Supporting Information

Insights into the potential applications of permanganate/peroxymonosulfate systems: Enhancement by amorphous MnO₂, effects of water matrices, optimization by response surface methodology

Xin Yang^{a,c,},Xiaoshuang Sun^a, Jiang Yu^{a,b,c,*}, Zhi Huang^{a,c}, Jie Yu^{a,c}, Siwei Deng^a, Yinying Jiang^{a,b}, Weiwei Zhu^a

a Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, P.R China

bYibin Institute of Industrial Technology, Sichuan University, Yibin 644000, P.R China

c Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, P.R China

* Corresponding author:

E-mail: yuj@scu.edu.cn (Prof. Jiang Yu).

Address: Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, China, 610065

Supplementary Catalogue

FIGURES1
Fig. S1. The chemical structure of SMX1
Fig. S2. Batch oxidation experiment operating procedure1
Fig. S3. Effect of bicarbonate addition on pH Changes in CUPP system degradation of SMX1
Fig. S4. (a)~(p): The retention time of each degradation intermediate, fragment ion and
corresponding mass spectrometry of SMX4
Fig. S5. a) Residual distribution map; b) The degree to which the predicted value of the response
value is close to the actual value
Fig. S6. Contribution of each influence factor to response (Pareto chart)5
TABLES
Table S1. List of materials and reagents
Table S2. Results of Full-scale Analysis on Background Indicators of Natural Groundwater Body
Table S3. Indirect identification of free radicals: Relationship between Kobs and inhibition rate .8
Table S4. Details of SMX degradation intermediates and fragments (HPLC/MS)9
Table S5. Kinetic parameters of SMX degradation in CUPP system with Cl-, HCO ₃ -, HA added
Table S6. Response surface experimental design scheme and response value 12
Table S7. Response surface model ANOVA results
Table S8. Regression model fitting results 14
TEXTS15
Text S1. Sample testing methods
FORMULAS16
(S1)
(S2)
(\$3)
(S4)
(85)
(S6)16
(87)

FIGURES

Fig. S1. The chemical structure of SMX (m/z=254)

Fig. S2. Batch oxidation experiment operating procedure

Fig. S3. Effect of bicarbonate addition on pH Changes in CUPP system degradation of SMX

Fig. S5. a) Residual distribution map; b) The degree to which the predicted value of the response value is close to the actual value

(Note: P_i represents the contribution value of each factors)

Fig. S6. Contribution of each influence factor to response (Pareto chart)

TABLES

Reagent name	Chemical formula	Purity	Company
Sulfonamethoxazole (SMX)	$C_{10}H_{11}N_3O_3S$	≥98%	PTSRTI
Permanganate	KMnO ₄	AR	
Peroxymonosulfate (Oxone)	$\rm KHSO_5{\cdot}0.5\rm KHSO_4{\cdot}0.5\rm K_2SO_4$	≥42%	
Sodium Carbonate	Na ₂ CO ₃	AR	
Sodium Bicarbonate	NaHCO ₃	AR	CHENGDU SHUDU
Hyposulphite	$Na_2S_2O_3$	AR	Chemical Reagent
Potassium Sulphate	K_2SO_4	GR	
Potassium Nitrate	KNO ₃	AR	
L-tryptophan	$C_{11}H_{12}N_2O_2$	AR	
tert-Butyl Alcohol (TBA)	C ₄ H ₉ OH	AR	Chengdu Kelong Chemical
Sodium Hydroxide	NaOH	AR	Co., Ltd
Ethanol Absolute (EtOH)	C_2H_6O	AR	Changdy Jinghan Chamical
Hydroxyamine Hydrochloride	HONH ₃ Cl	AR	Reagent Co., Ltd
Trichloromethane	CHCl ₃	AR	Xilong Chemical Co., Ltd
Natural Organic Matter (NOM)	Humic Acid (HA)	AR	Tianjin kwangfu Fine Chemical Industry Research Institute
Methanol	СНО	НЫ С	Hubei Futon Science and
Wollandi	01140	III LC	Technology Co., Ltd
Acetonitrile	CH ₃ CN	HPLC	CINC High Purity Solvents Co., Ltd

Table S1. List of materials and reagents

Index	рН	NTU	TH (mg/L)	Alkalinity (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Nitrate (mg/L)	Chlorides (mg/L)	Ammonia nitrogenm (g/L)	UV254 cm-1	TOC (mg/L)
Actual											
measure	7.92	0.8	288	285	490	185	0.023	49.4	0.10	0.007	1.6615
d value											
Quality						1					
standard	I	1	11	-	11	1	I	1	11	-	-

Table S2. Results of Full-scale Analysis on Background Indicators of NaturalGroundwater Body

ps. TH: Total Hardness, TDS: Total dissolved solids; The Quality standard is based on groundwater specification (GBT14848-2017)

MeOH/TBA/CHCl ₃ : PMS (Molar ratio)	K _{obs} (min ⁻¹)			Inhibition ratio (%)		
	MeOH	TBA	CHCl ₃	МеОН	TBA	CHCl ₃
Control (CUPP _{best})		0.2291		-	-	-
50:1	0.1138	0.1124	0.1318	50.34%	50.94%	42.48%
100:1	0.1031	0.0963	0.1349	54.98%	57.96%	41.12%
200:1	0.0979	0.0671	0.1344	57.26%	70.71%	41.34%

Table S3. Indirect identification of free radicals: Relationship between Kobs and inhibition rate

No.	Product number	Molecular formula	Molecular structure	Mass-charge ratio (m/z)	Retention time (min)
1	SMX	C ₁₀ H ₁₂ O ₃ N ₃ S	$\begin{array}{c} 0 \\ H_{3N} \\ H_{3N} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ N_{-O} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} 0 \\ N_{-O} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 0 \\ CH_{3} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ CH_{3} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array}	254	9.28
2	PA1	$C_{10}H_{11}O_5N_4S$	$\begin{array}{c} 0 \\ 0_2 N \\ \oplus \\ H_3 N \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ 0 \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ N \\ \end{array} \xrightarrow{V} \begin{array}{c} 0 \\ \end{array}$	299	12.63
3	PA2	C ₁₀ H ₉ O ₃ N ₄	$\begin{array}{c} 0 \\ & H \\ & S \\ & N \\ H_{3}N \end{array} \xrightarrow{\oplus} V \\ & NO_2 \end{array} \xrightarrow{\oplus} CH_2$	233	14.80
4	PA3	$\mathrm{C_6H_5O_4N_2S}$	$\begin{array}{c} O \\ O_2 N \\ \oplus \\ H_3 N \end{array} \xrightarrow{\begin{array}{c} O \\ \oplus \\ \oplus \\ \end{array}} O$	201	8.88
5	PA4	$\mathrm{C_4H_5O_3N_2S}$	$O \xrightarrow{H} H CH_3$	161	15.10
6	PA5	C ₄ H ₇ ON ₂		99	1.30
7	PB1	$C_9H_9O_6N_3S$	$O_2N \xrightarrow{O}_{N-O} \stackrel{H}{\xrightarrow{O}} CH_3$	301	13.75
8	PB2	$C_{10}H_{10}O_5N_3S$	$O_{2N} \xrightarrow{O H} O_{N-O} CH_{3}$	284	10.75
9	PB3	$\mathrm{C_6H_4O_4N_2S}$		217	13.70
10	PB4	C ₆ H ₄ O ₃ NS	$\mathbf{O}_{2}\mathbf{N} \qquad \qquad$	186	9.28
11	PB5	C ₆ H ₆ O ₂ S		165	14.53
12	PC1	$C_{10}H_{11}O_4N_3S$	$H_{2N} \xrightarrow{O}_{OH} \xrightarrow{H}_{N-O} CH_{3}$	270	15.70

Table S4. Details of SMX degradation intermediates andfragments (HPLC/MS)

13	PC2	$C_6H_8O_4S$	O H ₂ N OH	190	7.00
14	PC3	C ₆ H ₇ O ₃ N	HO NH ₂	141	11.80
15	PC4	C ₄ H ₆ ON ₂		101	15.63
16	PC5	$C_{10}H_{15}N_{3}SO_{5}$	H ₂ N OH OH CH ₃	290	8.90
17	PC6	$C_8H_{10}O_4N_4$	$HO HO H_3C HO N_2N HO CH_3$	227	11.80
18	PD1	C ₁₀ H ₁₁ O ₃ N ₃ S	H ₂ N O NH ₂ O S N CH ₃	255	14.53
19	PD2	C ₁₀ H ₁₃ O ₄ N ₃ S		274	9.53
20	PD3	$C_7 H_{10} O_4 N_3 S$		249	15.10
21	PD4	C7H9O2N3S	H ₂ N S O	200	12.63
22	PD5	C ₆ H ₇ O ₂ NS		159	14.53
23	PD6	C ₅ H ₇ O ₂ NS	но он	149	9.53
24	PD7	C₅H9ON	OH NH	100	9.28

(ps: The product numbers A, B, C, etc. represent the different degradation paths, while the Arabic numerals represent the intermediates and fragment ions within each degradation path.)

Added substances	Concentration	K_{obs} (min ⁻¹)	Kinetic equation	t _{1/2} (min)	R ²
Control	0	0.2219	y=-0.142x-0.475	4.36	0.954
	1	0.1470	y=-0.147x-0.199	5.58	0.945
	3	0.2110	y=-0.211x-0.075	3.81	0.968
Cl- (mM)	5	0.2810	y=-0.281x-0.030	2.69	0.985
	7	0.2770	y=-0.277x-0.213	2.62	0.924
	9	0.3710	y=-0.371x-0.017	2.53	0.998
	2	0.1748	y=0.143+4.723e^(-x/5.721)	5.72	0.996
	6	0.1652	y=0.153+4.704e^(-x/6.054)	6.05	0.996
HCO ₃ - (mM)	10	0.1693	y=0.162+4.702e^(-x/5.905)	5.91	0.996
	14	0.1640	y=0.100+4.818e^(-x/6.098)	6.10	0.999
	18	0.1710	y=0.125+4.756e^(-x/5.848)	5.85	0.998
	50	0.1689	y=0.117+4.728e^(-x/5.919)	5.92	0.995
	100	0.1748	y=0.124+4.725e^(-x/5.722)	5.72	0.995
HA (mg/L)	150	0.1703	y=0.086+4.718e^(-x/5.873)	5.87	0.994
	200	0.1667	y=0.097+4.710e^(-x/6.000)	6.00	0.992
	250	0.1943	y=0.149+4.637e^(-x/5.147)	5.15	0.986

Table S5. Kinetic parameters of SMX degradation in CUPP system with CF, HCO₃-, HA added

Standard order	Run sequence	PMS (mM)	PM (mM)	pН	K_{obs} (min ⁻¹)
6	1	8	2	5	0.2090
7	2	4	2	9	0.1891
17	3	6	2	7	0.2355
4	4	8	2.4	7	0.2015
10	5	6	2.4	5	0.1933
16	6	6	2	7	0.2399
11	7	6	1.6	9	0.2060
14	8	6	2	7	0.2268
1	9	4	1.6	7	0.1409
3	10	4	2.4	7	0.1301
9	11	6	1.6	5	0.1576
15	12	6	2	7	0.2218
8	13	8	2	9	0.2100
5	14	4	2	5	0.1420
13	15	6	2	7	0.2291
2	16	8	1.6	7	0.1601
12	17	6	2.4	9	0.2010

Table S6. Response surface experimental design scheme and response value

Source	Quadratic sum	Degree of Freedom	Mean sum of square	F-value	P- value (Prob
					>F)
Model	0.02	9	2.17E-03	71.14	<0.0001**
Residual error	2.14E-04	7	3.05E-05		
Loss of fit	8.91E-06	3	2.97E-06	0.058	0.9792
Pure error	2.05E-04	4	5.12E-05		
Total deviation	0.02	16			

Table S7. Response surface model ANOVA results

Statistical data	Abbreviation	Value
Standard deviation	Std.Dev.	0.005523
Mean value	Mean	0.19
Variable coefficient	C.V.%	2.85
Determination coefficient	R ²	0.9892
Correction coefficient of	R ² _{Adj}	0.9753
determination		
Adeq Precision	Adeq Precision	23.647

Table S8. Regression model fitting results

			-	
PMS	PM	Pollutant and concentration	removal	reference
concentration	concentration		efficiency	
2.4mM	1.8mM	aqueous mixture of 0.3	>85%	22
		mM benzene and TCE		
3.9mM	5.8mM	50mg/L acid orange 7	89.5%	28
4mM	2mM	100uM p-chlorobenzoic	>98%	29
		acid		
6mM	2mM	5mg/L SMX	$\approx 100\%$	the study

Table S9. Degradation efficiency of the CUPP system

TEXTS

Text S1. Sample testing methods

a. pH Detection:

The pH meter should undergo daily calibration, employing a two-point calibration approach with buffer solutions of pH 4.00 and 9.18. When in use, the pH meter probe is immersed in the reaction solution, ensuring that the liquid level remains below the height of the electrolyte within the electrode. To ensure accurate readings, a stable measurement for at least 15 seconds is required, confirming the recorded data as the pH value of the solution.

b. SMX Content Determination (HPLC):

The alteration in SMX concentration was assessed using HPLC. The HPLC system was equipped with a Sapphiresil C18 column (150 mm×4.6 mm, 5 μ m, Follie) and a UV-visible light detector set at a wavelength of 264 nm. The analysis employed a mobile phase consisting of 0.1% acetic acid water (60%) as Mobile Phase A and acetonitrile (40%) as Mobile Phase B, with a flow rate of 1 mL/min. The column temperature was maintained at 30 °C, and an injection volume of 50 μ L was used. The retention time was observed at 6.5 min.

c. Analysis of SMX Degradation Intermediates (HPLC/MS):

The degradation intermediates of SMX in the CUPP system were analyzed using the Waters E2695 Alliance HPLC coupled with the Waters ZQ2000 single quadrupole MS. The following detection conditions were utilized: a Water 2695 C18 chromatographic column (250×4.6 mm, 3 µm) was employed, with mobile phase A containing 0.1% ammonium formate and mobile phase B consisting of acetonitrile. The flow rate was set at 0.2 mL/min, and the injection volume was 20 nL. The analysis was conducted using the electrospray ionization (ESI) ion source, operating in the positive ion mode. The specific elution mode parameters can be found in the table below:

Gradient sequence	Total time	Velocity of flow (mL/min)	A phase (%)	B phase (%)
1	0.1	0.2	90	10
2	10	0.2	40	60
3	17	0.2	40	60
4	17.1	0.2	90	10
5	24	0.2	90	10

d. Surface Morphology Analysis of AMO:

The external morphology and chemical composition of the sample were examined using the Apreo 2 scanning electron microscope (SEM) with an accompanying energy dispersion spectrometer (EDS). Prior to observation, the sample was coated with a thin layer of gold.

FORMULAS

$SO_{4}^{-} + TBA \rightarrow product \ k = 4.0 \times 10^{5} L \cdot mol \cdot s^{-1}$	(S1)
$SO_{4}^{-} \cdot + MeOH \rightarrow product \ k = 1.1 \times 10^{7} \ L \cdot mol \cdot s^{-1}$	(S2)
$\cdot OH + TBA \rightarrow product \ k = 6.0 \times 10^8 \ L \cdot mol \cdot s^{-1}$	(S3)
$\cdot OH + MeOH \rightarrow product \ k = 9.7 \times 10^8 \ L \cdot mol \cdot s^{-1}$	(S4)
$\cdot OH + MeOH \rightarrow product \ k = 9.7 \times 10^8 \ L \cdot mol \cdot s^{-1}$	(85)
$NH_2Cl + HOCl \rightarrow NHCl_2 + H_2O$	(S6)
$NHCl_2 + HOCl \rightarrow NCl_3 + H_2O$	(S7)