-Electronic Supplementary Information (ESI)-

Stereoselective total synthesis of (3Z)- and (3E)-elatenynes

Soo Yeon Kwak, ${ }^{\text {ał }}$ Iljin Shin, ${ }^{\text {ał }}{ }^{\text {H }}$ Hongjun jang, ${ }^{\text {a }}$ Youngjik Park, ${ }^{\text {a }}$ Seongju Lim, ${ }^{\text {a }}$ Dongjoo Lee, ${ }^{\text {a }}$ Hyoungsu Kim, ${ }^{* a}$ and Deukjoon Kim ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
${ }^{\mathrm{b}}$ The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
${ }^{\ddagger}$ These authors contributed equally to this work.

* E-mail: hkimajou@ajou.ac.kr

Table of Contents

ESI (Part A): Experimental Procedures and compounds
Characterizations S1~S29

ESI (Part B): Copies of NMR Spectra
S30~S113
ESI (Part C): Copies of HRMS Spectra.
.S114~S140

- Electronic Supplementary Information -

Part A (S1~S29)
Experimental Procedures and Product Characterizations

General \& Note S3
Construction of Key 7-Hydroxy-6, 7-threo-6,9-cis-THF 10 S4 ~ S10
Construction of Key C(15)-C(4) Adjacent Bis-THF 21 S11~S18
Construction of 7,12-Dibromo Adjacent bis-THF 6 $\mathbf{S 1 8 ~ S 2 4}$
Completion of Total Synthesis of (3Z)- and (3E)-Elatenyne 1a and 1b S24~S28
References S29

General \& Note: S3

General

Proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra were obtained on Varian Mercury 400 and ECZ600R. Chemical shifts are reported in ppm units with $\mathrm{Me}_{4} \mathrm{Si}$ or CHCl_{3} as the internal standard. Structural assignments were made with additional information from gCOSY, gHSQC, gHMQC, and gHMBC experiments. Specific rotation was obtained on a Jasco P-2000 (light source, WI 589 nm). High resolution mass spectra (HRMS) were recorded using electronionization (EI) and fast atom bombardment (FAB). All reactions were routinely carried out under an inert atmosphere of dry nitrogen. All reactions that required heating were carried out using oil bath. Reactions were checked by thin layer chromatography (Kieselgel 60 F254, Merck). Spots were detected by viewing under a UV light, and by colorizing with charring after dipping in p-anisaldehyde solution in a mixture of acetic acid, sulfuric acid, and methanol. In aqueous work-up, all organic solutions were dried over anhydrous sodium sulfate and filtered prior to rotary evaporation. The crude compounds were purified by column chromatography on a silica gel (Kieselgel 60, 70-230 mesh, Merck and Kieselgel 60, 63-200 mesh, Merck). Unless otherwise noted, materials and all solvents were obtained from commercial suppliers and were used without purification. Toluene and methylene chloride were dried with $4 \AA$ molecular sieve.

Note: The present Supporting Information A includes modified versions of the experimental procedures that have been already described in the literature in case the experimental procedures were improved in terms of reaction conditions, yields, selectivity, and so on, or where additional spectroscopic data are available.

Construction of Key 7-Hydroxy-6, 7-threo-6,9-cis-THF 10: S4~S10
Scheme ESI-01. Stereoselective Synthesis of Key 6,7-cis-6,9-cis-THF 10 via IAEA

Determination of ee Value and Confirmation of C(6) Absolute Stereochemistry of Secondary Alcohol $\mathbf{1 2}^{1}$

To a solution of secondary epoxy alcohol $\mathbf{1 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were successively added (R) - or $(S)-\alpha-$ methoxy- α-trifluoromethylphenylacetyl chloride (5.0 eq), $\mathrm{Et}_{3} \mathrm{~N}$ (6.0 eq), and DMAP (0.4 eq) at room temperature. After stirring for 1 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3}, diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combine layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/(ethyl acetate, $6: 1$) to afford the crude (S)-MTPA ester SI-A-01 or (R)-MTPA ester SI-A-02 as a colorless oil: [For (\boldsymbol{S})-Mosher Derivative SI-A-01] ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.55$ (m, 2 H), 7.42-7.37 (m, 3 H), 7.36-7.33 (m, 2 H), $7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42\left(\mathrm{AB}, J_{\mathrm{AB}}=11.8 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=24.4 \mathrm{~Hz}, 2\right.$ H), 3.59 (s, 3 H), 3.46 (dt, $J=9.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dt, $J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (ddd, $J=$ 7.0, 4.1, 2.5 Hz, 1 H), 2.85 (dd, $J=4.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (dd, $J=4.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.99 (q, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$) [For (R)-Mosher Derivative SI-A-02] ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-$ 7.55 (m, 2 H), $7.42-7.37$ (m, 3 H), 7.36-7.34 (m, 2 H), 7.32-7.28 (m, 3 H), 5.13 (q, J= 6.6 Hz , $1 \mathrm{H}), 4.48\left(\mathrm{AB}, J_{\mathrm{AB}}=11.8 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=15.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.59-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H})$, $3.51(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{ddd}, J=6.6,4.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=4.9$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$.

Preparation of Epoxy Amide 13

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of known epoxy alcohol $12(6.04 \mathrm{~g}, 28.99 \mathrm{mmol})$ in DMF (290 mL , $0.1 \mathrm{M})$ was added 2 -chloro- N, N-dimethylacetamide ($3.58 \mathrm{~mL}, 34.79 \mathrm{mmol}$) and sodium hydride ($2.32 \mathrm{~g}, 60 \%$ dispersion in mineral oil, 57.98 mmol). After being stirred for 12 h at
room temperature, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $1: 2$) to afford the epoxy amide $\mathbf{1 3}(10.12 \mathrm{~g}, 94 \%)$ as a colorless oil: $[\alpha]^{24} \mathrm{D}=+0.027\left(c 0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.52-4.47$ $(\mathrm{m}, 2 \mathrm{H}), 4.33\left(\mathrm{AB}, J_{\mathrm{AB}}=13.9 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=94.69 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.69-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{td}, J=$ $7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (ddd, $J=7.3,4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (s, 3 H), 2.95 ($\mathrm{s}, 3 \mathrm{H}$), 2.74-2.73 $(\mathrm{m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=4.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddt}, J=13.9,8.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,137.9,128.0,127.3,127.2,79.0,72.7,68.2,66.0$, 54.4, 42.9, 36.0, 35.2, 32.4; HRMS (EI-magnetic sector) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$ 293.1627; Found 293.1624.

Preparation of Bromohydrin Amide 14

To a solution of epoxy amide $\mathbf{1 3}(8.50 \mathrm{~g}, 28.97 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(116 \mathrm{~mL}, 0.25 \mathrm{M})$ was added tetrabutylammonium bromide ($14.01 \mathrm{~g}, 43.46 \mathrm{mmol}$) and magnesium nitrate hexahydrate (5.20 $\mathrm{g}, 20.28 \mathrm{mmol}$) in portions. After being stirred for 3 h at $80^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous $\mathrm{H}_{2} \mathrm{O}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $1: 5)$ to afford the bromohydrin amide $14(10.42 \mathrm{~g}, 96 \%)$ as a colorless oil: $[\alpha]^{23} \mathrm{D}=-0.60(c$ $0.95, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52\left(\mathrm{AB}, J_{\mathrm{AB}}=11.8 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=59.35 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.26\left(\mathrm{AB}, J_{\mathrm{AB}}=15.7 \mathrm{~Hz}\right.$, $\Delta \mathrm{v}_{\mathrm{AB}}=121.75 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81(\mathrm{tt}, J=6.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (ddd, $J=9.7,8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.45(\mathrm{ddd}, J=10.9,4.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.00-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,138.1,128.4,127.7$, 82.6, 72.9, 72.6, 68.6, 65.8, 35.73, 35.70, 31.2; HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrNO}_{4} 373.0889$; Found 373.0884.

Preparation of PMB-Protected Bromo Amide 11

To a solution of bromohydrin amide $14(10.45 \mathrm{~g}, 27.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL}, 0.1 \mathrm{M})$ was added p-methoxybenzyl-2,2,2-trichloroacetimidate $(29.00 \mathrm{~g}, 139.61 \mathrm{mmol})$ and PTSA $(1.06 \mathrm{~g}$, 5.58 mmol) in portions at the room temperature. The resulting mixture was stirred for 13 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, $2: 1$) to afford the PMB-protected bromo amide $11(12.14 \mathrm{~g}, 88 \%)$ as a colorless oil: $[\alpha]^{24} \mathrm{D}=+0.47\left(c \quad 0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{AB}$, $\left.J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=46.87 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 2$ H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=10.6,6.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.90 (s, 3 H), $2.86(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.91$ (m, 1 H), 1.82-1.74 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,158.9,130.0,129.6,129.5,128.0,127.3,127.2,113.4,79.6,77.6,72.7$, 72.5, 69.5, 66.3, 55.1, 36.1, 35.3, 32.0, 29.9; HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BrNO}_{5} 493.1464$; Found 493.1462.

Preparation of 7-OPMB-6,7-cis-6,9-cis-THF 10

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of 7-OPMB-6,7-syn- ω-bromo amide $11(1.57 \mathrm{~g}, 3.18 \mathrm{mmol})$ in THF ($635 \mathrm{~mL}, 0.005 \mathrm{M}$) was dropwise added LiHMDS ($9.53 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF, 9.53 mmol). After being stirred for 1 h at the same temperature, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with
saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, $4: 1$) to afford 7-OPMB-6,7-cis-6,9-cis-THF 10 ($1.27 \mathrm{~g}, 97 \%$, cis only, see page S39 \& S57) as a colorless oil: $[\alpha]^{24} \mathrm{D}=-0.19\left(c 0.97, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.26$ (m, 1 H), 7.23-7.21 (m, 2 H), 6.86-6.83 (m, 2 H), 4.51-4.47 (m, 3 H), 4.43 (AB, $J_{\mathrm{AB}}=11.6$ $\left.\mathrm{Hz}, \Delta v_{\mathrm{AB}}=162.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.97-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3$ H), 2.94 (s, 3 H), 2.70 (ddd, $J=13.5,6.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23-2.17 (m, 1 H), 2.07-1.97 (m, 2 $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,158.8,138.3,130.1,129.1,128.1,127.4,127.3$, 113.5, 80.1, 77.5, 75.8, 72.8, 70.1, 67.3, 55.2, 37.1, 36.1, 33.8, 29.2; HRMS (EI-magnetic sector) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{5} 413.2202$; Found 413.2205.

Preparation of TIPS-Protected Bromo Amide 15

To a cooled $\left(-15^{\circ} \mathrm{C}\right)$ solution of bromohydrin amide $\mathbf{1 4}(1.42 \mathrm{~g}, 3.80 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{~mL}$, $0.1 \mathrm{M})$ was added 2,6-lutidine ($2.65 \mathrm{~mL}, 22.77 \mathrm{mmol}$) and triisopropylsilyl trifluoromethansulfonate (TIPSOTf, $2.02 \mathrm{~mL}, 11.40 \mathrm{mmol}$). The resulting mixture was stirred for 2 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and diluted with EtOAc. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, $3: 1$) to afford the TIPSprotected bromo amide $15(1.60 \mathrm{~g}, 80 \%)$ as a colorless oil: $[\alpha]^{24} \mathrm{D}=-18.2\left(c 0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.23$ (dt, $J=7.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22-4.17 (m, 2 H), 3.73 (ddd, $J=9.3,4.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (dd, J $=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=7.4,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}$, 3 H), 2.91 (s, 3 H), 2.07 (dtd, $J=14.5,7.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73 (ddt, $J=14.7,9.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.13-1.05(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,138.5,128.3,127.6,127.5,79.8$, 73.5, 72.9, 70.2, 66.9, 36.4, 35.4, 34.6, 29.3, 18.1, 12.7; HRMS (EI-magnetic sector) m/z: [M] ${ }^{+}$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{BrNO} 4 \mathrm{Si} 529.2223$; Found 529.2225.

Preparation of 7-OTIPS-6,7-cis-6,9-trans-THF 16

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of TIPS-protected bromo amide $15(52.4 \mathrm{mg}, 0.0988 \mathrm{mmol})$ in THF ($20 \mathrm{~mL}, 0.005 \mathrm{M}$) was dropwise added KHMDS ($0.42 \mathrm{~mL}, 0.7 \mathrm{M}$ solution in toluene, 0.30 mmol). After being stirred for 1 h at the same temperature, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc . The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, $1: 2$) to afford 7-OTIPS-6,7-cis-6,9-trans-THF $16(35.6 \mathrm{mg}, 80 \%$, trans:cis $>41: 1$, see page S 48$)$ as a colorless oil: $[\alpha]^{23} \mathrm{D}=-12.8\left(c \quad 0.89, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.32(\mathrm{~m}, 4$ H), 7.28-7.26 (m, 1 H$), 4.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.50-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.08$ (ddd, $J=7.8,5.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65-3.58 (m, 2 H), 3.08 ($\mathrm{s}, 3 \mathrm{H}$), 2.95 (s, 3 H), 2.56 (ddd, $J=13.0$, $7.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05 (ddd, $J=13.1,7.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.96-1.91 (m, 2 H), 1.08-1.04 (m, 21 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,138.6,128.3,127.6,127.4,80.5,74.1,73.7,73.0$, $67.9,38.5,37.0,35.8,29.9,18.09,18.05,12.4$; HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{Si} 449.2961$; Found 449.2961.

Preparation of Alcohol SI-A-03

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 7-OTIPS-6,7-threo-6,9-trans-THF $16(0.36 \mathrm{~g}, 0.79 \mathrm{mmol})$ in anhydrous THF ($8 \mathrm{~mL}, 0.1 \mathrm{M}$) was added tetrabutylammonium fluoride (TBAF, $0.79 \mathrm{~mL}, 0.79$ $\mathrm{mmol})$. After being stirred for 1 h at the room temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue
was purified by column chromatography (silica gel, ethyl acetate only) to afford alcohol SI-A$03(0.14 \mathrm{~g}, 60 \%)$ as a colorless oil: $[\alpha]^{23} \mathrm{D}=-21.4\left(c 0.31, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.92(\mathrm{dd}, J=8.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53\left(\mathrm{AB}, J_{\mathrm{AB}}=11.7\right.$ $\left.\mathrm{Hz}, \Delta v_{\mathrm{AB}}=13.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.35(\mathrm{dt}, J=5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=9.8,5.1,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67 (ddd, $J=9.5,4.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddd, $J=10.6,9.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=2.1 \mathrm{~Hz}$, 1 H), 3.08 (s, 3 H), 2.95 ($\mathrm{s}, 3 \mathrm{H}$), 2.50 (dddd, $J=13.7,8.4,5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19-2.15 (m, 1 H), 2.12-2.06 (m, 1 H), 2.05-2.00 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,137.3,128.6$, $128.0,127.8,83.5,73.8,73.7,72.6,66.9,37.2,36.9,35.8,29.3$; HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$ 293.1627; Found 293.1624.

Preparation of 7-OPMB-6,7-cis-6,9-trans-THF 17

To a solution of alcohol SI-A-03 ($0.13 \mathrm{~g}, 0.45 \mathrm{mmol}$) in THF/DMF (3: $1,4.4 \mathrm{~mL}, 0.3 \mathrm{M}$) was added p-methoxybenzyl chloride $(0.26 \mathrm{~mL}, 1.80 \mathrm{mmol})$ and sodium hydride ($63 \mathrm{mg}, 60 \%$ dispersion of mineral oil, 1.575 mmol) in portions at the room temperature. The resulting mixture was stirred for 15 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $3: 1$) to afford the 7-OPMB-6,7-cis-6,9-trans-THF $17(0.184 \mathrm{~g}, 99 \%)$ as a colorless oil: $[\alpha]^{23}{ }_{\mathrm{D}}=-$ $13.6\left(c 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48\left(\mathrm{AB}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}\right.$, $\left.\Delta \mathrm{v}_{\mathrm{AB}}=11.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.44\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=104.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.09(\mathrm{ddd}, J=7.8,5.7$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03-4.02 (m, 1 H), 3.80 (s, 3 H), 3.56 (td, $J=6.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.08 (s, 3 H), 2.95 (s, 3 H), 2.49 (ddd, $J=13.1,7.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (ddd, $J=13.3,7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-$ 1.98 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,159.2,138.5,130.2,129.2,128.3,127.6$, $127.5,113.7,80.0,79.1,74.1,72.9,71.0,67.7,55.2,37.0,35.8,34.3,29.4$; HRMS (EImagnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{5} 413.2202$; Found 413.2202.

Construction of 7,12-Dihydroxy Adjacent Bis-THF 21

Scheme ESI-02. Construction of 7,12-Dihydroxy Adjacent Bis-THF 21

Preparation of (10S)-Alcohol SI-A-04 by Direct Ketone Synthesis/L-Selectride Sequence

[Direct Ketone Synthesis] ${ }^{3}$ To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of 7-OPMB-6,7-cis-6,9-cis-THF 10 ($438.1 \mathrm{mg}, 1.06 \mathrm{mmol}$) in anhydrous THF ($20 \mathrm{~mL}, 0.1 \mathrm{M}$) was dropwise added allylmagnesium chloride ($1.06 \mathrm{~mL}, 2.0 \mathrm{M}$ solution in THF, 2.12 mmol). After being stirred at the same temperature for 1 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford the crude ketone 18 as a colorless oil. [L-Selectride Reduction] To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of the above crude ketone $\mathbf{1 8}$ in THF (20 mL) was added lithium tri-sec-butylborohydride (L-Selectride, $3.2 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 3.2 mmol). After being stirred for 1 h at the same temperature, the reaction mixture was quenched with MeOH , and $\mathrm{H}_{2} \mathrm{O}_{2}\left(5.0 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 5.0 \mathrm{mmol}\right)$ and $\mathrm{NaOH}\left(5 \mathrm{~mL}, 2.0 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 10.0 \mathrm{mmol}$) were added. The resulting mixture was vigorously stirred for 12 h at room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $10: 1$) to afford (10S)-9,10-syn homoallylic alcohol 9 (259.6 mg , $59 \%, \mathrm{dr}=8: 1$, see page S 59) as a colorless oil.

Preparation of (10S)-9,10-syn Homoallylic Alcohol 9 by a Sequential Ate Complex/Keck Allylation

[Ate Complex Reduction] Ate Complex Generation: To a cooled ($-78^{\circ} \mathrm{C}$) solution of n BuLi ($1.0 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane) in THF (13.3 mL) was added DIBAL-H ($1.7 \mathrm{~mL}, 1.0 \mathrm{M}$ in toluene) and stirred for 30 min at the same temperature. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 7-OPMB-6,7-cis-6,9-cis-THF 10 ($96.7 \mathrm{mg}, 0.23 \mathrm{mmol}$) in dry THF ($23.4 \mathrm{~mL}, 0.01 \mathrm{M}$) were added dropwise ate complex solution ($4.67 \mathrm{~mL}, 0.47 \mathrm{mmol}$). After being stirred at the same temperature for 1 h , the reaction mixture was quenched with MeOH and diluted with $\mathrm{Et}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford the crude aldehyde 19, which was immediately employed to the next step without further purification. [Keck Allylation] ${ }^{2}$ To a cooled $\left(-15^{\circ} \mathrm{C}\right)$ solution of the above crude aldehyde 19 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL}, 0.05 \mathrm{M})$ was added $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}(0.30 \mathrm{~g}, 1.17 \mathrm{mmol})$. The resulting mixture was stirred for 10 min , and then allyltributyltin ($0.29 \mathrm{~mL}, 0.94 \mathrm{mmol}$) was added dropwise. After being stirred for 14 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous NaHCO_{3}, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was filtrated by column chromatography (silica gel, hexanes/ethyl acetate/dichloromethane, $4: 1: 1$) to afford (10S)-9,10-syn homoallylic alcohol 9 ($81.1 \mathrm{mg}, 84 \%, \mathrm{dr}=46: 1$, see page S61) as colorless oils: [For 9] $[\alpha]^{24}{ }_{\mathrm{D}}=-0.15$ (c 0.93, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.19$ (m, 2 H), 6.86-6.84 (m, 2 H), 5.88 (ddt, $J=17.2,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.13-5.05 (m, 2 H), 4.49 (AB, $\left.J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=15.73 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.38\left(\mathrm{AB}, J_{\mathrm{AB}}=11.5 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=148.63 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.95-$ 3.92 (m, 1 H), 3.93-3.90 (m, 2 H), 3.80 (s, 3 H), $3.61-3.54$ (m, 3 H), $3.00(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.29(\mathrm{tq}, J=7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{ddd}, J=14.0,8.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,138.5,135.3,129.8,129.4,128.3,127.7,127.5,116.9,113.8$, 79.7, 79.4, 78.6, 73.2, 72.9, 70.6, 67.6, 55.3, 38.6, 33.9, 29.4; HRMS (EI-magnetic sector) m / z : $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5}$ 412.2250; Found 412.2242. [For SI-A-04] $[\alpha]^{24}{ }_{\mathrm{D}}=+26.6$ (c 0.77, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}$, 2 H), 6.87-6.84 (m, 2 H), 5.85 (ddt, $J=17.2,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.13-5.07$ (m, 2 H), 4.48 (AB, $\left.J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=21.82 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.40\left(\mathrm{AB}, J_{\mathrm{AB}}=11.5 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=177.83 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.98$ (ddd, $J=8.5,5.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{ddt}, J=13.8,7.9,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.01-1.94 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,138.5,134.7,129.9,129.4,128.3$, $127.7,127.5,117.2,113.8,80.0,79.6,78.2,73.0,71.3,70.4,67.7,55.3,38.1,30.2,29.3$; HRMS (FAB-magnetic sector) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5} 413.2328$; Found 413.2328.

Confirmation of C(10) Absolute Stereochemistry in Secondary Alcohol 9

To a solution of ($10 S$)-alcohol 9 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were successively added (R)- or (S)- α-methoxy- α trifluoromethylphenylacetyl chloride (5.0 eq), $\mathrm{Et}_{3} \mathrm{~N}$ (6.0 eq), and DMAP (0.4 eq) at room temperature. After stirring for 40 min at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3}, diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combine layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, 10:1) to afford the crude (S)-MTPA ester SI-A-05 or (R)-MTPA ester SI-A-06 as a colorless oil: [For (S)-Mosher Derivative SI-A-05] ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.61$ (m, 2 H), 7.37-7.35 (m, 3 H), 7.34-7.27 (m, 5 H), $7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.64-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{td}, J=7.8,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.97(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.40\left(\mathrm{AB}, J_{\mathrm{AB}}=11.7 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=\right.$ $85.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-$ $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{dt}, J=15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$,
1.83-1.79 (m, 1 H); HRMS (FAB-magnetic sector) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{O}_{7}$ 629.2726; Found 629.2719. [For (R)-Mosher Derivative SI-A-06] ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.59-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H})$, 6.87-6.84 (m, 2 H), 5.81-5.74 (m, 1 H), 5.32 (ddd, $J=8.1,6.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 2$ H), 4.46-4.42 (m, 2 H), $4.34\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=89.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.96-3.90(\mathrm{~m}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dt}, J=15.5,8.1 \mathrm{~Hz}$, 1 H), 2.04 (ddd, $J=13.6,7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.96-1.86 (m, 2 H), 1.74 (ddd, $J=13.5,7.0,3.4$ $\mathrm{Hz}, 1 \mathrm{H}$); HRMS (FAB-magnetic sector) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{O}_{7}$ 629.2726; Found 629.2722 .

Preparation of Alkene 20

To a solution of ($10 S$)-alcohol 9 ($670.8 \mathrm{mg}, 1.626 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.3 \mathrm{~mL}, 0.1 \mathrm{M})$ were added cis-3-hexene ($2.01 \mathrm{~mL}, 16.3 \mathrm{mmol}$) and second-generation Grubb's catalyst $\left[\left(\mathrm{H}_{2} \mathrm{IMes}\right)\left(\mathrm{Cy}_{3} \mathrm{P}\right) \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{CHPh}, \mathbf{G}-\mathrm{II}, 138.0 \mathrm{mg}, 0.163 \mathrm{mmol}\right]^{4}$ at room temperature. After being stirred for 4 h at the same temperature, the reaction mixture was quenched with dimethyl sulfoxide (0.5 mL), stirred for 15 h , and concentrated in vacuo. Purification of the residue by column chromatography (silica gel, hexanes/ethyl acetate, $5: 1$) to afford the inseparable mixture of alkene $\mathbf{2 0}(680.5 \mathrm{mg}, 95 \%$ yield, $E / Z=6: 1$, see page S69) as a colorless oil; [For (12E)-20] ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.31$ (m, 4 H), 7.29-7.26 (m, 1 H), 7.22-7.19 (m, 2 H), 6.87-6.84 (m, 2 H), $5.58-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.47(\mathrm{~m}, 3 \mathrm{H})$, 4.27 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.51(\mathrm{tt}, J=6.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{tq}, J=6.5,1.1 \mathrm{~Hz}, 2$ H), 2.13 (ddd, $J=13.9,8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10-1.96 (m, 4 H), $0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,138.5,134.7,129.9,129.3,128.3,127.6,127.5,125.2,113.8$, 79.7, 79.4, 78.6, 73.7, 72.9, 70.6, 67.7, 55.3, 37.3, 34.0, 29.5, 25.6, 13.7; HRMS (EI-magnetic sector) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{2} \mathrm{H}_{36} \mathrm{O}_{5} 440.2563$; Found 440.2558 .

Preparation of Diol 8

[Tosylation]To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of inseparable mixture of $(E) /(Z)$-hex-3-enol 20 (680.5 $\mathrm{mg}, 1.55 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}, 0.077 \mathrm{M})$ was added triethylamine ($2.15 \mathrm{~mL}, 15.5$ mmol) and p-toluenesulfonyl anhydride ($\mathrm{Ts}_{2} \mathrm{O}, 210.8 \mathrm{mg}, 4.63 \mathrm{mmol}$). After being stirred for 12 h at room temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and diluted with $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $6: 1$) to afford the inseparable mixture of tosylate SI-A-07 ($878.4 \mathrm{mg}, \mathbf{9 6 \%}$) as a colorless oil: [For (12E)-Tosylate SI-A-07] [$\alpha]^{25} \mathrm{D}=$ 0.70 (c 0.79, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 4 \mathrm{H})$, 7.29-7.26 (m, 1 H), 7.24-7.22 (m, 2 H), 7.20-7.18 (m, 2 H), 6.88-6.85 (m, 2 H), 5.46 (dtt, $J=$ $15.3,6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21 (dddt, $J=15.7,8.1,6.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.61-4.58$ (m, 1 H), 4.46 $\left(\mathrm{AB}, J_{\mathrm{AB}}=11.9 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=16.57 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.34\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=116.40 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 4.02 (dt, $J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J=6.0,4.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dt}, J=8.4,4.7 \mathrm{~Hz}, 1$ H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 2 \mathrm{H})$, 2.54-2.49 (m, 1 H$)$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H})$, 2.08 (ddd, $J=13.9,8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95-1.87 (m, 3 H), 1.85-1.82 (m, 1 H), 1.81-1.75 (m, $1 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,144.1,138.6,136.1,134.3$, 130.2, 129.4, 129.0, 128.3, 128.0, 127.6, 127.5, 122.6, 113.7, 83.8, 79.3, 78.3, 76.9, 72.9, 70.6, 67.5, 55.2, 34.1, 33.0, 29.4, 25.5, 21.5, 13.5; HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{~S}$ 594.2651; Found 594.2654. [Sharpless Asymmetric Dihydroxylation] To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of inseparable mixture of tosylate SI-A-07 (530.7 mg, 0.892 mmol) in tert-butanol/ $/ \mathrm{H}_{2} \mathrm{O}(1: 1,10.0 \mathrm{~mL}, 0.089 \mathrm{M})$ was added methanesulfonamide ($349.2 \mathrm{mg}, 3.671$ mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($634.3 \mathrm{mg}, 4.589 \mathrm{mmol}$). The reaction mixture was stirred for 30 min at same temperature and AD-mix β ($2.12 \mathrm{~g}, 1.22 \mathrm{mmol}$) was added. After being stirred at the same temperature for 14 h , the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$.

The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was filtered through a short column of silica gel (hexanes/ethyl acetate, $1: 1$) to afford the pure diol $8(337.4 \mathrm{mg}, 60 \%$ for two steps) as a colorless oil: $[\alpha]^{25}=+1.31\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.77(\mathrm{~m}, 2 \mathrm{H})$, 7.35-7.27 (m, 5 H), 7.26-7.25 (m, 2 H), 7.20-7.18 (m, 2 H), 6.87-6.85 (m, 2 H), 4.86 (dt, $J=$ $6.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45\left(\mathrm{AB}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=16.70 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.34\left(\mathrm{AB}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}\right.$, $\Delta \mathrm{v}_{\mathrm{AB}}=118.84 \mathrm{~Hz}, 2 \mathrm{H}$), 4.09 (ddd, $J=8.3,6.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90(\mathrm{ddd}, J=6.0,4.4,2.8 \mathrm{~Hz}, 1$ H), 3.87 (dt, $J=8.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63$ (ddd, $J=9.1,4.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.49-$ 3.45 (m, 2 H), 3.17 (dt, $J=8.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 ($\mathrm{s}, 3 \mathrm{H}$), 2.11 (ddd, $J=14.1,8.3,6.0 \mathrm{~Hz}, 1$ H), 2.05 (ddd, $J=14.9,6.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.98(\mathrm{ddd}, J=13.9,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}$, 2 H), 1.74 (ddd, $J=14.9,9.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,144.5,138.4,133.9,130.0,129.5,129.0$, $128.2,127.7,127.5,127.4,113.6,80.6,79.6,78.0,77.3,75.3,72.8,70.4,69.6,67.3,55.1,35.5$, 33.0, 29.1, 26.1, 21.4, 9.9; HRMS (FAB-magnetic sector) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{O}_{9} \mathrm{~S}$ 629.2784; Found 629.2787.

Preparation of Adjacent Bis-THF 21

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of diol $8(51.1 \mathrm{mg}, 0.0813 \mathrm{mmol})$ in THF/DMF ($1: 1,8.13 \mathrm{~mL}$, 0.01 M) was added sodium hydride ($16.26 \mathrm{mg}, 0.406 \mathrm{mmol}$). After being stirred for 16 h at room temperature, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $2: 1$) to afford the adjacent bis-THF 21 ($31.2 \mathrm{mg}, 84 \%$) as a colorless oil: $[\alpha]^{24} \mathrm{D}=+18.1\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-$ 7.25 (m, 1 H), 7.21-7.18 (m, 2 H), 6.87-6.85 (m, 2 H), 4.50-4.43 (m, 3 H), 4.25 (d, $J=11.7$ Hz, 1 H), 4.18-4.13 (m, 2 H), 3.99-3.96 (m, 2 H), 3.90 (ddd, $J=6.1,4.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.52(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=14.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$
(ddd, $J=13.9,8.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 2 \mathrm{H})$, 1.61 (ddd, $J=14.1,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,138.5,130.1,129.0,128.3,127.7,127.5,113.8,86.2,80.5,79.3,78.6,78.2,72.9,70.7$, 70.4, 67.4, 55.3, 34.5, 33.6, 28.9, 21.9, 10.5; HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{6} 456.2512$; Found 456.2510.

Preparation of Adjacent Bis-THF $21{ }^{5}$

Diol $8(178.4 \mathrm{mg}, 0.284 \mathrm{mmol})$ was dissolved in pyridine ($28 \mathrm{~mL}, 0.01 \mathrm{M}$), and the resulting solution was refluxed for 7 h . The reaction mixture was cooled to room temperature, concentrated in vacuo, and diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $3: 1$) to afford the adjacent bis-THF 21 ($110.9 \mathrm{mg}, 86 \%$) as a colorless oil.

Construction of 7,12-Dibromo Adjacent bis-THF 6: S18~S23

Scheme ESI-03. Synthesis of 7,12-Dibromo-Adjacent Bis-THF 6 in Step-By-Step Manner

Preparation of 12-Bromo-Adjacent bis-THF SI-A-09

[Chloromethanesulfonylation] To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 12-hydroxy-adjacent bis-THF $21(272.9 \mathrm{mg}, 0.598 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}, 0.1 \mathrm{M})$ were dropwise added 2,6-lutidine (1.11 $\mathrm{mL}, 9.56 \mathrm{mmol}$) and chloromethanesulfonyl chloride $(\mathrm{McCl}, 0.434 \mathrm{~mL}, 4.78 \mathrm{mmol})$. The resulting mixture was stirred for 1 h at the same temperature, quenched with saturated aqueous NaHCO_{3}, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was filtered through a short pad of silica gel (hexanes/ethyl acetate, $4: 1$) to afford the crude chloromethanesulfonate SI-A-08 (296.0 mg, 92\%) as a brown oil: $[\alpha]^{24} \mathrm{D}=+15.4$ (c 1.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 2 \mathrm{H})$, $5.23(\mathrm{ddd}, J=6.0,3.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.49\left(\mathrm{AB}, J_{\mathrm{AB}}=11.9 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=21.76 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 4.39\left(\mathrm{AB}, J_{\mathrm{AB}}=11.5 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=138.66 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.94-3.87(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67$ (ddd, $J=7.2,6.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.35$ (ddd, $J=15.2$, $5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=13.4,7.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=13.7,4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,138.6,130.3,129.1,128.3,127.6,127.5,113.7,85.6,83.7,79.9,79.7,79.3,78.7,72.8$, 70.4, 67.6, 55.2, 54.2, 36.4, 34.7, 29.6, 22.2, 10.5. [S $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ Displacement] To a solution of the above crude chloromethanesulfonate SI-A-08 in THF ($30 \mathrm{~mL}, 0.018 \mathrm{M}$) was added tetrabutylammonium bromide (TBAB, $1.78 \mathrm{~g}, 5.54 \mathrm{mmol}$). After being stirred at $50^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was cooled to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}$, and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $5: 1$ to $4: 1$) to afford 12-bromo-adjacent bis-THF SI-A-09 (198.5 mg, 69\% yield for two steps) as a colorless oil: $[\alpha]^{25} \mathrm{D}=+29.8\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-$ 7.31 (m, 4 H), 7.29-7.26 (m, 1 H), 7.22-7.20 (m, 2 H$), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.48\left(\mathrm{AB}, J_{\mathrm{AB}}=\right.$ $\left.12.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=22.48 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.38\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=142.39 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.15(\mathrm{q}, J$
$=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dt}, J=8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, 3 H), 3.57 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.48 (dt, $J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (ddd, $J=13.7,7.0,5.2 \mathrm{~Hz}$, 1 H), 2.17 (ddd, $J=14.0,8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.93$ (ddd, $J=13.8,6.1,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{dp}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,138.6,130.3,129.1,128.3,127.6,127.4,113.7,88.4,80.2$, 79.7, 79.1, 78.5, 72.8, 70.4, 67.6, 55.2, 49.3, 38.5, 34.6, 29.5, 26.5, 10.0; HRMS (EI-magnetic sector) $m / z:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{35} \mathrm{BrO}_{5} 518.1668$; Found 518.1669.

Preparation of 7-Hydroxyl- 12-Bromo-Adjacent Bis-THF SI-A-10

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 12-bromo-adjacent bis-THF SI-A-09 (283.8 mg, 0.546 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(10: 1,11 \mathrm{~mL}, 0.05 \mathrm{M})$ was added 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ, $186.6 \mathrm{mg}, 0.820 \mathrm{mmol}$). After being stirred for 2 h at the room temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $4: 1$) to afford 7-hydroxyl-12-bromo-adjacent bis-THF SI-A-10 (196.2 mg, 88\%) as a colorless oil: $[\alpha]^{24} \mathrm{D}=+23.2\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ $7.26(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{ddd}, J=8.4,6.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 3 \mathrm{H}), 3.93$ (ddd, $J=7.8,5.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dt}, J=6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dt}, J=9.5,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.59 (ddd, $J=9.5,8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29-2.19 (m, 3 H), 2.09-2.03 (m, 1 H), 2.01-2.96 (m, 1 H), 1.79 (ddd, $J=14.0,4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.70 (dddd, $J=15.0,12.6$, $6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.1,128.4,127.66,127.64,88.8,81.9,79.2,78.2,73.1,71.6,67.4,48.4,38.6,35.4,29.2$, 26.4, 10.1; HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BrO}_{4} 398.1093$; Found 398.1094 .

Preparation of 7,12-Dibromo-Adjacent Bis-THF 6

[Chloromethanesulfonylation] To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 7-hydroxyl-12-bromo-adjacent bis-THF SI-A-10 ($196.2 \mathrm{mg}, 0.491 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 0.1 \mathrm{M})$ were dropwise added 2,6lutidine ($0.916 \mathrm{~mL}, 7.86 \mathrm{mmol}$) and chloromethanesulfonyl chloride ($\mathrm{McCl}, 0.357 \mathrm{~mL}, 3.93$ mmol). The resulting mixture was stirred for 1 h at the same temperature, quenched with saturated aqueous NaHCO_{3}, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was filtered through a short pad of silica gel (hexanes/ethyl acetate, 4 : 1) to afford the crude chloromethanesulfonate SI-A-11 (237.9 mg, 95\%) as a brown oil: $[\alpha]^{24}{ }_{\mathrm{D}}=+14.9$ (c 1.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.22$ (ddd, $J=6.2,3.3,1.2 \mathrm{~Hz}, 1$ H), $4.54\left(\mathrm{AB}, J_{\mathrm{AB}}=12.7 \mathrm{~Hz}, \Delta \nu_{\mathrm{AB}}=23.66 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.50\left(\mathrm{AB}, J_{\mathrm{AB}}=11.8 \mathrm{~Hz}, \Delta \nu_{\mathrm{AB}}=12.44\right.$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.16 (td, $J=6.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (dt, $J=7.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.99-3.95(\mathrm{~m}, 2 \mathrm{H})$, 3.88 (dt, $J=8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66-3.59 (m, 2 H), 2.53 (ddd, $J=15.0,8.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (dt, $J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (ddd, $J=13.8,6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (ddd, $J=15.3,5.9,1.2$ Hz, 1 H), 2.10-2.04 (m, 1 H), 1.99 (ddt, $J=14.3,7.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69-1.62 (m, 1 H), 1.52 $(\mathrm{td}, J=14.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3$, $128.5,127.9,127.8,88.7,85.8,79.6,79.5,78.9,73.2,67.0,54.2,49.0,38.7,36.8,29.3,26.7$, 10.0. [$\mathbf{S}_{\mathbf{N}} \mathbf{2}$ Displacement] To a solution of the chloromethanesulfonate SI-A-11 (117.5 mg , 0.246 mmol) in THF ($14 \mathrm{~mL}, 0.018 \mathrm{M}$) was added tetrabutylammonium bromide (TBAB, 0.79 $\mathrm{g}, 2.46 \mathrm{mmol}$). After being stirred at $50^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was cooled to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}$, and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $15: 1$ to $10: 1$) to afford 7,12-dibromoadjacent bis-THF $6\left(88.9 \mathrm{mg}, 74 \%\right.$ for two steps) as a colorless oil: $[\alpha]^{25} \mathrm{D}=-12.6$ (c 1.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.52\left(\mathrm{AB}, J_{\mathrm{AB}}\right.$ $\left.=11.9 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=11.38 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.22(\mathrm{dt}, J=7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 3 \mathrm{H}), 4.00(\mathrm{dt}$,
$J=7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 4 \mathrm{H}), 1.97$ (dddd, $J=14.0,7.7,6.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddt}, J=13.6,7.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dtd}, J=14.9,7.4$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dp}, J=14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.4,128.4,127.8,127.7,88.8,85.1,79.6,79.4,73.2,66.8,49.6,48.9,39.1,38.7$, 34.0, 26.8, 10.1; HRMS (EI-magnetic sector) m / z : [M] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{3} 460.0249$; Found 460.0243.

Scheme ESI-04. Synthesis of 7,12-Dibromo-Adjacent Bis-THF 6 in Double Bromination

A. Nakata Two-Step Protocol

B. Hooz One-Step Protocol

Preparation of 7,12-Dihydroxy-Adjacent Bis-THF Diol 7

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 12-dihydroxy-adjacent bis-THF $21(110.8 \mathrm{mg}, 0.243 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(10: 1,11 \mathrm{~mL}, 0.022 \mathrm{M})$ was added 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ, $208.8 \mathrm{mg}, 0.972 \mathrm{mmol}$). After being stirred for 5 h at the same temperature, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $2: 1)$ to afford 7,12-dihydroxy-adjacent bis-THF $7(75.1 \mathrm{mg}, 92 \%)$ as a colorless oil: $[\alpha]^{24} \mathrm{D}=$ $+23.2\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H})$,
$4.51\left(\mathrm{AB}, J_{\mathrm{AB}}=11.7 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=14.46 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.23(\mathrm{dtd}, J=7.0,3.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-$ $4.12(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{ddt}, J=10.1,4.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=9.4,5.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (ddd, $J=9.4,4.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.32 (dddd, $J=14.0,9.2,6.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23-2.14 (m, 3 H), 2.02 (dtd, $J=14.5$, $4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.75-1.67$ (m, 2 H), 1.63 (ddd, $J=14.1,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.97$ (t, $J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,128.5,127.9,127.8,86.0,83.4,79.1,78.7,73.6$, 71.7, 70.9, 67.1, 36.2, 34.3, 28.6, 21.8, 10.5; HRMS (FAB-magnetic sector) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} 337.2015$; Found 337.2017.

Preparation of 7,12-Dibromo-Adjacent Bis-THF 6 by Modified Nakata Two-Step Protocol.

[Chloromethanesulfonylation] To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 7,12-dihydroxy-adjacent bisTHF $7(42.5 \mathrm{mg}, 0.126 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 0.025 \mathrm{M})$ were dropwise added 2,6-lutidine $(0.294 \mathrm{~mL}, 2.52 \mathrm{mmol})$ and chloromethanesulfonyl chloride ($\mathrm{McCl}, 0.069 \mathrm{~mL}, 0.738 \mathrm{mmol}$). The resulting mixture was stirred for 4 h at room temperature, quenched with saturated aqueous NaHCO_{3}, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was filtered through a short pad of silica gel (hexanes/ethyl acetate, $10: 1$) to afford the crude bis-chloromethanesulfonate SI-A-12 as a brown oil, which was immediately employed to the next step without further purification. [$\mathbf{S}_{\mathbf{N}} \mathbf{2}$ Displacement] To a solution of the above crude bis-chloromethanesulfonate SI-A-12 in THF (15 mL) was added tetrabutylammonium bromide (TBAB, $407.3 \mathrm{mg}, 1.26$ mmol). After being stirred at $70{ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was cooled to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}$, and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $40: 1$ to $10: 1$) to afford 7,12-dibromoadjacent bis-THF $6(40.3 \mathrm{mg}, 69 \%$ yield for two steps) as a colorless oil.

Preparation of 7,12-Dibromo-Adjacent Bis-THF 6 by Hooz One-Step Protocol.

To a solution of 7,12-dihydroxy-adjacent bis-THF $7(30.3 \mathrm{mg}, 0.0901 \mathrm{mmol})$ in dry toluene $(3.60 \mathrm{~mL}, 0.025 \mathrm{M})$ were added $\mathrm{CBr}_{4}(14.6 \mathrm{mg}, 0.0440 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(116 \mathrm{mg}, 0.442 \mathrm{mmol})$ at room temperature. After being stirred at $80^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was cooled to rt , quenched with saturated aqueous NaHCO_{3}, and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $20: 1$) to afford 7,12-dibromo-adjacent bis-THF 6 ($24.2 \mathrm{mg}, 58 \%$).

Completion of Total Synthesis of (3Z)- and (3E)-Elatenynes: S25~S29

Scheme ESI-05. Completion of Total Synthesis of 1a and 1b.

Preparation of Primary Alcohol SI-A-13

To a solution of 7,12-dibromo-adjacent bis-THF 6 ($88.9 \mathrm{mg}, 0.192 \mathrm{mmol}$) in EtOH/EtOAc (1 : $1,20 \mathrm{~mL}, 0.01 \mathrm{M}$) was added palladium on carbon ($\mathrm{Pd} / \mathrm{C}, 88.0 \mathrm{mg}, 0.827 \mathrm{mmol}$) under H_{2} gas. After being stirred for 1 h at the room temperature, the reaction mixture was filtered through a pad of celite and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $5: 1$) to afford primary alcohol SI-A-13 ($65.2 \mathrm{mg}, 91 \%$) as a colorless oil: $[\alpha]^{25} \mathrm{D}=-2.63\left(c \quad 0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21-4.15(\mathrm{~m}, 3$ H), 4.04-3.99 (m, 2 H), 3.95 (dt, $J=7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82-3.77 (m, 2 H), 2.39 (ddd, $J=13.8$, 7.6, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33-2.27 (m, 3 H), 2.25-2.22 (m, 1 H$), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}$, 1 H), 1.66 (dqd, $J=15.0,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 88.8,86.4,79.8,79.1,60.5,48.7,48.6,38.9,38.1,35.2,26.8,10.1$; HRMS (FAB-magnetic sector) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{O}_{3} 370.9857$; Found 370.9854.

Preparation of Aldehyde 22

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of primary alcohol SI-A-13 (13.6 mg, 0.0366 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.2 \mathrm{~mL}, 0.017 \mathrm{M})$ was added $\mathrm{NaHCO}_{3}(4.60 \mathrm{mg}, 0.0548 \mathrm{mmol})$ and dess-martin periodinane $(46.5 \mathrm{mg}, 0.110 \mathrm{mmol}$). After being stirred for 2 h at the room temperature, the reaction mixture was quenched with hexane and filtered through a pad of column washing with EtOAc. The residue was concentrated in vacuo and purified by column chromatography (silica gel, hexanes/ethyl acetate, $4: 1$) to afford aldehyde $22(13.0 \mathrm{mg}, 96 \%)$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{dd}, J=2.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (ddd, $J=8.1,6.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.194.13 (m, 2 H), 4.03-3.97 (m, 2 H), 3.93 (dt, $J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (ddd, $J=16.5,4.1,1.6$ Hz, 1 H), 2.64 (ddd, $J=16.5,8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (ddd, $J=13.8,7.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.362.27 (m, 2 H), 2.25-2.21 (m, 1 H), 1.66 (dqd, $J=13.8,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.49 (dt, $J=13.9,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4,88.8,81.94,81.89$,

Preparation of TMS-(3Z)-Enyne SI-A-14

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of aldehyde $22(14.1 \mathrm{mg}, 0.0381 \mathrm{mmol})$ and sulfone $\mathbf{D}(117.9$ $\mathrm{mg}, 0.381 \mathrm{mmol})$ in anhydrous THF $(9 \mathrm{~mL}, 0.0042 \mathrm{M})$ was dropwise added KHMDS (0.61 $\mathrm{mL}, 0.5 \mathrm{M}$ solution in toluene, 0.30 mmol). After being stirred for 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, ether/ethyl acetate, $50: 1$) to afford TMS-(3Z)-enyne SI-A-14 ($12.4 \mathrm{mg}, 70 \%, Z / E=31: 1$, see page S 101) as a colorless oil: $[\alpha]^{24} \mathrm{D}=$ $+2.1\left(c 0.81, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99(\mathrm{dt}, J=10.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.62$ (m, 1 H), $4.22(\mathrm{q}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=$ $7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=13.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, J=14.2$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.31(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3 H), 0.21 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0,112.3,101.3,99.9,88.7,86.6,79.7$, 79.2, 48.8, 48.5, 38.9, 38.7, 34.4, 26.7, 10.0, -0.04; HRMS (EI-magnetic sector) $m / z:[M]^{+}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Si} 462.0225$; Found 462.0219.

Preparation of (3Z)-Elatenyne (1a)

To a cooled ($-20^{\circ} \mathrm{C}$) solution of TMS-(3Z)-enyne SI-A-14 ($9.8 \mathrm{mg}, 0.0211 \mathrm{mmol}$) in THF (4.2 $\mathrm{mL}, 0.005 \mathrm{M}$) was dropwise added tetrabutylammonium fluoride ($0.0593 \mathrm{~mL}, 0.211 \mathrm{mmol}$). After being stirred for 30 min at the same temperature, the reaction mixture was quenched with
saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, diethyl ether/ethyl acetate, $50: 1$) to afford (3Z)-elatenyne (1a) $(6.5 \mathrm{mg}, 79 \%)$ as a colorless oil: $[\alpha]^{24}{ }_{\mathrm{D}}=-1.66\left(c 0.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),[\alpha]^{23}{ }_{\mathrm{D}}=-1.90(c 0.62$, $\left.\mathrm{CHCl}_{3}\right) ;\left\{\right.$ lit. nat. $\left.{ }^{6 \mathrm{a}}[\alpha]^{25} \mathrm{D}=+16.8\left(\mathrm{c} 1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$, $\left\{\right.$ nat. $\left.{ }^{6 \mathrm{~b}}[\alpha]^{25}{ }_{\mathrm{D}}=-10.0\left(c 0.0498, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$, $\left\{\operatorname{syn} .{ }^{6 c}[\alpha]^{25}{ }_{\mathrm{D}}=-4.00\left(c 0.25, \mathrm{CHCl}_{3}\right),[\alpha]^{25}{ }_{\mathrm{D}}=-1.6\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\},\left\{\right.$ syn. ${ }^{6 c}$ For ent-1a; $\left.[\alpha]^{25}=+0.85\left(c 0.714, \mathrm{CHCl}_{3}\right),[\alpha]^{25}{ }_{\mathrm{D}}=+0.80\left(c 0.714, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.06(\mathrm{ddt}, J=10.9,8.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddt}, J=10.9,2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{dt}, J=6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dt}, J=7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{dd}, J=6.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.56$ (m, 1 H), 2.35-2.30 (m, 4 H), $1.70-1.63$ (m, 1 H), $1.53-1.47$ (m, 1 H$), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3$ H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8,111.1,88.7,86.4,82.4,79.93,79.76,79.2,48.9,48.5$, 38.9, 38.7, 34.5, 26.7, 10.0; HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$ 389.9830; Found 389.9825.

Preparation of (3E)-Enal SI-A-15

To a solution of aldehyde $\mathbf{2 3}(13.0 \mathrm{mg}, 0.0351 \mathrm{mmol})$ in dry benzene $(0.351 \mathrm{~mL}, 0.1 \mathrm{M})$ was added (triphenylphosphoranylidene)acetaldehyde ($64.15 \mathrm{mg}, 0.211 \mathrm{mmol}$) at $80^{\circ} \mathrm{C}$. After being stirred at the same temperature for 3 h , the reaction mixture was cooled to rt , and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $10: 1$) to afford ($3 E$)-enal SI-A-15 (12.9 mg, 93\%) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=15.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ (ddt, $J=15.7,7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.14(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{dt}, J=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 2$ H), 2.74 (dddd, $J=15.2,6.7,4.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dtd}, J=15.0,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (ddd, $J=13.7,7.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35-2.28(m, 2 H), 2.23 (dt, $J=13.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (dtd, $J=$ $14.9,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.6,152.5,135.2,88.8,85.1,79.7,79.0,48.6,47.4,39.0,38.0,36.1,26.7,10.0$.

Preparation of (3E)-Elatenyne (1b)

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of LDA $(1.33 \mathrm{~mL}, 0.66 \mathrm{mmol})$ in THF $(1.33 \mathrm{~mL}, 0.05 \mathrm{M})$ was added dropwise $\mathrm{TMSCH}_{2} \mathrm{~N}_{2}(0.37 \mathrm{~mL}, 1.8 \mathrm{M}$ in hexane, 0.66 mmol$)$ under N_{2} atmosphere. After the mixture was stirred at the same temperature for $30 \mathrm{~min},(3 E)$-enal SI-A-15 (26.3 mg , 0.0664 mmol) in THF (1 mL) was dropwise added at the same temperature. After being stirred for 3 h at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous NH 4 Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/ethyl acetate, $50: 1$) to afford ($3 E$)-elatenyne ($\mathbf{1 b}$) ($13.6 \mathrm{mg}, 52 \%$) as a colorless oil: $[\alpha]^{24}{ }_{\mathrm{D}}=-28.3\left(c 0.66, \mathrm{CHCl}_{3}\right) ;[\alpha]^{24} \mathrm{D}=-22.3\left(c 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; \{lit. syn. ${ }^{6 \mathrm{~d}}[\alpha]^{25}{ }_{\mathrm{D}}=-33.0$ (c $\left.\left.0.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$, $\left\{\right.$ For ent-1b, lit. syn. $\left.{ }^{6 \mathrm{~d}}[\alpha]^{25} \mathrm{D}=+29.5\left(c \quad 0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ;{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.23(\mathrm{dt}, J=15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dq}, J=16.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}$, 3 H), 4.01 (dt, $J=7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dq}, J=7.4,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.48 (dddd, $J=14.0,6.9,4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.25$ (m, 5 H), 1.66 (dtd, $J=14.9,7.5,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.50(\mathrm{dp}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) $\delta 140.6,111.9,88.7,85.9,81.8,79.6,79.1,76.7,48.7,47.8,38.9,38.4,36.5,26.7,10.0 ;$ HRMS (EI-magnetic sector) $m / z:[M]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2} 389.9830$; Found 389.9834.

References: S29

(1) (a) I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, High-Field FT NMR Application of Mosher's Method. The Absolute Configuration of Marine Terpenoids, J. Am. Chem. Soc., 1991, 113, 4092-4096. (b) J. A. Dale and H. S. Mosher, Nuclear Magnetic Resonance Enantiomer Regents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-Methylmandelate, and α-methoxy- α-trifluoromethylphenylacetate (MTPA) Esters, J. Am. Chem. Soc., 1973, 95, 512-519.
(2) G. E. Keck and E. P. Boden, Stereocontrolled additions of allyltri- n-butyl-stannane to α-hydro xyaldehyde derivatives. A useful route to monoprotected erythro or threo diols, Tetrahedron Lett., 1984, 25, 265-268.
(3) H. Kim, W. J. Choi, J. Jung, S. Kim and D. Kim, Construction of Eight-Membered Ether Rings by Olefin Geometry-Dependent Internal Alkylation: First Asymmetric Total Syntheses of (+)-3-(E)- and (+)-3-(Z)-Pinnatifidenyne, J. Am. Chem. Soc., 2003, 125, 10238-10240.
(4) A. K. Chatterjee, T. -L. Choi, D. P. Sanders and R. H. Grubbs, A General Model for Selectivity in Olefin Cross Metathesis, J. Am. Chem. Soc., 2003, 125, 11360-11370.
(5) J. A. Marshall and J. J. Sabatini, Synthesis of cis- and trans-2,5-Disubstituted Tetrahydrofurans by a Tandem Dihydroxylation-S S_{N} Cyclization Sequence, Org. Lett., 2005, 7, 4819-4822.
(6) (a) J. G. Hall and J. A. Reiss, Elatenyne - a Pyrano[3,2-B]Pyranyl Vinyl Acetylene from the Red Alga Laurencia elata, Aust. J. Chem., 1986, 39, 1401-1409; (b) R. Brkljača and S. Urban, Relative Configuration of the Marine Natural Product Elatenyne using NMR Spectroscopic and Chemical Derivatization Methodologies, Nat. Prod. Commun. 2013, 8, 729-732; (c) D. A. Dias and S. Urban, Phytochemical studies of the southern Australian marine alga, Laurencia elata, Phytochemistry, 2011, 72, 2081-2089; (d) B. S. Dyson, J. W. Burton, T. I. Sohn, B. Kim, H. Bae and D. Kim, Total Synthesis and Structure Confirmation of Elatenyne: Success of Computational Methods for NMR Prediction with Highly Flexible Diastereomers, J. Am. Chem. Soc., 2012, 134, 11781-11790.

- Electronic Supplementary Information: Part B -

Stereoselective total synthesis of (3Z)- and (3E)-elatenynes

Soo Yeon Kwak, ${ }^{\text {at }}$ Iljin Shin, ${ }^{\text {at }}$ Hongjun jang, ${ }^{\text {a }}$ Youngjik Park, ${ }^{\text {a }}$ Seongju Lim, ${ }^{a}$ Dongjoo Lee, ${ }^{\text {a }}$ Hyoungsu Kim,*a and Deukjoon Kim ${ }^{\text {b }}$
${ }^{a}$ College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
${ }^{\mathrm{b}}$ The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
\$These authors contributed equally to this work.
* E-mail: hkimajou@ajou.ac.kr

Part B (S30~S113)
Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and Other NMR

Is-5-61-product-13C
Is-5-61-product

$100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, CDCl_{3}

14
$150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, CDCl_{3}

11
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR, CDCl_{3}

11
$100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, CDCl_{3}

(

$$
\stackrel{\text { brim }}{4.181 .262 .00}{ }_{1.99}^{\text {1. }}
$$

[^0]

 f2 (ppm)

$\begin{aligned} & -\infty \\ & \infty \\ & \infty \\ & \hline \end{aligned} 0_{0}^{\circ}$	$\stackrel{\text { ल }}{ }$	$\begin{aligned} & \text { Nờ } \\ & \text { ö } \end{aligned}$
	N	$\stackrel{\infty}{\sim}$
) 11		\checkmark

OTIPS
$\begin{gathered} 16 \\ 150 \mathrm{MHz}^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3} \end{gathered}$

OPMB

9
$600 \mathrm{MHz}^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY NMR CDCl_{3}

(R)-MTPA Ester SI-A-06

 SI-A-04 $150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, CDCl_{3}

$20(E / Z=6: 1)$ $600 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}$
\qquad

-113.7809

SI-A-07 (E/Z = $6: 1$) $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR, CDCl_{3}

年.081.072.132.092.11

$9 \angle \forall て ゙ G s-$

七てしの・とトに

$00 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR, CDCl_{3}

																		$\begin{aligned} & \mathrm{T}^{1} \\ & 3.05 \end{aligned}$			
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.E

$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{\oplus}{7}$

		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$
$1 / 1$	\|	-

$600 \mathrm{MHz}^{1} \mathrm{H}$ NMR, CDCl_{3}

150 MHz ${ }^{13} \mathrm{C}$ NMR, CDCl_{3}

SK-2-18_C
single pulse decoupled gated NOE

single pulse decoupled gated NOE

\circ
$\stackrel{\circ}{\infty}$
\circ
\circ
\vdots

6
$150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, CDCl_{3}

6
$150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, CDCl_{3}

6
$150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, CDCl_{3}

S93

$$
\begin{array}{llllllllllll}
10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 \\
\mathrm{f} 1 & (\mathrm{ppm})
\end{array}
$$

$600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR, CDCl_{3}

22
$150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, CDCl_{3}

 TMintum

Synthetic (3Z)-Elatenyne (1a), (500 MHz, CDCl_{3}, J. Am. Chem. Soc., 2012, 134, 11781-11790)

Synthetic (3Z)-Elatenyne (1a), (125 MHz, CDCl_{3}, J. Am. Chem. Soc., 2012, 134, 11781-11790)

Kim's Synthetic (3Z)-Elatenyne (1a), ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Synthetic ent-(3Z)-Elatenyne (ent-1a), (125 MHz, CDCl ${ }_{3}$, J. Am. Chem. Soc., 2012, 134, 11781-11790)

(-)-(3E)-Elatenyne (1b) $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR, CDCl_{3}

Synthetic ent-(E)-Elatenyne (ent-1b), (500 MHz, CDCl_{3}, J. Am. Chem. Soc., 2012, 134, 11781-11790)

Kim's Synthetic (3E)-Elatenyne (1b), ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Synthetic ent-(E)-Elatenyne (ent-1b), (500 MHz, CDCl_{3}, J. Am. Chem. Soc., 2012, 134, 11781-11790)

Kim's Synthetic (3E)-Elatenyne (1b), (600 MHz, CDCl_{3})

Stereoselective total synthesis of (3Z)- and (3E)-elatenynes


```
    Hyoungsu Kim,*a and Deukjoon Kim}\mp@subsup{}{}{\mathrm{ b}
a}\mathrm{ aollege of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon
16499, Korea
'bThe Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
$These authors contributed equally to this work.
* E-mail: hkimajou@ajou.ac.kr
```

Part C (S114~S140)
Copies of HRMS Spectra
Copies of Original Reports for HRMS
Copies of Original HRMS Spectra S117~S140

Copies of Original Reports for HRMS

Compound	Mode	Formula	m / z	Calculated	Observed	Page
13	EI	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$	$[\mathrm{M}]^{+}$	293.1627	293.1624	S117
14	EI	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrNO}_{4}$	$[\mathrm{M}]^{+}$	373.0889	373.0884	S118
11	EI	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BrNO}_{5}$	$[\mathrm{M}]^{+}$	493.1464	493.1462	S119
10	EI	$\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{5}$	$[\mathrm{M}]^{+}$	413.2202	413.2205	S120
15	EI	$\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{BrNO}_{4} \mathrm{Si}$	$[\mathrm{M}]^{+}$	529.2223	529.2225	S121
16	EI	$\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{Si}$	$[\mathrm{M}]^{+}$	449.2961	449.2961	S122
SI-A-03	EI	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$	$[\mathrm{M}]^{+}$	293.1627	293.1624	S123
17	EI	$\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{5}$	$[\mathrm{M}]^{+}$	413.2202	413.2202	S124
9	EI	$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5}$	$[\mathrm{M}]^{+}$	412.2250	412.2242	S125
SI-A-04	FAB	$\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{5}$	$[\mathrm{M}+\mathrm{H}]^{+}$	413.2328	413.2328	S126
(S)-MTPA-SI-A-05	FAB	$\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{O}_{7}$	$[\mathrm{M}+\mathrm{H}]^{+}$	629.2726	629.2719	S127
(R)-MTPA-SI-A-06	FAB	$\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{O}_{7}$	$[\mathrm{M}+\mathrm{H}]^{+}$	629.2726	629.2722	S128
20	EI	$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5}$	$[\mathrm{M}]^{+}$	440.2563	440.2558	S129
SI-A-07	EI	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{~S}$	$[\mathrm{M}]^{+}$	594.2651	594.2654	S130
8	FAB	$\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{O}_{9} \mathrm{~S}$	$[\mathrm{M}+\mathrm{H}]^{+}$	629.2784	629.2787	S131
21	EI	$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{6}$	$[\mathrm{M}]^{+}$	456.2512	456.2510	S132
SI-A-09	EI	$\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BrO}_{5}$	$[\mathrm{M}]^{+}$	518.1668	518.1669	S133
SI-A-10	EI	$\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BrO}_{4}$	$[\mathrm{M}]^{+}$	398.1093	398.1094	S134
6	EI	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{3}$	$[\mathrm{M}]^{+}$	460.0249	460.0243	S135
7	FAB	$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5}$	$[\mathrm{M}+\mathrm{H}]^{+}$	337.2015	337.2017	S136
SI-A-13	FAB	$\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{O}_{3}$	$[\mathrm{M}+\mathrm{H}]^{+}$	370.9857	370.9854	S137

Copies of Original Reports for HRMS

Compound	Mode	Formula	m / z	Calculated	Observed	Page
SI-A-14	EI	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Si}$	$[\mathrm{M}]^{+}$	462.0225	462.0219	S 138
(3Z)-Elatenyne (1a)	EI	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$	$[\mathrm{M}]^{+}$	389.9830	389.9825	S 139
$\mathbf{(3 E) - E l a t e n y n e ~ (1 a) ~}$	EI	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$	$[\mathrm{M}]^{+}$	389.9830	389.9834	S 140

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$ Exact Mass: 293.1627 [M] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} 293.1627$
[Elemental Composition]
Data : 1-SK-01-001
Date : 10-Oct-2023 15:52
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI
RT : 1.77 min
Scan\#: 54+58

RT : 1.77 min
Elements : C $18 / 0, \mathrm{H} 25 / 0, \mathrm{O} 4 / 0, \mathrm{~N} 2 / 0$
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0

Observed m/z	Int\%	Err [ppm / mmu]	U.S.	Composition	
293.1624	100.0	$-1.1 /$	-0.3	6.0	C 16 H 2304 N

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrNO}_{4}$ Exact Mass: 373.0889
$[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrNO}_{4} 373.0889$
[Elemental Composition]
Data : 2-SK-02-001
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : 1.75 min Scan\#: $(53,54)+62+66+70$
Elements : C 18/0, H 25/0, O 4/0, N 2/0, Br 1/0
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition $373.0884 \quad 99.4 \quad-1.2 /-0.5 \quad 5.0$ C 16 H 2404 N Br (200-1

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BrNO}_{5}$ Exact Mass: 493.1464
$[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{BrNO}_{5} 493.1464$
[Elemental Composition]
Data : 3-SK-03-010 \quad Date : 10-Oct-2023 16:17

Sample:

Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : 2.57 min Scan\#: 78
Elements : C 25/0, H 35/0, O 5/0, N 2/0, Br $1 / 0$
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{5}$ Exact Mass: 413.2202 $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{5} 413.2202$
[Elemental Composition]
Data : 4-SK-04-012
Date : 10-Oct-2023 16:23
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : 1.87 min
Scan\#: $(56,58)+62+65$
Elements : C $25 / 0, \mathrm{H} 32 / 0, \mathrm{O} 6 / 0, \mathrm{~N} 2 / 0$
Mass Tolerance
Unsaturation (U.S.) : 3 mmu
$-0.5-70.0$
$\begin{array}{ccccccc}\text { Observed m/z } & \text { Int\% } & \text { Err [ppm / mmu] } & \text { U.S. Composition } \\ 413.2205 & 60.7 & +0.6 / & +0.2 & 10.0 & \text { C } 24 \mathrm{H} 31 \text { O } 5 \mathrm{~N}\end{array}$

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{BrNO}_{4} \mathrm{Si}$ Exact Mass: 529.2223 $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{BrNO}_{4} \mathrm{Si} 529.2223$
[Elemental Composition]
Data : 5-SK-05-016
Date : 10-Oct-2023 16:32
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : $0.54 \mathrm{~min} \quad$ Scan\#: $17+19$
Elements : $\mathrm{C} 26 / 0, \mathrm{H} 45 / 0, \mathrm{O} 5 / 0, \mathrm{~N} 2 / 0, \mathrm{Br} 1 / 0, \mathrm{Si} 1 / 0$
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition
$\begin{array}{llrlrl}529.2225 & 29.2 & +0.4 /+0.2 & 5.0 & \text { C } 25 \mathrm{H} 4404 \mathrm{~N} \mathrm{Br} \mathrm{Si}\end{array}$

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{Si}$ Exact Mass: 449.2961
[M] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{Si} 449.2961$
[Elemental Composition]
Data : 6-SK-06-018
Date : 10-Oct-2023 16:36
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : 1.44 min Scan\#: $44+44+46+47$
Elements : C 27/0, H 45/0, O 4/0, N 2/0, Si 1/0
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition $449.2961 \quad 23.5 \quad-0.1 /+0.0 \quad 6.0 \quad$ C 25 H 43 O 4 N Si

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$ Exact Mass: 293.1627 [M] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} 293.1627$
[Elemental Composition]
Data : 7-SK-07-003
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : 2.52 min \quad Scan\#: $(75,78)+68+64+70+71+72+74$
Elements : C 20/0, H 25/0, O 4/0, N $2 / 0$
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{5}$ Exact Mass: 413.2202 $[M]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{5} 413.2202$
[Elemental Composition]
Data : 8-SK-08-014
Date : 10-Oct-2023 16:28
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : 1.60 min Scan\#: $49+51+49$
Elements : C 25/0, H 33/0, O 5/0, N 2/0
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0

| Observed m/z | Int\% | Err [ppm / mmu] | U.S. Composition | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 413.2202 | 100.0 | $+0.0 /$ | +0.0 | 10.0 | C 24 H 31 O 5 N |

OPMB

Elemental Composition]
Data : SK-24-013
Date : 20-Dec-2019 16:20
Sample: Ajou-Univ.
Note : SM Lab Research institute for Analysis
Inlet : Reserv. Ion Mode : EI+
RT : 1.17 min
Elements : C 25/0, H 45/0, O 6/0
Mass Tolerance : 10mmu
Unsaturation (U.S.) : -1.0 - 50.0

Observed m/z	Int\%	Err[ppm / mmu]	U.S.	Composition	
412.2242	23.7	$-2.0 /$	-0.8	10.0	C 25 H 32 O 5

[Elemental Composition]

Data : FAB-SK-11-011

Sample:
Note : SM Lab Research Center (Jeol JMS-700)
Inlet : Reserv. Ion Mode : FAB+
RT : 1.04 min
Scan\#: 32+18+8
Elements : C $27 / 0, \mathrm{H} 37 / 0$, $\mathrm{O} 7 / 0$
Mass Tolerance : 5mmu
Unsaturation (U.S.) : -0.5-80.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition $413.2328 \quad 100.0+0.0 /+0.0 \quad 9.5$ C 25 H 33 O 5

413.2328

[Elemental Composition]

```
Data :
```

Note : SM Lab Research Center (Jeol JMS-700)
Inlet : Reserv. Ion Mode : FAB+
RT : $0.44 \mathrm{~min} \quad$ Scan\#: $(11,17)+24+18+18$
Elements : C $37 / 0, \mathrm{H} 44 / 0, \mathrm{O} 7 / 0, \mathrm{~F} 3 / 0$
Mass Tolerance : 5mmu
Unsaturation (U.S.) : -0.5-80.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition
$629.2719 \quad 23.7 \quad-1.1 /-0.7 \quad 14.5$ C 35 H 40 O 7 F 3

OPMB

SI-A-(R)-MTPA-06
Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{O}_{7}$ Exact Mass: 628.2648 $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{O}_{7} 629.2726$
[Elemental Composition]
Data : FAB-SK-10-005
Date : 11-Oct-2023 12:49
Sample:
Note : SM Lab Research Center (Jeol JMS-700)
Inlet : Reserv. Ion Mode : FAB+
RT : 5.40 min
Elements : C $37 / 0, \mathrm{H} 44 / 0, \mathrm{O} 7 / 0, \mathrm{~F} 3 / 0$
Mass Tolerance : 5mmu
Unsaturation (U.S.) : -0.5-80.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition 629.2722 60.8 $-0.6 /-0.4 \quad 14.5$ C 35 H 40 O 7 F 3

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5}$ Exact Mass: 440.2563 $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5} 440.2563$
[Elemental Composition]
Data : SK-25-017
Sample: Ajou-Univ.
Note : SM Lab Research institute for Analysis
Inlet : Reserv.
Ion Mode : EI+
RT : 0.97 min
Scan\#: $30+30+31+30$
Elements : C $30 / 0, \mathrm{H} 45 / 0, \mathrm{O} 6 / 0$
Mass Tolerance : 10mmu
Unsaturation (U.S.) : -1.0-50.0
Observed m/z Int\% Err [ppm / mmu] U.S. Composition $440.2558 \quad 19.2 \quad-1.1 / 10.5 \quad 10.0$ C 27 H 36 O 5

Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{~S}$ Exact Mass: 594.2651 [M] ${ }^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{~S} 594.2651$
[Elemental Composition]
Data : SK-26-019

Sample: Ajou-Univ.

Note : SM Lab Research institute for Analysis
Inlet : Reserv. Ion Mode : EI+
RT : $1.94 \mathrm{~min} \quad$ Scan\#: $59+58+58+57+59+59+58$
Elements : C 35/0, H 45/0, O 7/0, S $1 / 0$
Mass Tolerance : 10mmu
Unsaturation (U.S.) : -1.0-50.0
Observed m/z Int\% Err [ppm / mmu] U.S. Composition $594.2654 \quad 26.2+0.4 /+0.3 \quad 15.0$ C 34 H 42 O 7 S

Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{9} \mathrm{~S}$ Exact Mass: 628.2706 $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{O}_{9} \mathrm{~S} 629.2784$
[Elemental Composition]
Data : FAB-SK-12-007
Date : 11-Oct-2023 12:55
Sample:
Note : SM Lab Research Center (Jeol JMS-700)
Inlet : Reserv. Ion Mode : FAB+
RT : 1.27 min Scan\#: 39
Elements : C $36 / 0, \mathrm{H} 46 / 0, \mathrm{O} 9 / 0, \mathrm{~S} 1 / 0$
Mass Tolerance
: 5 mmu
Unsaturation (U.S.) : -0.5-80.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition 629.2787 81.9 $+0.5 /+0.3 \quad 13.5$ C 34 H 45 O 9 S

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{6}$ Exact Mass: 456.2512 $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{6} 456.2512$
[Elemental Composition]
Data : SK-1-001
Date : 20-Dec-2019 14:03
Sample: Ajou-Univ.
Note : SM Lab Research institute for Analysis
Inlet : Reserv. Ion Mode : EI+
RT : 1.10 min
Scan\#: $34+38+39$
Elements : C 27/0, H 50/0, O 7/0
Mass Tolerance : 10mmu
Unsaturation (U.S.) : -1.0 - 50.0
$\begin{array}{ccccccc}\text { Observed m/z } & \text { Int\% } & \text { Err [ppm / mmu] } & \text { U.S. } & \begin{array}{c}\text { Composition } \\ 456.2509\end{array} & 100.0 & -0.5 / \\ -0.2 & 10.0 & \text { C } 27 \mathrm{H} 36 \mathrm{O} & 6\end{array}$

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BrO}_{5}$ Exact Mass: 518.1668 $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BrO}_{5} 518.1668$

[Elemental Composition]

Data : SK-2-002
Sample: Ajou-Univ.
Note : SM Lab Research institute for Analysis
Inlet : Reserv. Ion Mode : EI+
RT : 0.74 min Scan\#: 23
Elements : $\mathrm{C} 28 / 0, \mathrm{H} 50 / 0, \mathrm{Br} 1 / 0, \mathrm{O} 7 / 0$
Mass Tolerance : 10mmu
Unsaturation (U.S.) : -1.0 - 50.0

Observed m/z	Int\%	Err [ppm / mmu]	U.S.	Composition		
518.1669	27.9	$+0.3 /$	+0.1	10.0	C 27 H 35 Br 0	5

SI-A-10

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BrO}_{4}$ Exact Mass: 398.1093 [M] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BrO}_{4} 398.1093$
[Elemental Composition]
Data : SK-3-003
Sample: Ajou-Univ.
Note : SM Lab Research institute for Analysis
Inlet : Reserv. Ion Mode : EI+
RT : 0.74 min
Scan\#: 23
Elements : C $20 / 0, \mathrm{H} 30 / 0, \mathrm{Br} 1 / 0, \mathrm{O} 7 / 0$
Mass Tolerance : 10mmu
Unsaturation (U.S.) : -1.0 - 50.0

| Observed m/z | Int\% | Err[ppm $/ \mathrm{mmu}]$ | U.S. | Composition | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 398.1094 | 16.0 | $+0.3 /$ | +0.1 | 6.0 | C 19 H 27 Br 04 |

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{3}$ Exact Mass: 460.0249 $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{3} 460.0249$
[Elemental Composition]
Data : SK-4-004 Date : 20-Dec-2019 14:13
Sample: Ajou-Univ
Note : SM Lab Research institute for Analysis
Inlet : Reserv. Ion Mode : EI+
RT : 0.90 min Scan\#: 28+32
Elements : $\mathrm{C} 20 / 0, \mathrm{H} 30 / 0, \mathrm{Br} 2 / 0, \mathrm{O} 7 / 0$
Mass Tolerance : 10mmu
Unsaturation (U.S.) : -1.0 - 50.0

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$ Exact Mass: 336.1937
$[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5} 337.2015$
[Elemental Composition]
Data : FAB-SK-13-013
Date : 11-Oct-2023 15:05
Sample:
Note : SM Lab Research Center (Jeol JMS-700)
Inlet : Reserv. Ion Mode : FAB+
RT : 3.34 min
Scan\#: 101
Elements : C 27/0, H 37/0, O 7/0
Mass Tolerance : 5mmu
Unsaturation (U.S.) : -0.5-80.0
Observed m/z Int\% Err [ppm / mmu] U.S. Composition 337.2017 91.3 +0.7 / +0.2 5.5 C 19 H 29 O 5

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{3}$ Exact Mass: 369.9779
$[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{O}_{3} 370.9857$
[Elemental Composition]
Data : FAB-SK-14-015
Date : 11-Oct-2023 15:15
Sample:
Note : SM Lab Research Center (Jeol JMS-700)
Inlet : Reserv. Ion Mode : FAB+
RT : 1.47 min Scan\#: $(44,46)$
Elements : C 15/0, H 22/0, O 3/0, $\mathrm{Br} 2 / 0$
Mass Tolerance : 5mmu
Unsaturation (U.S.) : -0.5-80.0
Observed m/z Int\% Err [ppm / mmu] U.S. Composition $370.9854 \quad 54.4 \quad-1.0 /-0.4 \quad 1.5$ C 12 H 21 O 3 Br 2

TMS-(3Z)-Enyne SI-A-14
Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Si}$
Exact Mass: 462.0225
[M] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Si} 462.0225$
[Elemental Composition]
Data : SK-6-006
Sample: Ajou-Univ
Note : SM Lab Research institute for Analysis
Inlet : Reserv. Ion Mode : EI
RT : 0.80 min Scan\#: 25
Elements : C 20/0, H 30/0, $\mathrm{Br} 2 / 0, \mathrm{O} 2 / 0$, Si $2 / 0$
Mass Tolerance : 10mmu
Unsaturation (U.S.) : -1.0 - 50.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition $462.021932 .5-1.3 /-0.6 \quad 5.0$ C 18 H 28 Br 2 O 2 Si
462.2219

30
20

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$
Exact Mass: 389.9830
[M^{+}Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2} 389.9830$
[Elemental Composition]
Data : 16-SK-16-031
Date : 10-Oct-2023 17:10
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : $0.94 \mathrm{~min} \quad$ Scan\#: 29
Elements : $\mathrm{C} 16 / 0, \mathrm{H} 22 / 0, \mathrm{O} 2 / 0, \mathrm{Br} 2 / 0$
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition $389.9825 \quad 12.2 \quad-1.2 /-0.5 \quad 5.0$ C 15 H 20 O 2 Br 2

(rans
(3E)-Elatenyne (1b)
Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2}$ Exact Mass: 389.9830
$[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{2} 389.9830$

[Elemental Composition]

Data : 15-SK-15-029
Date : 10-Oct-2023 17:06
Sample:
Note : SMLab Mass analysis (Jeol HRMS JMS-700D)
Inlet : Direct Ion Mode : EI+
RT : 1.27 min
Scan\#: 39
Elements : C 16/0, H 22/0, O 2/0, Br $2 / 0$
Mass Tolerance : 3mmu
Unsaturation (U.S.) : -0.5-70.0
Observed m/z Int\% Err[ppm / mmu] U.S. Composition $389.9834 \quad 9.5+0.9 /+0.4 \quad 5.0$ C 15 H 20 O 2 Br 2

[^0]:

