted with Et₂O. The layers were separated and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 5:1 to 4:1) to afford 12-bromo-adjacent bis-THF SI-A-09 (198.5 mg, 69% yield for two steps) as a colorless oil: $[\alpha]^{25}_{D} = +29.8$ (c 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.35– 7.31 (m, 4 H), 7.29–7.26 (m, 1 H), 7.22–7.20 (m, 2 H), 6.87–6.85 (m, 2 H), 4.48 (AB, $J_{AB} =$ 12.0 Hz, $\Delta v_{AB} = 22.48$ Hz, 2 H), 4.38 (AB, $J_{AB} = 11.6$ Hz, $\Delta v_{AB} = 142.39$ Hz, 2 H), 4.15 (q, J = 6.8 Hz, 1 H), 4.00–3.94 (m, 2 H), 3.93–3.88 (m, 2 H), 3.85 (dt, J = 8.2, 6.0 Hz, 1 H), 3.80 (s, 3 H), 3.57 (t, J = 6.5 Hz, 2 H), 2.48 (dt, J = 13.7, 6.9 Hz, 1 H), 2.28 (ddd, J = 13.7, 7.0, 5.2 Hz, 1 H), 2.17 (ddd, J = 14.0, 8.2, 5.9 Hz, 1 H), 2.04–1.96 (m, 2 H), 1.93 (ddd, J = 13.8, 6.1, 2.3 Hz, 1 H), 1.69–1.62 (m, 1 H), 1.51 (dp, J = 14.5, 7.3 Hz, 1 H), 0.98 (t, J = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 138.6, 130.3, 129.1, 128.3, 127.6, 127.4, 113.7, 88.4, 80.2, 79.7, 79.1, 78.5, 72.8, 70.4, 67.6, 55.2, 49.3, 38.5, 34.6, 29.5, 26.5, 10.0; HRMS (EI-magnetic sector) m/z: [M]⁺ Calcd for C₂₇H₃₅BrO₅ 518.1668; Found 518.1669.

Preparation of 7-Hydroxyl- 12-Bromo-Adjacent Bis-THF SI-A-10

To a cooled (0 °C) solution of 12-bromo-adjacent bis-THF SI-A-09 (283.8 mg, 0.546 mmol) in CH₂Cl₂/H₂O (10 : 1, 11 mL, 0.05 M) was added 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ, 186.6 mg, 0.820 mmol). After being stirred for 2 h at the room temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ and diluted with CH₂Cl₂. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 4:1) to afford 7-hydroxyl-12-bromo-adjacent bis-THF SI-A-10 (196.2 mg, 88%) as a colorless oil: $[\alpha]^{24}D = +23.2$ (c 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.31 (m, 4 H), 7.29– 7.26 (m, 1 H), 4.52 (s, 2 H), 4.35 (ddd, J = 8.4, 6.9, 3.0 Hz, 1 H), 4.09–4.04 (m, 3 H), 3.93 (ddd, J = 7.8, 5.8, 4.8 Hz, 1 H), 3.80 (dt, J = 6.9, 3.4 Hz, 1 H), 3.64 (dt, J = 9.5, 5.3 Hz, 1 H), 3.59 (ddd, J = 9.5, 8.5, 4.5 Hz, 1 H), 3.45 (d, J = 8.5 Hz, 1 H), 2.29–2.19 (m, 3 H), 2.09–2.03 (m, 1 H), 2.01-2.96 (m, 1 H), 1.79 (ddd, J = 14.0, 4.0, 1.1 Hz, 1 H), 1.70 (dddd, J = 15.0, 12.6, 1.1 Hz, 1 H), 1.70 (dddd, J = 15.0, 12.6, 1.1 Hz, 1 H), 1.70 (dddd, J = 15.0, 12.6, 1.1 Hz, 1 H), 1.70 (dddd, J = 15.0, 12.6, 1.1 Hz, 6.9, 5.1 Hz, 1 H), 1.60–1.53 (m, 1 H), 1.01 (t, J = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 138.1, 128.4, 127.66, 127.64, 88.8, 81.9, 79.2, 78.2, 73.1, 71.6, 67.4, 48.4, 38.6, 35.4, 29.2, 26.4, 10.1; HRMS (EI-magnetic sector) m/z: [M]⁺ Calcd for C₁₉H₂₇BrO₄ 398.1093; Found 398.1094.

Preparation of 7,12-Dibromo-Adjacent Bis-THF 6

[Chloromethanesulfonylation] To a cooled (0 °C) solution of 7-hydroxyl-12-bromo-adjacent bis-THF SI-A-10 (196.2 mg, 0.491 mmol) in CH₂Cl₂ (5 mL, 0.1 M) were dropwise added 2,6lutidine (0.916 mL, 7.86 mmol) and chloromethanesulfonyl chloride (McCl, 0.357 mL, 3.93 mmol). The resulting mixture was stirred for 1 h at the same temperature, quenched with saturated aqueous NaHCO₃, and diluted with CH₂Cl₂. The layers were separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with H2O and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was filtered through a short pad of silica gel (hexanes/ethyl acetate, 4 : 1) to afford the crude chloromethanesulfonate SI-A-11 (237.9 mg, 95%) as a brown oil: $\left[\alpha\right]^{24}D = +14.9$ (c 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.28 (m, 5 H), 5.22 (ddd, J = 6.2, 3.3, 1.2 Hz, 1 H), 4.54 (AB, $J_{AB} = 12.7$ Hz, $\Delta v_{AB} = 23.66$ Hz, 2 H), 4.50 (AB, $J_{AB} = 11.8$ Hz, $\Delta v_{AB} = 12.44$ Hz, 2 H), 4.16 (td, J = 6.9, 5.6 Hz, 1 H), 4.01 (dt, J = 7.3, 5.4 Hz, 1 H), 3.99–3.95 (m, 2 H), 3.88 (dt, J = 8.6, 5.8 Hz, 1 H), 3.66–3.59 (m, 2 H), 2.53 (ddd, J = 15.0, 8.6, 6.2 Hz, 1 H), 2.40 (dt, J = 14.3, 7.2 Hz, 1 H), 2.33 (ddd, J = 13.8, 6.9, 5.1 Hz, 1 H), 2.23 (ddd, J = 15.3, 5.9, 1.2)Hz, 1 H), 2.10–2.04 (m, 1 H), 1.99 (ddt, *J* = 14.3, 7.9, 4.9 Hz, 1 H), 1.69–1.62 (m, 1 H), 1.52 (td, J = 14.4, 7.4 Hz, 1 H), 0.98 (t, J = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 138.3, 128.5, 127.9, 127.8, 88.7, 85.8, 79.6, 79.5, 78.9, 73.2, 67.0, 54.2, 49.0, 38.7, 36.8, 29.3, 26.7, 10.0. [S_N2 Displacement] To a solution of the chloromethanesulfonate SI-A-11 (117.5 mg, 0.246 mmol) in THF (14 mL, 0.018 M) was added tetrabutylammonium bromide (TBAB, 0.79 g, 2.46 mmol). After being stirred at 50 °C for 3 h, the reaction mixture was cooled to room temperature, quenched with H₂O, and diluted with Et₂O. The layers were separated and the aqueous layer was extracted with Et2O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 15:1 to 10:1) to afford 7,12-dibromoadjacent bis-THF 6 (88.9 mg, 74% for two steps) as a colorless oil: $[\alpha]^{25}_{D} = -12.6$ (c 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.37–7.33 (m, 4 H), 7.30–7.27 (m, 1 H), 4.52 (AB, J_{AB} = 11.9 Hz, Δv_{AB} = 11.38 Hz, 2 H), 4.22 (dt, J = 7.7, 5.0 Hz, 1 H), 4.15–4.09 (m, 3 H), 4.00 (dt, J = 7.4, 5.2 Hz, 1 H), 3.96–3.93 (m, 1 H), 3.64–3.56 (m, 2 H), 2.33–2.26 (m, 4 H), 1.97 (dddd, J = 14.0, 7.7, 6.3, 4.8 Hz, 1 H), 1.77 (ddt, J = 13.6, 7.8, 5.7 Hz, 1 H), 1.65 (dtd, J = 14.9, 7.4, 5.0 Hz, 1 H), 1.50 (dp, J = 14.6, 7.4 Hz, 1 H), 0.97 (t, J = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 138.4, 128.4, 127.8, 127.7, 88.8, 85.1, 79.6, 79.4, 73.2, 66.8, 49.6, 48.9, 39.1, 38.7, 34.0, 26.8, 10.1; HRMS (EI-magnetic sector) m/z: [M]⁺ Calcd for C₁₉H₂₆Br₂O₃ 460.0249; Found 460.0243.

Scheme ESI-04. Synthesis of 7,12-Dibromo-Adjacent Bis-THF 6 in Double Bromination

Preparation of 7,12-Dihydroxy-Adjacent Bis-THF Diol 7

To a cooled (0 °C) solution of 12-dihydroxy-adjacent bis-THF **21** (110.8 mg, 0.243 mmol) in CH₂Cl₂/H₂O (10 : 1, 11 mL, 0.022 M) was added 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ, 208.8 mg, 0.972 mmol). After being stirred for 5 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ and diluted with CH₂Cl₂. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 2 : 1) to afford 7,12-dihydroxy-adjacent bis-THF **7** (75.1 mg, 92%) as a colorless oil: $[\alpha]^{24}$ D = +23.2 (*c* 1.00, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.33 (m, 2 H), 7.31–7.28 (m, 3 H),

4.51 (AB, $J_{AB} = 11.7$ Hz, $\Delta v_{AB} = 14.46$ Hz, 2 H), 4.23 (dtd, J = 7.0, 3.5, 1.4 Hz, 1 H), 4.17– 4.12 (m, 2 H), 4.02 (ddt, J = 10.1, 4.2, 2.0 Hz, 1 H), 3.80 (ddd, J = 9.4, 5.1, 3.3 Hz, 1 H), 3.67 (ddd, J = 9.4, 4.9, 3.7 Hz, 1 H), 3.56–3.51 (m, 2 H), 3.46 (d, J = 10.2 Hz, 1 H), 3.37 (d, J = 3.7 Hz, 1 H), 2.32 (dddd, J = 14.0, 9.2, 6.8, 0.8 Hz, 1 H), 2.23–2.14 (m, 3 H), 2.02 (dtd, J = 14.5, 4.9, 2.5 Hz, 1 H), 1.75–1.67 (m, 2 H), 1.63 (ddd, J = 14.1, 6.6, 1.5 Hz, 1 H), 0.97 (t, J = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 137.5, 128.5, 127.9, 127.8, 86.0, 83.4, 79.1, 78.7, 73.6, 71.7, 70.9, 67.1, 36.2, 34.3, 28.6, 21.8, 10.5; HRMS (FAB-magnetic sector) *m/z*: [M+H]⁺ Calcd for C₁₉H₂₉O₅ 337.2015; Found 337.2017.

Preparation of 7,12-Dibromo-Adjacent Bis-THF 6 by Modified Nakata Two-Step Protocol.

[Chloromethanesulfonylation] To a cooled (0 °C) solution of 7,12-dihydroxy-adjacent bis-THF 7 (42.5 mg, 0.126 mmol) in CH₂Cl₂ (5 mL, 0.025 M) were dropwise added 2,6-lutidine (0.294 mL, 2.52 mmol) and chloromethanesulfonyl chloride (McCl, 0.069 mL, 0.738 mmol). The resulting mixture was stirred for 4 h at room temperature, quenched with saturated aqueous NaHCO₃, and diluted with CH₂Cl₂. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with H₂O and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was filtered through a short pad of silica gel (hexanes/ethyl acetate, 10:1) to afford the crude bis-chloromethanesulfonate SI-A-12 as a brown oil, which was immediately employed to the next step without further purification. [S_N2 Displacement] To a solution of the above crude bis-chloromethanesulfonate SI-A-12 in THF (15 mL) was added tetrabutylammonium bromide (TBAB, 407.3 mg, 1.26 mmol). After being stirred at 70 °C for 3 h, the reaction mixture was cooled to room temperature, quenched with H2O, and diluted with Et2O. The layers were separated and the aqueous layer was extracted with Et2O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 40 : 1 to 10 : 1) to afford 7,12-dibromoadjacent bis-THF 6 (40.3 mg, 69% yield for two steps) as a colorless oil.

Preparation of 7,12-Dibromo-Adjacent Bis-THF 6 by Hooz One-Step Protocol.

To a solution of 7,12-dihydroxy-adjacent bis-THF 7 (30.3 mg, 0.0901 mmol) in dry toluene (3.60 mL, 0.025 M) were added CBr₄ (14.6 mg, 0.0440 mmol) and Ph₃P (116 mg, 0.442 mmol) at room temperature. After being stirred at 80 °C for 2 h, the reaction mixture was cooled to rt, quenched with saturated aqueous NaHCO₃, and diluted with Et₂O. The layers were separated, the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 20 : 1) to afford 7,12-dibromo-adjacent bis-THF **6** (24.2 mg, 58%).

Completion of Total Synthesis of (3Z)- and (3E)-Elatenynes: S25 ~ S29

Preparation of Primary Alcohol SI-A-13

To a solution of 7,12-dibromo-adjacent bis-THF **6** (88.9 mg, 0.192 mmol) in EtOH/EtOAc (1 : 1, 20 mL, 0.01 M) was added palladium on carbon (Pd/C, 88.0 mg, 0.827 mmol) under H₂ gas. After being stirred for 1 h at the room temperature, the reaction mixture was filtered through a pad of celite and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 5 : 1) to afford primary alcohol **SI-A-13** (65.2 mg, 91%) as a colorless oil: $[\alpha]^{25}_{D} = -2.63$ (*c* 0.99, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 4.21–4.15 (m, 3 H), 4.04–3.99 (m, 2 H), 3.95 (dt, *J* = 7.4, 5.1 Hz, 1 H), 3.82–3.77 (m, 2 H), 2.39 (ddd, *J* = 13.8, 7.6, 6.4 Hz, 1 H), 2.33–2.27 (m, 3 H), 2.25–2.22 (m, 1 H), 2.03–1.98 (m, 1 H), 1.76–1.70 (m, 1 H), 1.66 (dqd, *J* = 15.0, 7.5, 5.0 Hz, 1 H), 1.54–1.47 (m, 1 H), 0.98 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 88.8, 86.4, 79.8, 79.1, 60.5, 48.7, 48.6, 38.9, 38.1, 35.2, 26.8, 10.1; HRMS (FAB-magnetic sector) *m/z*: [M+H]⁺ Calcd for C₁₂H₂₁Br₂O₃ 370.9857; Found 370.9854.

Preparation of Aldehyde 22

To a cooled (0 °C) solution of primary alcohol **SI-A-13** (13.6 mg, 0.0366 mmol) in CH₂Cl₂ (2.2 mL, 0.017 M) was added NaHCO₃ (4.60 mg, 0.0548 mmol) and dess-martin periodinane (46.5 mg, 0.110 mmol). After being stirred for 2 h at the room temperature, the reaction mixture was quenched with hexane and filtered through a pad of column washing with EtOAc. The residue was concentrated *in vacuo* and purified by column chromatography (silica gel, hexanes/ethyl acetate, 4 : 1) to afford aldehyde **22** (13.0 mg, 96%) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.78 (dd, *J* = 2.3, 1.6 Hz, 1 H), 4.47 (ddd, *J* = 8.1, 6.5, 4.1 Hz, 1 H), 4.19–4.13 (m, 2 H), 4.03–3.97 (m, 2 H), 3.93 (dt, *J* = 7.5, 5.0 Hz, 1 H), 2.79 (ddd, *J* = 16.5, 4.1, 1.6 Hz, 1 H), 2.64 (ddd, *J* = 16.5, 8.2, 2.3 Hz, 1 H), 2.43 (ddd, *J* = 13.8, 7.7, 6.1 Hz, 1 H), 2.36–2.27 (m, 2 H), 2.25–2.21 (m, 1 H), 1.66 (dqd, *J* = 13.8, 7.5, 5.0 Hz, 1 H), 1.49 (dt, *J* = 13.9, 7.4 Hz, 1 H), 0.98 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 199.4, 88.8, 81.94, 81.89,

79.9, 79.0, 48.6, 47.6, 38.9, 37.9, 26.7, 10.0.

Preparation of TMS-(3Z)-Enyne SI-A-14

To a cooled (-78 °C) solution of aldehyde **22** (14.1 mg, 0.0381 mmol) and sulfone **D** (117.9 mg, 0.381 mmol) in anhydrous THF (9 mL, 0.0042 M) was dropwise added KHMDS (0.61 mL, 0.5 M solution in toluene, 0.30 mmol). After being stirred for 30 min at 0 °C, the reaction mixture was quenched with H₂O and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, 50 : 1) to afford TMS-(3*Z*)-enyne **SI-A-14** (12.4 mg, 70%, *Z/E* = 31 : 1, see page S101) as a colorless oil: $[\alpha]^{24}$ D = +2.1 (*c* 0.81, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 5.99 (dt, *J* = 10.9, 7.5 Hz, 1 H), 5.64–5.62 (m, 1 H), 4.22 (q, *J* = 5.7 Hz, 1 H), 4.18–4.13 (m, 2 H), 4.08 (q, *J* = 5.5 Hz, 1 H), 4.00 (dt, *J* = 7.5, 5.2 Hz, 1 H), 3.95 (q, *J* = 5.7 Hz, 1 H), 2.67 (dt, *J* = 13.7, 6.7 Hz, 1 H), 2.56 (dt, *J* = 14.2, 6.8 Hz, 1 H), 2.34–2.31 (m, 4 H), 1.70–1.63 (m, 1 H), 1.54–1.47 (m, 1 H), 0.98 (t, *J* = 7.4 Hz, 3 H), 0.21 (s, 9 H); ¹³C NMR (150 MHz, CDCl₃) δ 139.0, 112.3, 101.3, 99.9, 88.7, 86.6, 79.7, 79.2, 48.8, 48.5, 38.9, 38.7, 34.4, 26.7, 10.0, –0.04; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₁₈H₂₈Br₂O₂Si 462.0225; Found 462.0219.

Preparation of (3Z)-Elatenyne (1a)

To a cooled (-20 °C) solution of TMS-(3Z)-enyne **SI-A-14** (9.8 mg, 0.0211 mmol) in THF (4.2 mL, 0.005 M) was dropwise added tetrabutylammonium fluoride (0.0593 mL, 0.211 mmol). After being stirred for 30 min at the same temperature, the reaction mixture was quenched with

saturated aqueous NH4Cl and diluted with Et₂O. The layers were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, diethyl ether/ethyl acetate, 50 : 1) to afford (3*Z*)-elatenyne (**1a**) (6.5 mg, 79%) as a colorless oil: $[\alpha]^{24}_{D} = -1.66$ (*c* 0.18, CH₂Cl₂), $[\alpha]^{23}_{D} = -1.90$ (*c* 0.62, CHCl₃); {lit. nat.^{6a} $[\alpha]^{25}_{D} = +16.8$ (c 1.4, CH₂Cl₂)}, {nat.^{6b} $[\alpha]^{25}_{D} = -10.0$ (*c* 0.0498, CH₂Cl₂)}, {syn.^{6c} $[\alpha]^{25}_{D} = -4.00$ (*c* 0.25, CHCl₃), $[\alpha]^{25}_{D} = -1.6$ (*c* 0.25, CH₂Cl₂)}, {syn.^{6c} For *ent*-1a; $[\alpha]^{25}_{D} = +0.85$ (*c* 0.714, CHCl₃), $[\alpha]^{25}_{D} = +0.80$ (*c* 0.714, CH₂Cl₂)}; ¹H NMR (600 MHz, CDCl₃) δ 6.06 (ddt, *J* = 10.9, 8.6, 1.0 Hz, 1 H), 5.60 (ddt, *J* = 10.9, 2.6, 1.4 Hz, 1 H), 4.22 (q, *J* = 5.7 Hz, 1 H), 4.18–4.13 (m, 2 H), 4.06 (dt, *J* = 6.9, 5.1 Hz, 1 H), 4.01 (dt, *J* = 7.4, 5.1 Hz, 1 H), 3.97 (dd, *J* = 6.5, 5.5 Hz, 1 H), 3.13 (dd, *J* = 2.3, 0.9 Hz, 1 H), 2.70–2.65 (m, 1 H), 2.60–2.56 (m, 1 H), 2.35–2.30 (m, 4 H), 1.70–1.63 (m, 1 H), 1.53–1.47 (m, 1 H), 0.98 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 139.8, 111.1, 88.7, 86.4, 82.4, 79.93, 79.76, 79.2, 48.9, 48.5, 38.9, 38.7, 34.5, 26.7, 10.0; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₁₅H₂₀Br₂O₂ 389.9830; Found 389.9825.

Preparation of (3*E*)–Enal SI-A-15

To a solution of aldehyde **23** (13.0 mg, 0.0351 mmol) in dry benzene (0.351 mL, 0.1 M) was added (triphenylphosphoranylidene)acetaldehyde (64.15 mg, 0.211 mmol) at 80 °C. After being stirred at the same temperature for 3 h, the reaction mixture was cooled to rt, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 10 : 1) to afford (3*E*)–enal **SI-A-15** (12.9 mg, 93%) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 9.53 (d, *J* = 7.8 Hz, 1 H), 6.85 (dt, *J* = 15.7, 7.0 Hz, 1 H), 6.21 (ddt, *J* = 15.7, 7.8, 1.5 Hz, 1 H), 4.19–4.14 (m, 3 H), 4.02 (dt, *J* = 7.5, 5.2 Hz, 1 H), 3.96–3.91 (m, 2 H), 2.74 (dddd, *J* = 15.2, 6.7, 4.4, 1.5 Hz, 1 H), 2.55 (dtd, *J* = 15.0, 7.3, 1.4 Hz, 1 H), 2.41 (ddd, *J* = 13.7, 7.8, 6.1 Hz, 1 H), 2.35–2.28 (m, 2 H), 2.23 (dt, *J* = 13.8, 7.5 Hz, 1 H), 1.65 (dtd, *J* = 14.9, 7.5, 5.0 Hz, 1 H), 1.53–1.45 (m, 1 H), 0.97 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 193.6, 152.5, 135.2, 88.8, 85.1, 79.7, 79.0, 48.6, 47.4, 39.0, 38.0, 36.1, 26.7, 10.0.

Preparation of (3*E*)-Elatenyne (1b)

To a cooled (-78 °C) solution of LDA (1.33 mL, 0.66 mmol) in THF (1.33 mL, 0.05 M) was added dropwise TMSCH₂N₂ (0.37 mL, 1.8 M in hexane, 0.66 mmol) under N₂ atmosphere. After the mixture was stirred at the same temperature for 30 min, (3*E*)-enal SI-A-15 (26.3 mg, 0.0664 mmol) in THF (1 mL) was dropwise added at the same temperature. After being stirred for 3 h at 0 °C, the reaction mixture was guenched with saturated aqueous NH₄Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 50:1) to afford (3*E*)-elatenyne (1b) (13.6 mg, 52%) as a colorless oil: $[\alpha]^{24}_{D} = -28.3$ (c 0.66, CHCl₃); $[\alpha]^{24}_{D} = -22.3$ (c 0.25, CH₂Cl₂); {lit. syn.^{6d} $[\alpha]^{25}_{D} = -33.0$ $(c \ 0.09, \ CH_2Cl_2)$ }, {For *ent*-1b, lit. syn.^{6d} $[\alpha]^{25}D = +29.5$ (*c* 0.35, CH₂Cl₂)}; ¹H NMR (600) MHz, CDCl₃) δ 6.23 (dt, J = 15.9, 7.2 Hz, 1 H), 5.57 (dq, J = 16.0, 1.8 Hz, 1 H), 4.15–4.10 (m, 3 H), 4.01 (dt, J = 7.4, 5.2 Hz, 1 H), 3.94 (dg, J = 7.4, 5.2 Hz, 2 H), 2.83 (d, J = 2.2 Hz, 1 H), 2.48 (dddd, J = 14.0, 6.9, 4.9, 1.6 Hz, 1 H), 2.37–2.25 (m, 5 H), 1.66 (dtd, J = 14.9, 7.5, 5.0 Hz, 1 H), 1.50 (dp, J = 14.7, 7.4 Hz, 1 H), 0.99 (t, J = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) § 140.6, 111.9, 88.7, 85.9, 81.8, 79.6, 79.1, 76.7, 48.7, 47.8, 38.9, 38.4, 36.5, 26.7, 10.0; HRMS (EI-magnetic sector) *m/z*: [M]⁺ Calcd for C₁₅H₂₀Br₂O₂ 389.9830; Found 389.9834.

References: S29

- (1) (a) I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, High-Field FT NMR Application of Mosher's Method. The Absolute Configuration of Marine Terpenoids, *J. Am. Chem. Soc.*, 1991, 113, 4092–4096. (b) J. A. Dale and H. S. Mosher, Nuclear Magnetic Resonance Enantiomer Regents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, *O*-Methylmandelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) Esters, *J. Am. Chem. Soc.*, 1973, 95, 512–519.
- (2) G. E. Keck and E. P. Boden, Stereocontrolled additions of allyltri-n-butyl-stannane to α-hydro xyaldehyde derivatives. A useful route to monoprotected erythro or threo diols, *Tetrahedron Lett.*, 1984, **25**, 265–268.
- (3) H. Kim, W. J. Choi, J. Jung, S. Kim and D. Kim, Construction of Eight-Membered Ether Rings by Olefin Geometry-Dependent Internal Alkylation: First Asymmetric Total Syntheses of (+)-3-(*E*)- and (+)-3-(*Z*)-Pinnatifidenyne, *J. Am. Chem. Soc.*, 2003, **125**, 10238–10240.
- (4) A. K. Chatterjee, T. -L. Choi, D. P. Sanders and R. H. Grubbs, A General Model for Selectivity in Olefin Cross Metathesis, *J. Am. Chem. Soc.*, 2003, **125**, 11360–11370.
- (5) J. A. Marshall and J. J. Sabatini, Synthesis of *cis* and *trans*-2,5-Disubstituted Tetrahydrofurans by a Tandem Dihydroxylation-S_N2 Cyclization Sequence, *Org. Lett.*, 2005, 7, 4819–4822.
- (6) (a) J. G. Hall and J. A. Reiss, Elatenyne a Pyrano[3,2-B]Pyranyl Vinyl Acetylene from the Red Alga Laurencia elata, *Aust. J. Chem.*, 1986, **39**, 1401–1409; (b) R. Brkljača and S. Urban, Relative Configuration of the Marine Natural Product Elatenyne using NMR Spectroscopic and Chemical Derivatization Methodologies, *Nat. Prod. Commun.* 2013, **8**, 729–732; (c) D. A. Dias and S. Urban, Phytochemical studies of the southern Australian marine alga, *Laurencia elata, Phytochemistry*, 2011, **72**, 2081–2089; (d) B. S. Dyson, J. W. Burton, T. I. Sohn, B. Kim, H. Bae and D. Kim, Total Synthesis and Structure Confirmation of Elatenyne: Success of Computational Methods for NMR Prediction with Highly Flexible Diastereomers, *J. Am. Chem. Soc.*, 2012, **134**, 11781–11790.

- Electronic Supplementary Information: Part B -

Stereoselective total synthesis of (3*Z*)- and (3*E*)-elatenynes

Soo Yeon Kwak,^{a‡} Iljin Shin,^{a‡} Hongjun jang,^a Youngjik Park,^a Seongju Lim,^a Dongjoo Lee,^a Hyoungsu Kim,*^a and Deukjoon Kim^b

^aCollege of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea

^bThe Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea

[‡]These authors contributed equally to this work.

* E-mail: hkimajou@ajou.ac.kr

Part B (S30 ~ S113) Copies of ¹H, ¹³C NMR, and Other NMR

f1 (ppm)

SK-11-96 single pulse decoupled gated NOE	170.7837	— 138.1157	√ 128.4089 √ 127.6796	ט איז מ מ		^{72.8621} ^{72.6384} ^{66.5859} ^{65.7674}	35.7268 35.6974 35.3359 31.2271	
$ \begin{array}{c} Br \\ OH \\ H \\ OBn \\ H \\ 150 \text{ MHz}^{13}\text{C NMR, CDCl}_{3} \end{array} $								
	1							
1/101/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	Щиниция и мали и мали ция 170 160 150 -	ңи иңин 140	Мани Милини Милини Милини 130 120 110 f	100 90 1 (ppm)	WM14	 		Windin Hulin Hu 10 – 20

₩

^{).5} 2.0 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 0.5 6.5 1.5 1.0 0.0 -0.5 _ f1 (ppm) **S37**

169.0225

3387	5262 3833 3848 3848	
79.8	73.1 72.1 70.	
	1221	

36.4396 35.4132 34.6103	29.2974	18.1423	12.7212
512			

-10 -20 b f1 (ppm)

S47

SK-11-115 single pulse decoupled gated NOE		- 138.6130 128.2912 127.4316 127.4316	$ = 80.5391 \\ 74.1006 \\ 72.9876 \\ - 67.9328 \\ - 67.9328 $		 < 18.0912 < 18.0540 <!--</th-->
OTIPS V trans N tra					
sources for the second of the	novient filmstansistationet werden werden sold and and a sold and a	Manuful (Jakan wang dan Juli na ang dan ka dan ga na gang ang ang ang ang ang ang an	http://willing.com/internation/formation/fo	uly rikky i ky	Handlan Alamanda Hananda ya Annanda Alamanda Alamanda Alamanda Alamanda Alamanda Alamanda Alamanda Alamanda Al
220 210 200 190 180	170 160 150 14	140 130 120 110 100 90 f1 (ppm) S49	80 70 60 50	40 30	20 10 0 -10 -20

f1 (ppm)

SK-11-119-DATA-1 single pulse decoupled gated NOE		$ - 137.3176 \\ - 128.5978 \\ - 128.0130 \\ - 127.7931 \\ - $	83.4790	$\sum_{73.664}$ 73.6647 $\sum_{72.6303}$ 66.9457	₹ 37.2285 35.7633 	-0.0244
OH N H O H O H O O H O O D O D O D O D O D O						
	1000		nasten ansarane			

150 140 130 210 200 190 180 170 160 110 100 -10 -20 f1 (ppm) **S54**

).0

9.5

f1 (ppm)

___159.1021

1226 1856 1856 1856 1857 1857 1857 1857 1955 1075	
83.8 79.2 72.8 70.5 67.5	
2512515	

55.2476

1010 0209 4462 4934 5433	4610
34. 25. 21.	13.
12215	

in a file of the second second

113.6124

S77

SK-2-4-C		
single pulse decoup	led gated NOE	

159.0849		

____138.5527

120.3079 130.3079 129.1103 127.6019 127.4588	113.6949
--	----------

6128 6775 9227 7311 2783 6504	8484 4228 6450	2284 2315	3807 6835	5625	1582	4567
85. 83. 79. 79. 78.	72. 70. 67.	55.	36. 34.	29.	22.	10.
	111	17	17			

SK-2-14-C		
single pulse	decoupled g	ated NOE

		138.5597

____159.0877

138.5597	130.2630 129.0970 128.2803 127.4394	113.7116
----------	--	----------

3697	2163 69053 0677 6677 8379 8379 8379 8131 131 131 131 1902 1903 1901 1903 3082 3082	4877 5898	4906 5140
88.	40.255.557.7280. 40.555.557.728.728.725.7255.7255.7255.7255	38. 34.	29. 26.

9512
o o

- 88.6855 - 85.7514	79.6227 79.4856 78.8966	- 73.2243 67 0111	54.2150	- 48.9970	- 38.6612 - 36.8226	– 29.3494 – 26.6735	- 10.0048
1.1	Y				A I		

f1 (ppm)

86.0393	73.5578
83.3917	71.7331
79.0701	70.8723
78.6799	67.1318
115	171

36.1849 34.3019	28.6065	21.7726	10.5229
11			

SK-2-21_C single pulse decoupled gated NOE

88.8278 86.4409	79.7539 79.0796	60.4733	48.6835 48.5517	38.8782 38.0820 35.2000	26.8124	10.0521
	- 52		Y	177		

S103

Synthetic (3Z)-Elatenyne (1a), (500 MHz, CDCl_{3,} J. Am. Chem. Soc., 2012, 134, 11781–11790)

Synthetic ent-(E)-Elatenyne (ent-1b), (500 MHz, CDCl_{3,} J. Am. Chem. Soc., 2012, 134, 11781–11790)

Synthetic ent-(E)-Elatenyne (ent-1b), (500 MHz, CDCI_{3,} J. Am. Chem. Soc., 2012, 134, 11781–11790)

Kim's Synthetic (3*E*)-Elatenyne (1b), (600 MHz, CDCl₃)

- Electronic Supplementary Information: Part C -

Stereoselective total synthesis of (3*Z*)- and (3*E*)-elatenynes

Soo Yeon Kwak,^{a‡} Iljin Shin,^{a‡} Hongjun jang,^a Youngjik Park,^a Seongju Lim,^a Dongjoo Lee,^a Hyoungsu Kim,*^a and Deukjoon Kim^b

^aCollege of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea

^bThe Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea

[‡]These authors contributed equally to this work.

* E-mail: hkimajou@ajou.ac.kr

Part C (S114 ~ S140)

Copies of HRMS Spectra

Copies of Original Reports for HRMS	
Copies of Original HRMS Spectra	

Compound	Mode	Formula	m/z	Calculated	Observed	Page
13	EI	C ₁₆ H ₂₃ NO ₄	$[M]^{+}$	293.1627	293.1624	S117
14	EI	C ₁₆ H ₂₄ BrNO ₄	[M] ⁺ 373.0889		373.0884	S118
11	EI	C ₂₄ H ₃₂ BrNO ₅	$[M]^{+}$	493.1464	493.1462	S119
10	EI	C ₂₄ H ₃₁ NO ₅	$[M]^{+}$	413.2202	413.2205	S120
15	EI	C ₂₅ H ₄₄ BrNO ₄ Si	$[M]^+$	529.2223	529.2225	S121
16	EI	C ₂₅ H ₄₃ NO ₄ Si	$[M]^{+}$	449.2961	449.2961	S122
SI-A-03	EI	C ₁₆ H ₂₃ NO ₄	$[M]^{+}$	293.1627	293.1624	S123
17	EI	C ₂₄ H ₃₁ NO ₅	$[M]^{+}$	413.2202	413.2202	s124
9	EI	$C_{25}H_{32}O_5$	$[M]^{+}$	412.2250	412.2242	S125
SI-A-04	FAB	C ₂₅ H ₃₃ O ₅	$[M+H]^+$	413.2328	413.2328	S126
(S)-MTPA-SI-A-05	FAB	$C_{35}H_{40}F_{3}O_{7}$	$[M+H]^+$	629.2726	629.2719	S127
(<i>R</i>)-MTPA-SI-A-06	$\mathbf{FAB} \qquad \mathbf{C}_{35}\mathbf{H}_{40}\mathbf{F}_{3}\mathbf{O}_{7}$		$[M+H]^+$	629.2726	629.2722	S128
20	EI	$C_{27}H_{36}O_5$	$[M]^{+}$	440.2563	440.2558	S129
SI-A-07	EI	$C_{34}H_{42}O_7S$	$[M]^{+}$	594.2651	594.2654	S130
8	FAB	$C_{34}H_{45}O_9S$	$[M+H]^+$	629.2784	629.2787	S131
21	EI	$C_{27}H_{36}O_{6}$	$[M]^{+}$	456.2512	456.2510	S132
SI-A-09	EI	$C_{27}H_{35}BrO_5$	$[M]^+$	518.1668	518.1669	S133
SI-A-10	EI	$C_{19}H_{27}BrO_4$	$[M]^{+}$	398.1093	398.1094	S134
6	EI	$\mathrm{C}_{19}\mathrm{H}_{26}\mathrm{Br}_{2}\mathrm{O}_{3}$	[M] ⁺	460.0249	460.0243	S135
7	FAB	$C_{19}H_{29}O_5$	$[M+H]^+$	337.2015	337.2017	S136
SI-A-13	FAB	$\overline{C_{12}H_{21}Br_2O_3}$	[M+H] ⁺	370.9857	370.9854	S137

Copies of Original Reports for HRMS

Copies of Original Reports for HRMS

Compound	Mode	Formula	m/z Calculated		Observed	Page
SI-A-14	EI	$\mathrm{C}_{18}\mathrm{H}_{28}\mathrm{Br}_{2}\mathrm{O}_{2}\mathrm{Si}$	$[M]^+$	462.0225	462.0219	S138
(3Z)-Elatenyne (1a)	EI	$\mathrm{C_{15}H_{20}Br_2O_2}$	$[M]^{+}$	389.9830	389.9825	S139
(3E)-Elatenyne (1a)	EI	$\mathrm{C_{15}H_{20}Br_{2}O_{2}}$	$[M]^{+}$	389.9830	389.9834	S140

m/z

m/z

594.38 m∕z

m/z

Observed m/z	Int%	Err[ppm /	mmuj	0.s.	Composition
456.2509	100.0	-0.5	/ -0.2	10.0	C 27 H 36 O 6

m/z

53.5

460.0243

-1.2 / -0.5

S136

m∕z

