Construction and characterization of magnetic nanoparticles supported Cu complex: A stable and active nanocatalyst for synthesis of heteroaryl-aryl and di-heteroaryl sulfides

Yutong Fang ^{1,} Songlin Chen ^{2,3*}, Li-Yuan Chang ^{4*}

¹ Sinopec Research Institute of Petroleum Processing, BeiJin 100089, China.

² Department of Basics, Naval University of Engineering, Wuhan 430030, Hubei, China.

³ School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430070, Hubei, China.

⁴ Institute of Chemical and Nanotechnology Research, Shanghai, China.

Corresponding-Author Mail: chensonglin0170@163.com and liyuanchang839@gmail.com

Abstract

Diaryl and di-heteroaryl sulfides exist in the structure of many drugs and important biological compounds, also these compounds are well-known in medicinal chemistry due to important biological and pharmaceutical activities. Therefore, the development of novel, ecofriendly and efficient catalytic systems for the preparation of diaryl and di-heteroaryl sulfides is a very attractive and important challenge in organic synthesis. In this attractive methodology, we wish to introduce Fe_3O_4 (2)AMBA-CuI nanomaterials as a novel and efficient magnetically recoverable catalyst for the preparation of heteroaryl-aryl and di-heteroaryl sulfides with high yields through reaction of heteroaryl halides with aryl or heteroaryl boronic acids and S_8 as sulfur source under ecofriendly conditions. This catalytic system was very efficient and practical for a diverse range of heteroaryl substrates including benzothiazole, benzoxazole, benzimidazole, oxadiazole, benzofuran, imidazo[1,2-a]pyridine, because the desired diaryl and di-heteroaryl sulfides were prepared with high yields. The reusability-experiments revealed that the Fe₃O₄@AMBA-CuI nanocatalyst can be magnetically separated and reused at least six runs without significant decrease in its catalytic activity. VSM and ICP-OES analyzes confirmed that despite using the Fe₃O₄@AMBA-CuI nanocatalyst 6 times, the magnetic properties and stability of the catalyst were still maintained. Although all the obtained heteroaryl-aryl and di-heteroaryl sulfide products are known and previously reported, but synthesis of this number of heteroaryl-aryl and di-heteroaryl sulfides has never been reported by any methods.

Keywords: Diaryl and di-heteroaryl sulfides, Fe₃O₄@AMBA-CuI nanocatalyst, Magnetic separation, Pharmaceutical chemistry, Sulfur source.

Experimental

General procedure for preparation of heteroaryl-aryl and di-heteroaryl sulfides catalyzed by Fe₃O₄@AMBA-CuI nanocomposite

In a round bottomed flask, a mixture of heteroaryl iodides (0.5 mmol), aryl or heteroaryl boronic acids (0.6 mmol), S8 (0.5 mmol) KOAc (2 equiv) and Fe₃O₄@AMBA-CuI catalyst (8 mol%) was stirred in PEG-400 at 120 °C for 5h (the progress of the reaction was monitored by thin-layer chromatography (TLC)). After completion of the reaction, the Fe₃O₄@AMBA-CuI was magnetically separated and reaction mixture was cooled to room temperature and H₂O (4 mL) was added. The product was extracted with EtOAc (3×4 mL) and dried over anhydrous Na₂SO₄. The crude material was purified with chromatography column on silica gel (EtOAc/n-hexane) give the heteroaryl-aryl and di-heteroaryl sulfides products are previously reported and known. HNMR and CNMR were used in order to identify the structure of the heteroaryl-aryl and di-heteroaryl sulfide products

NMR Data for heteroaryl-aryl and di-heteroaryl sulfide products

https://doi.org/10.1002/chem.201600800

2-(phenylthio)benzo[d]thiazole: mp: 32-34 °C, ¹H NMR (500 MHz, CDCl₃) δ 8.06–8.02 (m, 2H), 7.64–7.60 (m, 2H), 7.58–7.46 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 155.0, 135.6, 135.1, 130.8, 130.4, 126.7, 124.5, 122.1, 120.7.

https://doi.org/10.1021/acs.joc.9b02371

2-(phenylthio)benzo[d]oxazole: Colorless oil, ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.63 – 7.61 (m, 2H), 7.20 – 7.17 (m, 2H), 7.16 – 7.14 (m, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 162.8, 152.3, 142.9, 135.1, 130.3, 129.9, 127.2, 124.7, 123.8, 119.4, 110.3.

https://doi.org/10.1016/j.tet.2006.02.071

1-methyl-2-(phenylthio)-1H-benzo[d]imidazole: mp: 65-67 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.61– 7.57 (m, 2H), 7.48-7.45 (m, 2H), 7.38 (t, J = 4.3 Hz, 3H), 7.23 – 7.21 (m, 2H), 3.78 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.5, 135.2, 131.5, 130.2, 129.8, 122.4, 118.6, 110.3, 32.9.

https://doi.org/10.1016/j.tet.2021.132564

2-(p-tolylthio)benzo[d]thiazole: mp: 69-71 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 7.6, 1.2 Hz, 1H), 7.60–7.57 (m, 2H), 7.37–7.33 (m, 1H), 7.32–7.25(m, 2H), 7.23–7.20 (m, 1H), 2.50(s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 153.6, 135.9, 134.1, 130.5, 130.2, 129.7, 126.3, 124.2, 121.5, 120.8, 22.5.

DOI https://doi.org/10.1039/C7CC03107F

4-(benzo[d]thiazol-2-ylthio)benzonitrile: mp: 110-112 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 7.7 Hz, 1H), 7.69–7.65 (m, 3H), 7.46-7.40(m, 2H), 7.31 (d, J = 4.5 Hz, 1H), 7.29 (d, J = 4.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 153.4, 136.5, 136.2, 135.7, 130.3, 128.5, 126.3, 124.6, 122.0, 120.1.

DOI: 10.1039/C9NJ04440J

2-((4-nitrophenyl)thio)benzo[d]thiazole: mp: 86-89 °C, ¹H NMR (500 MHz, CDCl₃) δ 8.00–7.95 (m, 2H), 7.65–7.63 (m, 2H), 7.45–7.41 (m, 2H), 7.20–7.14 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 158.3, 142.8, 141.3, 139.5, 138.0, 130.2, 129.7, 128.6, 127.9, 118.4, 115.7.

https://doi.org/10.1016/j.tet.2021.132564

2-((4-methoxyphenyl)thio)benzo[d]thiazole: mp: 55-57 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 1H), 7.65-7.60 (m, 2H), 7.38–7.35 (m, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.22-7.00 (m, 3H), 3.89(s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 161.0, 154.9, 137.6, 135.7, 126.12, 124.3, 121.5, 120.8, 120.2, 115.5.

DOI https://doi.org/10.1039/C7CC03107F

2-((4-(trifluoromethyl)phenyl)thio)benzo[d]thiazole: mp: 58-60 °C, ¹H NMR (500 MHz, CDCl₃) 8.02 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 7.8 Hz, 3H), 7.69–7.65 (m, 2H), 7.64-7.60(m, 1H), 7.59-7.57(m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.2, 141.0, 140.9, 139.5, 137.4, 136.5, 130.6, 129.7, 129.1, 128.7, 127.9, 127.3.

https://doi.org/10.1021/acs.joc.8b01644

2-(p-tolylthio)benzo[d]oxazole: Colorless oil, ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 7.7 Hz, 2H), 7.61-7.55 (m, 2H), 7.31–7.24 (m, 2H), 7.21-7.18 (m, 2H), 2.54(s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 155.2, 143.6, 141.5, 138.7, 130.5, 129.7, 127.3, 126.1, 120.3, 115.2, 22.5.

https://doi.org/10.1021/jo402586v

2-((3,4,5-trimethoxyphenyl)thio)benzo[d]oxazole: mp: 127-129 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.3 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.43 (td, J = 7.7, 1.3 Hz, 1H), 7.26 (td, J = 7.5, 1.3 Hz, 1H), 7.10 (s, 2H), 3.85 (s, 6H), 3.64 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.2, 155.3, 145.6, 141.2, 135.8, 130.7, 126.7, 125.3, 124.1, 121.0, 120.8, 58.9, 58.2.

DOI https://doi.org/10.1039/D2OB02216H

bis(benzo[d]thiazol-2-yl)sulfane: mp: 100-102 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.6 Hz, 2H), 7.65-7.60 (m), 7.45–7.40(m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 141.6, 137.0, 135.9, 134.5, 130.2, 129.2, 127.3, 125.9.

https://doi.org/10.1021/jo9016309

2-phenyl-3-(phenylthio)benzofuran: mp: 66-68 °C, ¹H NMR (500 MHz, CDCl₃) δ 8.24 (dd,J = 8.3 Hz, 2H), 7.56(d, J = 8.2 Hz, 1H), 7.48-7.41 (m, 5H), 7.37-7.23 (m, 5H), 7.22-7.16(m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 153.2, 136.5, 130.6, 129.7, 129.4, 129.0, 128.7, 127.3, 126.5, 125.9, 125.4, 123.4, 120.5, 111.3, 104.9.

DOI https://doi.org/10.1039/D0OB00684J

2-(pyridin-2-ylthio)benzo[d]thiazole: mp: 66-68 °C, ¹H NMR (500 MHz, CDCl₃) δ 9.26 (d, J = 1.8 Hz, 1H), 8.81 (dd, J = 4.9, 1.7 Hz, 1H), 8.29 (ddd, J = 8.1, 2.3, 1.8 Hz, 1H), 7.55–7.45 (m, 4H), 7.44 (ddd, J = 8.1, 4.9, 1.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 154.6, 149.7, 136.5, 135.1, 132.5, 129.8, 128.9, 126.3, 122.4.

https://doi.org/10.1016/j.tet.2011.02.064

2-phenyl-5-(phenylthio)-1,3,4-oxadiazole: mp: 60-62 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 2 H), 7.70-7.64 (m, 2 H), 7.59 (t, J = 7.2 Hz, 1 H), 7.49-7.42 (m, 5 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 166.1, 133.8, 132.4,130.8, 130.2, 129.8, 127.6, 126.4, 123.9.

https://doi.org/10.1021/jo402586v

2-phenyl-5-((3,4,5-trimethoxyphenyl)thio)-1,3,4-oxadiazole: mp: 140-142 °C, ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 6.7 Hz, 2H), 7.52-7.50 (m, 3H), 6.95 (s, 2H), 3.97 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 163.9, 153.2, 140.3, 132.3, 130.0, 126.4, 123.7, 121.5, 111.3, 61.7, 55.5

DOI: 10.1055/s-0037-1612082

2-phenyl-3-(phenylthio)imidazo[1,2-a]pyridine: mp: 92-94 °C, ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, 1H, J = 6.8 Hz), 8.18 (d, 2H, J = 7.6 Hz), 7.71 (d, 1H, J = 9.2 Hz), 7.45 (t, 2H, J = 7.7 Hz), 7.38 (d, 1H, J = 7.3 Hz), 7.30 (t, 1H, J = 8 Hz), 7.17 (t, 2H, J = 7.6 Hz), 7.11 (t, 1H, J = 7.6 Hz), 6.97 (d, 2H, J = 7.6 Hz), 6.85 (t, 1H, J = 6.7 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 151.0, 147.2, 133.5, 129.7, 128.5, 128.3, 127.4, 126.2, 125.6, 125.3, 124.5, 117.3, 112.2, 106.3.

DOI: 10.1055/s-0037-1612082

2-phenyl-3-(p-tolylthio)imidazo[1,2-a]pyridine: mp: 135-137 °C, ¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, 1H, J = 6.5 Hz), 8.21 (d, 2H, J = 7.5 Hz), 7.71 (d, 1H, J = 9.1 Hz), 7.46 (t, 2H, J = 7.6 Hz), 7.37 (d, 1H, J = 7.3 Hz), 7.28 (t, 1H, J = 8 Hz), 7.02 (d, 2H, J = 8 Hz), 6.95 (d, 2H, J = 8.1 Hz), 6.87 (t, 1H, J = 6.7 Hz), 2.38 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.0, 145.3, 136.8, 133.5, 131.2, 130.7, 129.7, 128.6, 128.0, 126.4, 125.7, 117.9, 112.4, 106.3, 21.3.

DOI: 10.1055/s-0037-1612082

3-((4-methoxyphenyl)thio)-2-phenylimidazo[1,2-a]pyridine: mp: 112-114 °C, ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, 1H, J = 6.1 Hz), 8.22 (d, 2H, J = 8.2 Hz), 7.71 (d, 1H, J = 8.6 Hz), 7.42-7.40 (m, 2H), 7.35 (t, 1H, J = 5.7 Hz), 7.29-7.27 (m, 1H), 6.97 (d, 2H, J = 8.3 Hz), 6.85 (t, 1H, J = 5.6 Hz), 6.75 (d, 2H, J = 8.6 Hz), 3.70 (s, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 150.2, 146.7, 133.6, 130.9, 129.7, 128.8, 128.6, 127.7, 126.4, 125.7, 117.7, 115.9, 112.6, 107.4, 55.3.

DOI: 10.1055/s-0037-1612082

2-(p-tolyl)-3-(p-tolylthio)imidazo[1,2-a]pyridine: mp: 142-144 °C, ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, 1H, J = 6.8 Hz), 8.12 (d, 2H, J = 7.8 Hz), 7.70 (d, 1H, J = 9.1 Hz), 7.33 (t, 1H, J = 7.6 Hz), 7.25 (d, 2H, J = 8.3 Hz), 7.02 (d, 2H, J = 7.7 Hz), 6.92 (d, 2H, J = 7.7 Hz), 6.83 (t, 1H, J = 6.7 Hz), 2.38 (s, 3H), 2.25 (s, 3H).; ¹³C NMR (126 MHz, CDCl₃) δ 151.1, 146.3, 138.7, 134.3, 130.7, 129.7, 129.1, 128.2, 126.4, 125.1, 124.4, 117.6, 112.7, 105.9, 21.3, 20.6.

2-(furan-2-ylthio)benzo[d]thiazole: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 8.5 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 9.2Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 161.7, 137.6, 130.5, 129.3, 119.1, 115.3, 114.5.

https://doi.org/10.1016/j.tet.2014.10.075

2-(thiophen-2-ylthio)benzo[d]thiazole: ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.21 (m, 2H), 7.14-7.10 (m, 2H), 6.97-6.93 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 149.8, 135.0, 134.7, 132.1, 130.8, 130.2, 128.3, 117.6, 116.3, 115.4.

¹ HNMR	¹³ CNMR								
F2 - Acquisition Parameters	F2 - Acquisition Parameters								
Date 20230427	Date 20230427								
Time 14.20	Time 13.45								
INSTRUM spect	INSTRUM spect								
PROBHD 5 mm Multinucl	PROBHD 5 mm Multinucl								
PULPROG zg	PULPROG zgpg								
TD 16384	TD 65536								
SOLVENT CDCl ₃	SOLVENT CDCl ₃								
NS 10	NS 85								
DS 0	DS 0								
SWH 6265.664 Hz	SWH 13812.154 Hz								
FIDRES 0.382426 Hz	FIDRES 0.210757 Hz								
AQ 1.3074932 sec	AQ 2.3724532 sec								
RG 32	RG 1625.5								
DW 79.800 usec	DW 36.200 usec								
DE 6.00 usec	DE 6.00 usec								
1E 300.0 K	TE 300.0 K								
D1 3.0000000 sec	DI 2.0000000 sec								
	$\begin{array}{cccc} d11 & 0.03000000 \text{ sec} \\ 112 & 0.00002000 \text{ sec} \end{array}$								
	d12 0.00002000 sec								
	====== CHANNEL fl								
	NUC1 13C								
	P1 10.00 usec								
	PL1 0.00 dB								
	SFO1 62.9015285 MHz								
	======= CHANNEL f2								
	CPDPRG2 waltz16								
	NUC2 1H								
	PCPD2 80.00 usec								
	PL2 3.00 dB								
	PL12 21.50 dB								
	PL13 23.00 dB								
	SFO2 250.1310005 MHz								
	F2 - Processing parameters								
	SI 32768								
	SF 62.8955307 MHz								
	WDW EM								
	SSB 0								
	LB 8.00 Hz								

 Table S1. experimental conditions for NMR analysis

GB	0	
PC	1.40	

10	100 f1 (ppm)	

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

200

C 225 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55

110 100 f1 (ppm)

120 110 100 90 f1 (ppm) 140 130

																			1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

11.0 10.5 10.0 9.5 9.0 8.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 f1 (ppm) 7.0 2.5 8.0 7.5 3.0 2.0 1.5 1.0

f1 (ppm)