Supplementary Information

Chlorobenzene-Driven Palladium-Catalysed Lactonisation of Benzoic Acids

Masahiro Abe,* Akiho Mizukami, Emi Yoshida, Tetsutaro Kimachi and Kiyofumi Inamoto*School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japane-mail: abe_111@mukogawa-u.ac.jp,inamoto@mukogawa-u.ac.jp

1. General Comments S2
2. Materials S2
3. Details of Optimisation Studies S3-S7
4. Negative Results for Phthalide Synthesis S8
5. Spectroscopic and Analytical Data S9-S15
6. References S15
7. ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}$-NMR Spectra S16 - S34

1. General Comments

Melting points were measured with an AS ONE Corp. melting temperature measurement device (ATM-02) and uncorrected. IR spectra were recorded on a SHIMADZU IRAffinity- 1 . NMR data were recorded on either a JEOL JNM-ECP400 spectrometer (400 MHz) or a JEOL ECA500 spectrometer (500 MHz). Chemical shifts are expressed in δ (parts per million, ppm) values, and coupling constants are expressed in Hertz $(\mathrm{Hz}) .{ }^{1} \mathrm{H}$ NMR spectra were referenced to $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ (TMS) as an internal standard or to a residual proton signal in deuterated solvent $\left(\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm}\right)$. $1,1,2$-Trichloroethane was used as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were referenced to a residual proton signal in deuterated solvent $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$. ${ }^{19} \mathrm{~F}$ NMR spectra were referenced to 4 -fluorotoluene as an internal standard (-118.0 ppm). The following abbreviations are used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet $, \mathrm{dd},=$ double doublet, $\mathrm{dt}=$ double triplet, $\mathrm{td}=$ triple doublet, $\mathrm{ddd}=$ double double doublet, $\mathrm{m}=$ multiplet, and brs = broad signal. Mass spectra and high-resolution mass spectra were measured on a JEOL JMS-700 instrument. Chromatographic separations were achieved on silica gel columns (Wakosil C-200, $64-210 \mu \mathrm{~m}$).

2. Materials

All commercially available materials including palladium(II) acetate (Fujifilm Wako Pure Chemical Corp., 169-07143), potassium acetate (Sigma-Aldrich Co., \#791733), and chlorobenzene (Fujifilm Wako Pure Chemical Corp., 032-07986) were purchased from Sigma-Aldrich Co., Tokyo Chemical Industry Co., and Fujifilm Wako Pure Chemical Corp. and used as received. Test tubes with screw caps (IWAKI, TST SCR 18-180 and IWAKI, TST SCR 25-150) were used for the palladium-catalysed lactonisation. 2-benzylbenzoic acid 1a and 2-ethylbenzoic acid 1m were purchased from SigmaAldrich Co. (P36657) and Tokyo Chemical Industry Co. (E1347), and used as received. Starting materials $\mathbf{1 b},{ }^{1} \mathbf{1 c},{ }^{2} \mathbf{1 d},{ }^{3} \mathbf{1 e},{ }^{4} \mathbf{1 f},{ }^{5} \mathbf{~} \mathbf{g},{ }^{3} \mathbf{1 l}^{6}$ and $\mathbf{1 n}{ }^{7}$ were prepared according to the literatures.

3. Details of Optimisation Studies

A. Screening of Palladium Catalysts

0.2 mmol

entry	"Pd"	yield (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	59
2	$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$	51
3	$\mathrm{Pd}(\mathrm{acac})_{2}$	50
4	$\mathrm{Pd}(\mathrm{TFA})_{2}$	21
5	PdCl_{2}	32
6	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	23
7	$\mathrm{PdCl}_{2}(\mathrm{dppp})$	19
8	$\mathrm{PdCl}_{2}($ (tmeda $)$	0
9	$\mathrm{PdCl}_{2}(\mathrm{dppf})$	0
10	$(\mathrm{IPr}) \mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}$	0
11	$10 \% \mathrm{Pd} / \mathrm{C}$	5
12	$\mathrm{Pd}_{2} \mathrm{dba}_{3}(5 \mathrm{~mol} \%)$	trace
13	none	0

${ }^{a}$ NMR yields.
B. Other Transition Metals

0.2 mmol

entry	"TM"	yield (\%)
1	$\mathrm{Ni}(\mathrm{OAc})_{2}$	0
2	NiCl_{2}	0
3	FeCl_{3}	0
4	CoCl_{2}	0

${ }^{a}$ NMR yields.

C. Screening of Bases

${ }^{a}$ NMR yields.
${ }^{b}$ Reaction was conducted at $140^{\circ} \mathrm{C}$ for 30 h on a 0.5 mmol scale.

D. Amount of KOAc

0.2 mmol

entry	x	${\text { yield }(\%)^{a}}^{2}$
1	0.5	39
2	1.0	39
3	1.5	59
4	3.0	31
5	5.0	28
6	10	20

${ }^{a}$ NMR yields.

E. Solvent Effect (at $\mathbf{1 5 0}^{\circ} \mathrm{C}$)

0.2 mmol

entry	solvent	yield (\%) a
$\mathbf{1}$	PhCI	77
2	p-xylene	36
3	o-xylene	22
4	m-xylene	25
5	mesitylene	14
6	DMA	0
7	DMSO	0
8	DMI	0

${ }^{a}$ NMR yields.

F. Reaction Temperature

entry	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	yield $(\%)^{\mathrm{a}, b}$
1	120	59
2	140	$90(82)$
3	150	77

${ }^{a}$ NMR yields. ${ }^{b}$ Isolated yield in parentheses.

G. Concentration ($\mathbf{0 . 5} \mathbf{~ m m o l}$ Scale)

0.5 mmol

entry	y	yield $(\%)^{a, b}$
1	0.05	(59)
$\mathbf{2}$	$\mathbf{0 . 1}$	70
3	0.25	12

${ }^{a}$ NMR yields. ${ }^{b}$ Isolated yield in parentheses.
H. Reaction Time

	$\xrightarrow[\substack{\mathrm{PhCl}(0.1 \mathrm{M}) \\ 140^{\circ} \mathrm{C}, \text { time }}]{\substack{\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%) \\ \mathrm{KOAc}(1.5 \text { equiv })}}$	
0.5 mmol		
entry	time (h)	yield (\%) ${ }^{\text {a,b }}$
1	22	70
2	30	(81)
3	48	(74)

${ }^{a}$ NMR yield. ${ }^{b}$ Isolated yields in parentheses.

I. Amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and Reaction Time

entry	$\mathrm{z}(\mathrm{mol} \%)$	time (h)	yield $(\%)^{a, b}$
1	5	30	42
2	5	48	63
3	10	30	(81)

${ }^{a}$ NMR yield. ${ }^{b}$ Isolated yields in parentheses.

J. Additive Effect

0.5 mmol

entry	additive	yield $(\%)^{a}$
1	none	70
2	cod	0
3	coe	25
4	cyclohexene	55
5	TBACI	9

${ }^{a}$ NMR yields.
K. In the Presence of $\mathbf{A g}_{2} \mathbf{C O}_{3}$

4. Negative Results for Phthalide Synthesis ${ }^{a, b}$

0\%

0\%

0\%

0\%

0\%

0\%

0\%

0\%

0%

0%

0\%

0\%

0%

7%
$16 \%^{c}$

0\%

0\%

$3 \%\left(\mathrm{Ar}=p-t \mathrm{BuC}_{6} \mathrm{H}_{4}\right)$
${ }^{\text {a }}$ Reactions were conducted on a 0.5 mmol scale. ${ }^{b}$ Isolated yield. ${ }^{c} \mathrm{CsOAc}$ was used instead of KOAc

5. Spectroscopic and Analytical Data

Typical procedure for phthalide synthesis

In a test tube, 2-benzylbenzoic acid $\mathbf{1 a}(106.2 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}, 10$ $\mathrm{mol} \%$), and KOAc ($73.6 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) were added. The tube was evacuated and backfilled with Ar three times and then chlorobenzene (5 mL) was added. The tube was sealed and heated at $140^{\circ} \mathrm{C}$ in an oil bath for 30 h . After cooling to room temperature, the reaction mixture was filtered through a short pad of silica gel and the filtrate was concentrated in vacuo. The crude was purified by silica gel column chromatography eluting with hexane/EtOAc (4:1) to afford 3-phenyl3 H -isobenzofuran-1-one (82% yield, $37.0 \mathrm{mg}, 0.176 \mathrm{mmol}$) as a colorless solid.

3-Phenyl-3H-isobenzofuran-1-one (2a) ${ }^{8}$

Yield 81% ($85.2 \mathrm{mg}, 0.405 \mathrm{mmol}$) from 2-benzylbenzoic acid 1a ($106.2 \mathrm{mg}, 0.50$ mmol); Eluent: hexane/EtOAc $=6: 1$; Colorless solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 170.6,149.8,136.5,134.4,129.5,129.4,129.1,127.1,125.74$, 125.68, 123.0, 82.8; LRMS (EI) m/z: 210 [M] ${ }^{+}$.

3-p-Tolyl-3H-isobenzofuran-1-one (2b) ${ }^{8}$

Yield 85% ($95.4 \mathrm{mg}, 0.425 \mathrm{mmol}$) from 2-(4-methylbenzyl)benzoic acid 1b (113.0 $\mathrm{mg}, 0.50 \mathrm{mmol}$); Eluent: hexane $/ \mathrm{EtOAc}=6: 1$; Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 7.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 170.4,149.8,139.3,134.2,133.4,129.6$, 129.2, 127.0, 125.7, 125.5, 122.8, 82.7, 21.1; LRMS (EI) m/z: $224[\mathrm{M}]^{+}$.

3-(4-Methoxyphenyl)-3H-isobenzofuran-1-one (2c) ${ }^{8}$

Yield 93% ($112.3 \mathrm{mg}, 0.467 \mathrm{mmol}$) from 2-(4-methoxybenzyl)benzoic acid 1c $(121.2 \mathrm{mg}, 0.50 \mathrm{mmol})$; Eluent: hexane $/ \mathrm{EtOAc}=4: 1$; Colorless solid; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 7.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) δ $170.5,160.4,149.7,134.2,129.3,128.8,128.3,125.9,125.5,122.9,114.3,82.7$, 55.3; LRMS (EI) m/z: 240 [M] ${ }^{+}$.

3-(4-Fluorophenyl)-3H-isobenzofuran-1-one (2d) ${ }^{8}$

Yield $80 \%(90.5 \mathrm{mg}, 0.400 \mathrm{mmol})$ from 2-(4-fluorobenzyl)benzoic acid $\mathbf{1 d}(115.0 \mathrm{mg}$, $0.50 \mathrm{mmol})$; Eluent: hexane $/ \mathrm{EtOAc}=4: 1$; Pale yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 7.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 170.1,163.2\left(\mathrm{~d}, J_{C-F}=247.8 \mathrm{~Hz}\right), 149.3$, $134.4,132.33,132.30,129.5,129.0\left(\mathrm{~d}, J_{C-F}=8.4 \mathrm{~Hz}\right), 125.6,122.8,115.9\left(\mathrm{~d}, J_{C-F}=\right.$ 21.4 Hz), 81.9; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-111.1; LRMS (EI) m/z: $228[\mathrm{M}]^{+}$.

3-(4-Chlorophenyl)-3H-isobenzofuran-1-one (2e) ${ }^{8}$

Yield 63% ($76.9 \mathrm{mg}, 0.314 \mathrm{mmol}$) from 2-(4-chlorobenzyl)benzoic acid $\mathbf{1 e}(123.6 \mathrm{mg}$, 0.50 mmol); Eluent: hexane $/ \mathrm{EtOAc}=4: 1$; Colorless solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 170.1,149.2,135.2,135.0,134.4,129.5,129.1,128.3,125.7$, 125.5, 122.7, 81.7; LRMS (EI) m/z: 244 [M] ${ }^{+}$.

3-Naphthalen-1-yl-3H-isobenzofuran-1-one (2f) ${ }^{8}$

Yield 37% ($48.3 \mathrm{mg}, 0.186 \mathrm{mmol}$) from 2-naphthalen-1-ylmethylbenzoic acid $\mathbf{1 f}$ ($130.7 \mathrm{mg}, 0.50 \mathrm{mmol}$); Eluent: hexane $/ \mathrm{EtOAc}=6: 1$; Brown solid; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 170.4$, $149.3,134.1,134.0,131.9,131.3,129.9,129.4,129.0,127.0,126.2,126.1,125.9,125.2,124.5,123.1$, 122.9, 79.6; LRMS (EI) m/z: 260 [M] ${ }^{+}$.

3-Thiophen-2-yl-3H-isobenzofuran-1-one (2 g$)^{\mathbf{3}}$

Yield 53% ($56.8 \mathrm{mg}, 0.263 \mathrm{mmol}$) from 2-thiophen-2-ylmethylbenzoic acid $\mathbf{1 g}$ (109.2 $\mathrm{mg}, 0.50 \mathrm{mmol}$); Eluent: hexane/THF without $\mathrm{BHT}=10: 1$; Colorless solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 7.93(\mathrm{dt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{tt}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ $-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 169.6,148.6,138.9,134.2,129.7,127.8,127.4,127.0,125.8,125.6,123.1,77.8 ;$ LRMS (EI) m/z: 216 [M] ${ }^{+}$.

5-Methyl-3-phenyl-3H-isobenzofuran-1-one (2i)

Yield 65% ($79.7 \mathrm{mg}, 0.326 \mathrm{mmol}$) from 2-benzyl-4-methylbenzoic acid $\mathbf{1 i}$ (112.9 $\mathrm{mg}, 0.50 \mathrm{mmol}$); Eluent: hexane $/ \mathrm{EtOAc}=4: 1$; Colorless solid, m.p. $133-135^{\circ} \mathrm{C}$ (hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 7.83$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 170.4,150.3,145.6,136.7,130.5$, 129.2, 128.9 (2C), 126.9, 125.4, 123.1, 82.4, 22.0; IR (neat): 3063, 3034, 2959, $1746 \mathrm{~cm}^{-1}$; LRMS (EI) $\mathrm{m} / \mathrm{z}: 224[\mathrm{M}]^{+}$; HRMS (EI-TOF) m/z: [M] calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$ 224.0837; found 224.0839.

5-Chloro-3-phenyl-3H-isobenzofuran-1-one (2j)

Yield 58% ($71.0 \mathrm{mg}, 0.290 \mathrm{mmol}$) from 2-benzyl-4-chlorobenzoic acid $\mathbf{1 j}$ (123.0 $\mathrm{mg}, 0.50 \mathrm{mmol}$); Eluent: hexane $/ \mathrm{EtOAc}=4: 1$; Colorless solid, m.p. $184-185^{\circ} \mathrm{C}$ (hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H})$, $6.36(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 169.2,151.3,141.0,135.7$, $130.1,129.5,129.1,126.8,126.7,124.1,123.2,82.0$; IR (neat): $3084,3069,3032,2970,1746 \mathrm{~cm}^{-1}$; LRMS (EI) m/z: 244 [M] ${ }^{+}$; HRMS (EI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{9}{ }^{35} \mathrm{ClO}_{2}$ 244.0291; found 244.0289.

3-Phenyl-5-trifluoromethyl-3H-isobenzofuran-1-one (2 k)

Yield 32% ($44.2 \mathrm{mg}, 0.159 \mathrm{mmol}$) from 2-benzyl-4-trifluoromethylbenzoic acid $\mathbf{1 k}(140.6 \mathrm{mg}, 0.50 \mathrm{mmol})$; Eluent: hexane $/ \mathrm{EtOAc}=4: 1$; Colorless solid, m.p. $112-114{ }^{\circ} \mathrm{C}$ (hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 8.09(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.29-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 168.9$, $150.1,136.2\left(\mathrm{q}, J_{C-F}=32.9 \mathrm{~Hz}\right), 135.4,129.7,129.2,128.9,126.9,126.7\left(\mathrm{q}, J_{C-F}=3.0 \mathrm{~Hz}\right), 126.4$, $123.1\left(\mathrm{q}, J_{C-F}=272.2 \mathrm{~Hz}\right), 120.3\left(\mathrm{q}, J_{C-F}=3.9 \mathrm{~Hz}\right), 82.7 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.1$; IR (neat): 3063, 3034, 2945, $1753 \mathrm{~cm}^{-1}$; LRMS (EI) m/z: 278 [M] ${ }^{+}$; HRMS (EI-TOF) m/z: [M] ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$ 278.0555; found 278.0552.

3-Benzyloxy-3H-isobenzofuran-1-one (21) ${ }^{9}$

Yield 37% ($44.0 \mathrm{mg}, 0.183 \mathrm{mmol}$) from 2-benzyloxymethylbenzoic acid 11 ($121.5 \mathrm{mg}, 0.50 \mathrm{mmol}$); Eluent: hexane/EtOAc $=6: 1$; Colorless solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ $(\mathrm{d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta$ 168.6, 145.0,
136.1, 134.3, 130.8, 128.6, 128.33, 128.28, 127.2, 125.4, 123.4, 101.1, 71.4; LRMS (EI) m/z: 240 $[\mathrm{M}]^{+}$.

3-Benzylbiphenyl-2-carboxylic acid (3)

Yield 91% ($130.5 \mathrm{mg}, 0.453 \mathrm{mmol}$) from 2-benzylbenzoic acid 1a ($106.4 \mathrm{mg}, 0.50$ mmol); Eluent: hexane/EtOAc $=4: 1$; Colorless solid, m.p. $119-121{ }^{\circ} \mathrm{C}$, (hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=$ $7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) δ 174.6, 140.5, $140.4,139.9,138.6,132.1,129.8,129.2,129.0,128.5,128.4,128.3,128.0,127.6$, 126.3, 39.2; IR (neat): 3022, 2913, 2656, 2550, $1697 \mathrm{~cm}^{-1}$; LRMS (EI) m/z: 288 [M] ; HRMS (EI-TOF) m/z: [M] ${ }^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ 288.1150; found 288.1152.

Synthesis of 2-(2,4,6-Trimethylbenzyl)benzoic acid (1h)

Step 1: To a solution of phthalic anhydride ($5.0 \mathrm{~g}, 33.8 \mathrm{mmol} 1.0$ equiv) and mesitylene ($5.6 \mathrm{~mL}, 40.5$ mmol, 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added anhydrous $\mathrm{AlCl}_{3}(5.4 \mathrm{~g}, 40.5 \mathrm{mmol}, 1.2$ equiv) in 6 portions. The mixture was stirred at room temperature for 20 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched carefully with 1 M HCl aq. $(100 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}$ $\times 3)$ and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under a reduced pressure. The crude was purified by recrystallization with hexane/EtOAc to afford the desired benzoic acid ($54 \%, 4.90 \mathrm{~g}, 18.3 \mathrm{mmol}$).

Step 2: In a flask, the benzoic acid ($1.07 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv $)$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.50 \mathrm{~g}, 0.47 \mathrm{mmol}$, 0.12 equiv) were dissolved with $\operatorname{EtOAc}(30 \mathrm{~mL})$ and $\mathrm{AcOH}(10 \mathrm{~mL})$. The flask was evacuated and refilled with H_{2} three times using a balloon. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the mixture was filtered by Celite ${ }^{\circledR}$, washed with EtOAc, and evaporated in vacuo. The crude was purified by silica gel column chromatography (hexane/EtOAc $=10: 1$ to $4: 1$) to afford the benzoic acid $\mathbf{1 h}$ in 93% yield ($943.4 \mathrm{mg}, 3.71 \mathrm{mmol}$).

Colorless solid, m.p. $217-219{ }^{\circ} \mathrm{C}$ (hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 8.13(\mathrm{~d}, J=$
$6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right)$ 8173.2, 143.1, 137.3, $135.8,133.3,133.2,131.7,128.9,128.3,128.1,125.8,33.1,20.9,19.9$; IR (neat) 3063, 2968, 2914, 2857, 2810, 2635, $1674 \mathrm{~cm}^{-1}$; LRMS (EI) m/z: 254 [M] ${ }^{+}$; HRMS (EI-TOF) m/z: [M] ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ 254.1307; found 254.1307.

General procedure for benzoic acid synthesis (1i-k)

Step 1: A solution of bromobenzene (1.5 equiv) in $\mathrm{Et}_{2} \mathrm{O}(0.25 \mathrm{M})$ was added slowly to the mixture of Mg turnings (1.2 equiv) with a small amount of I_{2} (0.01 equiv), and the mixture was stirred for $1 \mathrm{~h} . \mathrm{A}$ solution of an aldehyde (1.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}(0.10 \mathrm{M})$ was added to the reaction mixture slowly at -20 ${ }^{\circ} \mathrm{C}$. The resultant mixture was stirred at $-20^{\circ} \mathrm{C}$ until the reaction was completed as monitored by TLC (for 4-5 h). The reaction mixture was slowly diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (10 mL), and extracted with EtOAc (20 mL $\times 3$). The combined organic layers were dried over MgSO_{4} and concentrated under a reduced pressure. The residue was purified by silica gel column chromatography to give the desired alcohol.

Step 2: To a solution of the alcohol (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.20 \mathrm{M})$ was added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (4.0 equiv) dropwise at $0{ }^{\circ} \mathrm{C}$. After stirred for $10 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{SiH}$ (2.0 equiv) was added dropwise, and the resulting mixture was stirred at rt overnight. The solvent was concentrated under a reduced pressure, and the residue was purified by silica gel column chromatography to give the desired aryl bromide.

Step 3: To a solution of an aryl bromide (1.0 equiv) in THF (0.20 M) was added $n-\mathrm{BuLi}(1.6 \mathrm{M}, 1.1$ equiv) dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Anhydrous CO_{2} was bubbled through the mixture for 30 min . The reaction mixture was allowed to warm to rt for 30 min . (In case of the synthesis of $\mathbf{1 i}$): The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, basified with 1 M NaOH
aq. to $\mathrm{pH} 12-14$, and washed with $\operatorname{EtOAc}(10 \mathrm{~mL})$. The resulting aqueous layer was acidified with HCl aq. to $\mathrm{pH} 1-2$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 2)$. The combined organic layers were washed with water (20 mL) and brine (20 mL), then dried over MgSO_{4} and concentrated under a reduced pressure. The residue was recrystallized with hexane/EtOAc to give the desired carboxylic acid $\mathbf{1 i}$. (In case of the synthesis of $\mathbf{1 j}$): The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, basified with 1 M NaOH aq. to $\mathrm{pH} 12-14$, and washed with $\operatorname{EtOAc}(10 \mathrm{~mL})$. The resulting aqueous layer was acidified with HCl aq. to $\mathrm{pH} 1-2$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 2)$. The combined organic layers were washed with water (20 mL) and brine (20 mL), then dried over MgSO_{4} and concentrated under a reduced pressure. The residue was purified by silica gel column chromatography to give the desired carboxylic acid $\mathbf{1 j}$.
(In case of the synthesis of $\mathbf{1 k}$): The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, basified with 1 M NaOH aq. to $\mathrm{pH} 12-14$, and extracted with EtOAc ($10 \mathrm{~mL} \times 1$). The organic layer was dried over MgSO_{4} and concentrated under a reduced pressure. The residue was purified by silica gel column chromatography to give the desired carboxylic acid $\mathbf{1 k}$.

2-Benzyl-4-methylbenzoic acid (1i)

Yield 74% over 3 steps ($756.0 \mathrm{mg}, 3.34 \mathrm{mmol}$) from 2-bromo-5-methylbenzaldehyde ($1.0 \mathrm{~g}, 5.02 \mathrm{mmol}$); Eluent: hexane/EtOAc $=50: 1$ to 4:1 (step 1) and hexane/EtOAc $=50: 1$ (step 2) and recrystallization with hexane/EtOAc (step 3); Colorless solid, m.p. $122-125^{\circ} \mathrm{C}$ (hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H})$, 7.12 - $7.10(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 172.8,143.7,143.6,140.9,132.6,132.0,129.0,128.3,127.1,125.9,125.6,39.6$, 21.5; IR (neat): 2970, 2860, 2812, 2637, $1682 \mathrm{~cm}^{-1}$; LRMS (EI) m/z: 226 [M] ${ }^{+}$; HRMS (EI-TOF) m/z: [M] calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ 226.0994; found 226.0996 .

2-Benzyl-4-chlorobenzoic acid (1j)

Yield 25% over 3 steps ($570.2 \mathrm{mg}, 2.31 \mathrm{mmol}$) from 2-bromo-5chlorobenzaldehyde ($2.0 \mathrm{~g}, 9.11 \mathrm{mmol}$); Eluent: hexane/EtOAc $=4: 1$ (step 1), hexane/EtOAc $=50: 1$ (step 2) and hexane/EtOAc $=2: 1$ (step 3); Colorless solid, m.p. $149-150^{\circ} \mathrm{C}$ (hexane/ EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 7.99$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H})$, $4.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) δ 172.3, 145.7, 139.7, 139.5, 133.2, 131.7, 129.0 (2C), 128.5, 126.7, 126.3, 39.4; IR (neat): 3030, 2818, 2654, 2524, $1682 \mathrm{~cm}^{-1}$; LRMS (EI) m/z: 246 [M] ${ }^{+}$; HRMS (EI-TOF) m/z: [M] calcd for $\mathrm{C}_{14} \mathrm{H}_{11}{ }^{35} \mathrm{ClO}_{2}$ 246.0448; found 246.0450 .

2-Benzyl-4-trifluoromethylbenzoic acid (1k)

Yield 19% over 3 steps ($209.0 \mathrm{mg}, 0.745 \mathrm{mmol}$) from 2-bromo-5trifluoromethylbenzaldehyde ($1.0 \mathrm{~g}, 3.95 \mathrm{mmol}$); Eluent: hexane/EtOAc $=50: 1$ to $4: 1($ step 1$)$, hexane $/ E t O A c=50: 1($ step 2$)$ and hexane $/ E t O A c=4: 1($ step 3$)$; Colorless solid, m.p. $120-123{ }^{\circ} \mathrm{C}$ (hexane/EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{TMS}\right) \delta 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H})$, $7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{TMS}$) $\delta 171.9,144.3,139.5,134.4\left(\mathrm{q}, J_{C-F}=32.1 \mathrm{~Hz}\right), 132.1,131.8$, 128.9, 128.6, $128.4\left(\mathrm{q}, J_{C-F}=3.8 \mathrm{~Hz}\right), 126.5,123.4,123.3\left(\mathrm{q}, J_{C-F}=272.2 \mathrm{~Hz}\right), 39.5 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.6$; IR (neat): 3032, 2797, 2650, 2525, $1697 \mathrm{~cm}^{-1}$; LRMS (EI) m/z: $280[\mathrm{M}]^{+}$; HRMS (EI-TOF) m/z: [M] calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2} 280.0711$; found 280.0708 .

6. References

1. Y. Wang, S. Yang, G. Bian and L. Song, Synthesis, 2017, 49, 1884.
2. A. K. Turek, D. J. Hardee, A. M. Ullman, D. G. Nocera and E. N. Jacobsen, Angew. Chem. Int. Ed., 2016, 55, 539.
3. T. Duhamel and K. Muniz, Chem. Commun., 2019, 55, 933.
4. G. L. Regina, M. Puxeddu, M. Nalli, D. Vullo, P. Gratteri, C. T Supuran, A. Nocentini and R. Silvestri, ACS Med. Chem. Lett., 2020, 11, 633.
5. M. Abe, K. Ueta, S. Tanaka, T. Kimachi and K. Inamoto, RSC Adv., 2021, 11, 26988.
6. W. Kirmse and K. Kund, J. Am. Chem. Soc., 1989, 111, 1465.
7. K. Nozawa-Kumada, K. Ono, S. Kurosu, M. Shigeno and Y. Kondo, Org. Biomol. Chem., 2022, 20, 5948.
8. Z. Ye, P. Qian, G. Lv, F. Luo and J. Cheng, J. Org. Chem., 2010, 75, 6043.
9. T. Matsuda, K. Suzuki, S. Abe, H. Kirikae and N. Okada, Tetrahedron, 2015, 71, 9264.

6. ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}$-NMR Spectra

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) of $\mathbf{2 b}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 c}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 c}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 d}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 d}$

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 d}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 e}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 e}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 f}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 g}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 g}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 i}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2} \mathbf{j}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) of $\mathbf{2 j}$

			(10)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 k}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 k}$

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 k}$
(
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 I}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) of $\mathbf{2 I}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 h}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 i}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) of $\mathbf{1 i}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1} \mathbf{j}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) of $\mathbf{1} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 k}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 k}$

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 k}$

