Supporting Information

Enhancing Continuous-Flow Reaction via Compression-Molding of Solid Catalysts and Dilutants in Packed-Bed Systems

Kwihwan Kobayashi, ${ }^{1}$ Teruhiko Tanaka, ${ }^{1}$ Kon Yoshihiro, ${ }^{1}$ Hajime Kawanami, ${ }^{* 1}$ and Nagatoshi Koumura*1
1 Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan
E-mail: h-kawanami@aist.go.jp, n-koumura@aist.go.jp

Contents

1. General

2. Experimental setup for the flow reaction
3. Preparation of the reaction column for MCR-1000 and HCR-1000
4. Procedure for EDX analysis of Pt in the column before/after the flow reaction

5. Images of SEM and EDX mapping

6. Procedure and calculation for the void volume of the catalyst column
7. Results of particle size distribution
8. Procedure for ICP-AES analysis of Pt with/without compression molding
9. XPS analysis (Figure 4)
10. Procedure for the scale-up experiment for the flow reaction

1. General

Gas chromatography was measured on Shimadzu GC-2014 spectrometer with N_{2} gas as a career, using Shimadzu SH-Stabilwax-DA (Length: 30 m , I.D.: 0.250 mm , Film: $0.25 \mu \mathrm{~m}$). A dual plunger pump (UI-22 series) was purchased from EYELA, and flow reactor (MCR-1000, HCR-1000), Teflon filter, SUS laminated metal filter, and fraction collector (DC-1000) were purchased from EYELA. ICP-AES was measured by HORIBA ULTIMA2. Particle size distribution was measured by MICROTRACBELL MT3000II. SEM was measured by JEOL JSM-IT800. XPS was measured by Shimadzu KRATOS ULTRA2. Press machine (CDM-5PA) was purchased from RIKEN KIKI CO., Ltd. Molds (mold for heat press machine $\varphi 14$ and LD-3025) were purchased from AS ONE CORPORATION and Labonect CO., Ltd. $\mathrm{H}_{2} \mathrm{O}_{2}$ and Wakogel C-200 were purchased from FUJIFILM Wako pure chemicals. t-AmylOH and benzyl alcohol were purchased from Tokyo Chemical Industry Co., Ltd. SiO_{2}-60-S was purchased from KANTO CHEMICAL CO., INC. Pt black powder was purchased from N.E. Chemcat.

2. Experimental setup for the flow reaction

- Reaction setup for MCR-1000 (column size ID: 10 mm , L: 100 mm)

Pump: UI-22 110P, EYELA
Flow reactor (heating controller and column reactor): MCR-1000, EYELA Fraction collector: DC-1500, EYELA

- Reaction setup for HCR-1000 (column size ID: 37 mm , L: 300 mm)

Pump for $\mathrm{H}_{2} \mathrm{O}_{2}$ aq.: UI-22 110P, EYELA
Pump for t-amylOH solution: LC-20AD, Shimadzu
Flow reactor (heating controller and column reactor): HCR-1000, EYELA

- Press machine and molds

Press machine: RIKEN KIKI CO., Ltd, CDM-5PA
Mold for small scale: AS ONE CORPORATION, mold for heat press machine $\varphi 14$
Mold for large scale: Labonect, LD-3025, $\varphi 30 \times 25 \mathrm{~mm}$
3. Preparation of the reaction column for MCR-1000 and HCR-1000

- Preparation of the reaction column for MCR-1000 without the compression molding

- Preparation of the reaction column for MCR-1000 with the compression molding

- Preparation of the reaction column for HCR-1000 without the compression molding

- Preparation of the reaction column for HCR-1000 with the compression molding

4. Procedure for EDX analysis of Pt in the column before/after the flow reaction (Table 1)

Pt black powder was pre-mixed with silica-gel and then packed into a column (ID: 10 mm , L: 100 mm . In the cases of entries 5 and 6 , the compression molding was conducted for the pre-mixed catalysts using a press machine (RIKEN KIKI CO., Ltd, CDM-5PA) and mold (AS ONE CORPORATION, mold for heat press machine $\varphi 14$) before packing to the reaction column. The catalyst column was set onto the reactor (EYELA, MCR-1000), and $\mathrm{H}_{2} \mathrm{O}$ was flowed at each $0.4 \mathrm{~mL} / \mathrm{min}$ (pump: EYELA, UI22110 P) for 1 h . The catalyst column was heated at $90^{\circ} \mathrm{C}$ (heating controller and column reactor: MCR-1000). After stabilization the reaction was started by changing into feed solution of $2 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq. and benzyl alcohol $(1,0.05 \mathrm{M})$ solution in t-amylOH. After 24 hours, feed solutions were changed into blank solvent, and reactor was cooled to room temperature. The catalysts were taken out from the reaction column and dried up in vacuo. The EDX of a part of dried catalysts was measured, and the amount of Pt in the reaction column was calculated.

Yields of benzaldehyde using Pt catalyst with and without CM (Table 1 entry 2 vs. entry 3)

5. Images of SEM and EDX mapping (Figure 1)

(a-1): SEM image of pre-mixed Pt and $\mathrm{SiO}_{2}-60-\mathrm{S}$. (b-1): SEM image of compression molded Pt and $\mathrm{SiO}_{2}-60-\mathrm{S}$. (c): EDX mapping of pre-mixed Pt and $\mathrm{SiO}_{2}-60-\mathrm{S}$. (d): EDX mapping of compression molded Pt and $\mathrm{SiO}_{2}-60-\mathrm{S}$.

6. Procedure and calculation for the void volume of the catalyst column

$0.4 \mathrm{wt} \% \mathrm{Pt}$ with $\mathrm{SiO}_{2}-60-\mathrm{S}$ was packed into a column (I.D. $\varphi 10 \times 100 \mathrm{~mm}$). The catalyst column was sealed with plugs and weighted. Sealed plugs were removed, and the catalyst column was set onto the flow reactor. The catalyst column was filled with t-amylOH by the pump at $0.5 \mathrm{~mL} / \mathrm{min}$ for 30 min . After the solvent filling, the catalyst column was sealed with plugs again and weighted. Therefore, the void volume of the catalyst column was calculated as follows with the density of t-amylOH at $20^{\circ} \mathrm{C}$ $(0.81 \mathrm{~g} / \mathrm{mL})$.

7. Results of particle size distribution (Figure S1, 2, 3)

28.5	0.7	28.5	2.0	28.5	3.8	28.5	0.6	28.5	2.0
26.2	0.4	26.2	1.5	26.2	4.0	26.2	0.4	26.2	1.5
24.0	0.3	24.0	1.2	24.0	4.1	24.0	0.3	24.0	1.2
22.0	0.2	22.0	1.0	22.0	4.2	22.0	0.2	22.0	1.0
20.2	0.1	20.2	0.9	20.2	4.2	20.2	0.2	20.2	0.9
18.5	0.0	18.5	0.9	18.5	4.1	18.5	0.2	18.5	0.9
17.0	0.0	17.0	1.0	17.0	4.0	17.0	0.3	17.0	0.9
15.6	0.1	15.6	1.0	15.6	3.8	15.6	0.3	15.6	1.0
14.3	0.2	14.3	1.1	14.3	3.6	14.3	0.4	14.3	1.1
13.1	0.2	13.1	1.1	13.1	3.5	13.1	0.5	13.1	1.1
12.0	0.3	12.0	1.2	12.0	3.3	12.0	0.5	12.0	1.1
11.0	0.3	11.0	1.1	11.0	3.1	11.0	0.6	11.0	1.1
10.1	0.3	10.1	1.1	10.1	3.0	10.1	0.6	10.1	1.1
9.3	0.3	9.3	1.0	9.3	2.9	9.3	0.6	9.3	1.0
8.5	0.3	8.5	0.9	8.5	2.7	8.5	0.6	8.5	1.0
7.8	0.2	7.8	0.8	7.8	2.6	7.8	0.6	7.8	0.9
7.1	0.2	7.1	0.6	7.1	2.4	7.1	0.6	7.1	0.8
6.5	0.2	6.5	0.5	6.5	2.2	6.5	0.5	6.5	0.7
6.0	0.1	6.0	0.4	6.0	2.0	6.0	0.4	6.0	0.6
5.5	0.0	5.5	0.3	5.5	1.8	5.5	0.4	5.5	0.5
5.0	0.0	5.0	0.3	5.0	1.6	5.0	0.3	5.0	0.4
4.6	0.0	4.6	0.2	4.6	1.4	4.6	0.3	4.6	0.3
4.2	0.0	4.2	0.1	4.2	1.2	4.2	0.3	4.2	0.3
3.9	0.0	3.9	0.0	3.9	1.0	3.9	0.2	3.9	0.2
3.6	0.0	3.6	0.0	3.6	0.9	3.6	0.2	3.6	0.1
3.3	0.0	3.3	0.0	3.3	0.8	3.3	0.0	3.3	0.0
3.0	0.0	3.0	0.0	3.0	0.7	3.0	0.0	3.0	0.0
2.8	0.0	2.8	0.0	2.8	0.6	2.8	0.0	2.8	0.0
2.5	0.0	2.5	0.0	2.5	0.5	2.5	0.0	2.5	0.0
2.3	0.0	2.3	0.0	2.3	0.5	2.3	0.0	2.3	0.0
2.1	0.0	2.1	0.0	2.1	0.4	2.1	0.0	2.1	0.0
1.9	0.0	1.9	0.0	1.9	0.4	1.9	0.0	1.9	0.0
1.8	0.0	1.8	0.0	1.8	0.3	1.8	0.0	1.8	0.0
1.6	0.0	1.6	0.0	1.6	0.3	1.6	0.0	1.6	0.0
1.5	0.0	1.5	0.0	1.5	0.3	1.5	0.0	1.5	0.0
1.4	0.0	1.4	0.0	1.4	0.2	1.4	0.0	1.4	0.0
1.3	0.0	1.3	0.0	1.3	0.2	1.3	0.0	1.3	0.0
1.2	0.0	1.2	0.0	1.2	0.2	1.2	0.0	1.2	0.0

| 1.1 | 0.0 | 1.1 | 0.0 | 1.1 | 0.1 | 1.1 | 0.0 | 1.1 | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
| 0.9 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 | 0.9 | 0.0 |
| 0.8 | 0.0 | 0.8 | 0.0 | 0.8 | 0.0 | 0.8 | 0.0 | 0.8 | 0.0 |
| 0.8 | 0.0 | 0.8 | 0.0 | 0.8 | 0.0 | 0.8 | 0.0 | 0.8 | 0.0 |

8. Procedure for ICP-AES analysis of Pt with/without compression molding (Table 2)

Pt black powder was pre-mixed with silica-gel and then packed into a column (ID: $10 \mathrm{~mm}, \mathrm{~L}: 100 \mathrm{~mm}$. In the case of enry 2 , the compression molding was conducted for the pre-mixed catalysts using a press machine (RIKEN KIKI CO., Ltd, CDM-5PA) and mold (AS ONE CORPORATION, mold for heat press machine $\varphi 14$) before packing to the reaction column. The catalyst column was set onto the reactor (EYELA, MCR-1000), and the catalyst column was heated at $90^{\circ} \mathrm{C}$ (heating controller and column reactor: MCR-1000). Water was flowed at $0.4 \mathrm{~mL} / \mathrm{min}$ (Pump: UI-22 110P, EYELA). After 3 hours, pumps were stopped. The whole liquid which passed through the reaction column was evaporated. Obtained powder was dissolved by aqua regia, and the solution was analyzed the amount of Pt by the inductivity coupled plasma atomic emission spectroscopy (ICP-AES: HORIBA ULTIMA2).

9. XPS analysis (Figure 4)

without compression molding		with compression molding	
Binding energy (eV)	Counts per second	Binding energy (eV)	Counts per second
84	5164.382562	84	5604.213
83.9	5140.777145	83.9	5592.674
83.8	5092.661311	83.8	5558.812
83.7	5070.639644	83.7	5546.896
83.6	5022.674643	83.6	5518.238
83.5	4977.273809	83.5	5482.264
83.4	4941.149226	83.4	5455.717
83.3	4930.138392	83.3	5463.862
83.2	4890.393808	83.2	5444.48
83.1	4839.864641	83.1	5433.318
83	4786.394224	83	5403.529
82.9	4767.841724	82.9	5395.761
82.8	4781.642974	82.8	5356.393
82.7	4725.759223	82.7	5346.212
82.6	4691.520056	82.6	5358.43
82.5	4663.389639	82.5	5353.226
82.4	4625.455055	82.4	5320.57
82.3	4600.793805	82.3	5277.357
82.2	4606.902555	82.2	5278.111
82.1	4577.414638	82.1	5290.856
82	4548.454638	82	5270.569
81.9	4534.879637	81.9	5255.486
81.8	4499.358387	81.8	5234.218
81.7	4489.931304	81.7	5253.6
81.6	4485.25547	81.6	5201.035
81.5	4501.394637	81.5	5234.143
81.4	4464.968387	81.4	5217.023
81.3	4441.061303	81.3	5206.163
81.2	4425.902553	81.2	5163.93
81.1	4397.395052	81.1	5193.493
81	4394.001302	81	5182.332
80.9	4401.467552	80.9	5154.126
80.8	4364.890469	80.8	5180.069
80.7	4332.235052	80.7	5171.245
80.6	4327.860885	80.6	5135.95

80.5	4322.204635	80.5	5132.858
80.4	4315.190885	80.4	5142.361
80.3	4301.389635	80.3	5120.339
80.2	4282.082968	80.2	5133.99
80.1	4309.006718	80.1	5130.671
80	4303.048801	80	5150.883
79.9	4298.071301	79.9	5100.731
79.8	4300.861718	79.8	5104.125
79.7	4284.345468	79.7	5112.043
79.6	4230.950467	79.6	5091.907
79.5	4272.052551	79.5	5142.135
79.4	4270.921301	79.4	5117.85
79.3	4253.877134	79.3	5100.429
79.2	4223.936717	79.2	5100.58
79.1	4245.430467	79.1	5110.761
79	4209.682967	79	5115.362
78.9	4197.314633	78.9	5120.49
78.8	4226.877967	78.8	5096.357
78.7	4236.154217	78.7	5106.161
78.6	4232.68505	78.6	5128.786
78.5	4216.319634	78.5	5124.035
78.4	4212.020884	78.4	5127.127
78.3	4210.135467	78.3	5128.71
78.2	4205.3088	78.2	5131.501
78.1	4186.228383	78.1	5131.953
78	4184.644633	78	5145.905
77.9	4183.5888	77.9	5164.307
77.8	4181.627967	77.8	5160.008
77.7	4189.094217	77.7	5128.56
77.6	4211.6438	77.6	5174.488
77.5	4212.0963	77.5	5183.689
77.4	4184.644633	77.4	5158.349
77.3	4192.563383	77.3	5166.042
77.2	4224.841717	77.2	5191.08
77.1	4212.699634	77.1	5181.351
77	4217.224634	77	5191.985
76.9	4221.1463	76.9	5173.583

76.8	4234.872134	76.8	5217.551
76.7	4209.909217	76.7	5224.188
76.6	4208.325467	76.6	5199.753
76.5	4225.595884	76.5	5193.87
76.4	4241.961301	76.4	5251.79
76.3	4239.170884	76.3	5257.296
76.2	4297.166301	76.2	5261.821
76.1	4280.046718	76.1	5251.941
76	4273.259218	76	5245.983
75.9	4284.873384	75.9	5324.04
75.8	4263.907551	75.8	5321.551
75.7	4338.720885	75.7	5344.176
75.6	4359.234219	75.6	5372.533
75.5	4371.979635	75.5	5396.817
75.4	4383.518386	75.4	5395.308
75.3	4400.788802	75.3	5439.201
75.2	4428.315886	75.2	5463.108
75.1	4479.37297	75.1	5500.138
75	4501.09297	75	5578.269
74.9	4522.134221	74.9	5610.472
74.8	4546.116721	74.8	5645.164
74.7	4586.238388	74.7	5665.602
74.6	4582.769221	74.6	5664.772
74.5	4551.471304	74.5	5699.841
74.4	4559.390054	74.4	5699.992
74.3	4543.100054	74.3	5714.698
74.2	4579.752555	74.2	5724.2
74.1	4540.611304	74.1	5716.282
74	4493.023387	74	5671.635
73.9	4505.316304	73.9	5666.507
73.8	4482.917553	73.8	5668.995
73.7	4468.135887	73.7	5670.881
73.6	4447.094636	73.6	5611.453
73.5	4434.424636	73.5	5576.459
73.4	4427.410886	73.4	5559.566
73.3	4417.078803	73.3	5557.077
73.2	4361.949219	73.2	5544.558

73.1	4350.033385	73.1	5510.847
73	4335.628802	73	5462.655
72.9	4347.242968	72.9	5479.85
72.8	4313.757968	72.8	5447.27
72.7	4294.903801	72.7	5439.427
72.6	4278.462968	72.6	5435.732
72.5	4290.755884	72.5	5491.54
72.4	4319.565051	72.4	5502.702
72.3	4330.274218	72.3	5521.179
72.2	4361.949219	72.2	5542.899
72.1	4386.836719	72.1	5566.806
72	4402.674219	72	5623.595
71.9	4427.712553	71.9	5665.526
71.8	4486.38672	71.8	5661.378
71.7	4522.435887	71.7	5714.019
71.6	4537.519221	71.6	5790.793
71.5	4556.675054	71.5	5795.243
71.4	4573.568388	71.4	5846.828
71.3	4580.431305	71.3	5920.51
71.2	4616.706722	71.2	5953.316
71.1	4593.101305	71.1	5940.42
71	4602.302138	71	5917.569
70.9	4575.227555	70.9	5885.818
70.8	4555.694638	70.8	5856.858
70.7	4533.597554	70.7	5838.23
70.6	4515.045054	70.6	5832.348
70.5	4508.55922	70.5	5805.877
70.4	4474.998803	70.4	5770.205
70.3	4420.397136	70.3	5769.375
70.2	4405.841719	70.2	5694.185
70.1	4374.091302	70.1	5642.147
70	4313.003801	70	5613.338
69.9	4276.879218	69.9	5571.18
69.8	4263.455051	69.8	5506.774
69.7	4230.1963	69.7	5469.066
69.6	4206.967967	69.6	5447.874
69.5	4222.352967	69.5	5394.479

69.4	4170.617133	69.4	5382.865
69.3	4134.266299	69.3	5368.158
69.2	4133.361299	69.2	5332.713
69.1	4089.619632	69.1	5349.153
69	4110.660882	69	5360.39
68.9	4101.309216	68.9	5348.55
68.8	4129.665883	68.8	5338.972
68.7	4132.154633	68.7	5339.953
68.6	4129.741299	68.6	5350.285
68.5	4117.448382	68.5	5338.218
68.4	4133.059633	68.4	5352.924
68.3	4137.282966	68.3	5363.407
68.2	4161.340883	68.2	5361.446
68.1	4134.115466	68.1	5340.103
68	4163.603383	68	5362.728
67.9	4170.994216	67.9	5356.243
67.8	4147.388799	67.8	5337.087
67.7	4160.435883	67.7	5319.665
67.6	4162.09505	67.6	5326.528
67.5	4183.664217	67.5	5366.424
67.4	4190.60255	67.4	5380.904
67.3	4178.535883	67.3	5385.429
67.2	4196.862133	67.2	5368.46
67.1	4182.155883	67.1	5370.572
67	4187.43505	67	5344.704
66.9	4180.8738	66.9	5357.525
66.8	4181.401717	66.8	5338.821
66.7	4171.974633	66.7	5338.595
66.6	4206.44005	66.6	5353.603
66.5	4213.4538	66.5	5356.77
66.4	4220.090467	66.4	5354.583
66.3	4225.6713	66.3	5336.333
66.2	4251.312967	66.2	5337.011
66.1	4234.872134	66.1	5323.813
66	4211.040467	66	5325.85

10. Procedure for the scale-up experiment for the flow reaction

Pt black powder (700 mg) was pre-mixed with silica-gel (140 g) and then packed into a column (ID: 37 mm , L: 300 mm . The compression molding was conducted for the pre-mixed catalysts using a press machine (RIKEN KIKI CO., Ltd, CDM-5PA) and mold (Labonect, LD-3025, $\varphi 30 \times 25 \mathrm{~mm}$) under 40 MPa for 2 hours before packing to the reaction column. The catalyst column was set onto the reactor (EYELA, HCR-1000), and $\mathrm{H}_{2} \mathrm{O}$ was flowed at each $3.0 \mathrm{~mL} / \mathrm{min}$ (Pump for $\mathrm{H}_{2} \mathrm{O}_{2}$ aq.: UI-22 110P, EYELA, Pump for t-amylOH solution: LC-20AD, Shimadzu). The catalyst column was heated at 90 ${ }^{\circ} \mathrm{C}$ (heating controller and column reactor: HCR-1000). After stabilization the reaction was started by changing into feed solution of $10 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq. and benzyl alcohol $(1,0.67 \mathrm{M})$ solution in t-amylOH. The resulted solution was fractionated for every 5 minutes (30 mL) (Fraction collector: DC-1500, EYELA), and selected fractions were analyzed by GC-FID ($\mathrm{N}_{2}: 34.0 \mathrm{~cm} / \mathrm{s}$, column temperature: $50{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 10^{\circ} \mathrm{C} / \mathrm{min}$ heating then $240^{\circ} \mathrm{C}$ for 12 min) to determine GC conversion and yield.

