A comparative study of α-Ni(OH)₂ and Ni nanoparticles supported ZIF-8@reduced graphene oxide- derived nitrogen doped carbon for electrocatalytic ethanol oxidation

Soliman Gamal, Doaa A Kospa, Amr Awad Ibrahim*, Awad I. Ahmed, A.M.A. Ouf

Department of Chemistry, Faculty of Science, Mansoura University, Al-Mansoura 35516, Egypt.

Supplementary data

Fig. S1: (a) N₂ adsorption-desorption isotherms and (b) the corresponding distributions of pore diameters of ZIF-8, ZIF@rGO, ZNC@rGO, and Ni(OH)₂/ZNC@rGO obtained from the desorption branch using the Barrett–Joyner–Halenda (BJH) method.

Fig. S2: XPS of GO, (a) Total survey and high-resolution spectra of (b) C1s and (c) O1s.

Fig. S3: (a) High magnification SEM image and (b) SEM of elemental mapping region of Ni(OH)₂/ZNC@rGO, and (c) EDX mapping of Ni(OH)₂/ZNC@rGO, (d) C, (e) O, (f) N, (g) Zn, and (h) Ni.

Fig. S4: EDX analysis of Ni(OH)₂/ZNC@rGO.

Fig. S5: CV curves of (a) ZIF-8, ZIF-8@rGO, and ZNC@rGO and (b) Ni/ZNC@rGO, α -Ni(OH)₂, and Ni(OH)₂/ZNC@rGO recorded at 50 mV s⁻¹ in 1M KOH.

Fig. S6: CV curves recorded in 1M KOH in the potential range of 0- 0.1 V at different scan rates for (a) ZIF-8, (b) ZIF-8@rGO, (c) ZNC@rGO, (d) Ni/ ZNC@rGO, (e) α Ni(OH)₂, and (f) Ni(OH)₂/ ZNC@rGO.

Fig. S7: CV curves of (a) ZIF-8, (b) ZIF-8@rGO, (c) ZNC@rGO, (d) Ni/ ZNC@rGO, (e) α -Ni(OH)₂ and (f) Ni(OH)₂/ ZNC@rGO in the absence and presence of 1M ethanol at a scan rate of 50 mV s⁻¹.

Fig. S8: CV curve of the as-prepared catalysts in 1M KOH + 1M Ethanol at a scan rate of 50 mV s⁻¹.

Fig. S9: CV curves recorded in 1M KOH in the potential range of -0.2- 0.6 V at different scan rates for (a) ZIF-8@rGO, (b) ZNC@rGO, (c) Ni/ ZNC@rGO, (d) α -Ni(OH)₂, and (e) Ni(OH)₂/ZNC@rGO catalysts.

Fig. S10: Linear relationship of anodic (I_{pa}) and cathodic current (I_{pc}) densities of (a) ZIF-8@rGO, (b) ZNC@rGO, (c) Ni/ZNC@rGO, and (d) α -Ni(OH)₂ versus the square root of scan rates. Fig. S11: Linear relationship of anodic (I_{pa}) and cathodic current (I_{pc}) densities of (a) ZIF-8@rGO, (b) ZNC@rGO, (c) Ni/ZNC@rGO, and (d) α -Ni(OH)₂ versus the scan rates.

Fig. S12: CV of (a) ZIF-8@rGO, (b) ZNC@rGO, Ni/ ZNC@rGO, (d) α -Ni(OH)₂ and (e) Ni(OH)₂/ ZNC@rGO catalysts in 1M KOH with different concentrations of ethanol (0.1- 2.0 M).

Fig. S13: CV of Ni(OH)₂/ZNC@rGO in (a) 1M of alkaline and acidic electrolyte and (b) 1M of EtOH+ 1M of alkaline or acidic medium.

Fig. S14: CV of (a) ZIF-8@rGO, (b) ZNC@rGO, (c) Ni/ ZNC@rGO, (d) α -Ni(OH)₂ and (e) Ni(OH)₂/ ZNC@rGO catalysts in 1M EtOH with different concentrations of KOH electrolyte (0.1- 2.0 M) and (f) effect of concentration of the KOH electrolyte in electrocatalytic ethanol oxidation.

Fig. S15: CVs curves for 900 cycles from -0.2- 0.6 V at a scan rate of 10 mV s⁻¹ in 1M KOH+ 1M EtOH using Ni/ ZNC@rGO.

Fig. S1: (a) N₂ adsorption-desorption isotherms and (b) the corresponding distributions of pore diameters of ZIF-8, ZIF@rGO, ZNC@rGO, and Ni(OH)₂/ZNC@rGO obtained from the desorption branch using the Barrett–Joyner–Halenda (BJH) method.

Fig. S2: XPS of GO, (a) Total survey and high-resolution spectra of (b) C1s and (c) O1s.

Fig. S3: (a) High magnification SEM image and (b) SEM of elemental mapping region of Ni(OH)₂/ZNC@rGO, and (c) EDX mapping of Ni(OH)₂/ZNC@rGO, (d) C, (e) O, (f) N, (g) Zn, and (h) Ni.

Fig. S4: EDX analysis of Ni(OH)₂/ZNC@rGO catalyst.

Fig. S5: CV curves of (a) ZIF-8, ZIF-8@rGO, and ZNC@rGO and (b) Ni/ZNC@rGO, α -Ni(OH)₂, and Ni(OH)₂/ZNC@rGO recorded at 50 mV s⁻¹ in 1M KOH.

Fig. S6: CV curves recorded in 1M KOH in the potential range of 0- 0.1 V at different scan rates for (a) ZIF-8, (b) ZIF-8@rGO, (c) ZNC@rGO, (d) Ni/ ZNC@rGO, (e) αNi(OH)₂, and (f) Ni(OH)₂/ ZNC@rGO.

Fig. S7: CV curves of (a) ZIF-8, (b) ZIF-8@rGO, (c) ZNC@rGO, (d) Ni/ ZNC@rGO, (e) α -Ni(OH)₂ and (f) Ni(OH)₂/ ZNC@rGO in the absence and presence of 1M ethanol at a scan rate of 50 mV s⁻¹.

Fig. S8: CV curve of the as-prepared catalysts in 1M KOH + 1M Ethanol at a scan rate of 50 mV s⁻¹.

Table 1: Comparison of the prepared catalyst for EOR efficiency with some modified electrodes vs Ag/AgCl.

Working electrode	C _{EtOH} (M)	Eonset (V)	E _{pa} (V)	I _{pa} (mA/cm ²)	Ref.
NiCo/ErN-GO/CCE	0.1	0.38	0.81	64.23	1
Ni(II)(Phen) ₂ /rGO-	1.0	0.4	0.53	0.81	
modified PGE					
NiPPy/GCE	0.9		0.55	8.50	2
Ni/p(NMA)/MCPE	0.4	0.46	0.66	1.80	3
CPE@[Ni(cis-salcn)]	0.5	0.42	0.55	2.60	4
CM-ZnO	2.0	0.40	0.58	35.0	5
Cu ₂ O/PPy/CPE	0.2	0.58	0.80	2.25	6
4-trifluoromethylphenyl	1.0	-0.489		776	7
(TFMP)-Pt/C					
NiO@PPC-600	1.0	1.1	1.4	231.8	8
		(vs RHE)	(vs RHE)		
Ni,Fe ₂ O ₃ /Cu	1.0	0.31	0.476	0.492	9
Cu/Ni,Fe ₂ O ₃		0.31	0.510	0.644	
Microbead-encapsulated ZnO particles derived from coffee waste	2.0	0.4	0.5	35	5
Ag/Ag ₂ O	1.5	0.43	0.5	69	10
Ni(OH) ₂ /ZNC@rGO	1.0	0.34	0.51	8.30	This work

Fig. S9: CV curves recorded in 1M KOH in the potential range of -0.2- 0.6 V at different scan rates for (a) ZIF-8@rGO, (b) ZNC@rGO, (c) Ni/ ZNC@rGO, (d) α -Ni(OH)₂, and (e) Ni(OH)₂/ ZNC@rGO catalysts.

Fig. S10: Linear relationship of anodic (I_{pa}) and cathodic current (I_{pc}) densities of (a) ZIF-8@rGO, (b) ZNC@rGO, (c) Ni/ZNC@rGO, and (d) α -Ni(OH)₂ versus the square root of scan rates.

Fig. S11: Linear relationship of anodic (I_{pa}) and cathodic current (I_{pc}) densities of (a) ZIF-8@rGO, (b) ZNC@rGO, (c) Ni/ZNC@rGO, and (d) α -Ni(OH)₂ versus the scan rates.

Fig. S12: CV of (a) ZIF-8@rGO, (b) ZNC@rGO, Ni/ ZNC@rGO, (d) α -Ni(OH)₂ and (e) Ni(OH)₂/ ZNC@rGO catalysts in 1M KOH with different concentrations of ethanol (0.1- 2.0 M).

Fig. S13: CV of Ni(OH)₂/ZNC@rGO in (a) 1M of alkaline and acidic electrolyte and (b) 1M of EtOH+ 1M of alkaline or acidic medium.

Fig. S14: CV of (a) ZIF-8@rGO, (b) ZNC@rGO, (c) Ni/ ZNC@rGO, (d) α -Ni(OH)₂ and (e) Ni(OH)₂/ ZNC@rGO catalysts in 1M EtOH with different concentrations of KOH electrolyte (0.1- 1.0 M) and (f) effect of concentration of the KOH electrolyte in electrocatalytic ethanol oxidation.

Fig. S15: CVs curves for 900 cycles from -0.2- 0.6 V at a scan rate of 10 mV s⁻¹ in 1M KOH+ 1M EtOH using Ni/ ZNC@rGO.

References

- 1. K. Rahmani and B. Habibi, RSC Adv, 2019, 9, 34050-34064.
- A. Ehsani, M. G. Mahjani, M. Jafarian and A. Naeemy, *Electrochim Acta*, 2012, **71**, 128-133.
- 3. J.-B. Raoof, A. Omrani, R. Ojani and F. Monfared, *Journal of Macromolecular Science*, *Part A*, 2013.546-541,50,
- 4. G. V. Lima, L. dos Santos Mello, E. R. Dockal and M. Firmino de Oliveira, *Microchemical Journal*, 2022, **175**, 107209.
- 5. Z. K. Ghouri, K. Elsaid, A. Abdel-Wahab, A. Abdala and M. Z. Farhad, *J Mater Sci: Mater Electron*, 2020, **31**, 6530-6537.
- 6. A. El Attar, L. Oularbi, S. Chemchoub and M. El Rhazi, *Int J Hydrogen Energy*, 2020, **45**, 8887-8898.
- 7. C. Han, Y. Lyu, S. Wang, B. Liu, Y. Zhang, J. Lu and H. Du, Carbon Energy, 2023, 5.
- 8. N. Gao, L. Gao, X. Zhang, Y. Zhang and T. Hu, J Alloys Compd, 20.169485, 947, 23
- 9. M. Ghalkhani, R. Abdullah Mirzaie, A. Banimostafa, E. Sohouli and E. Hashemi, *Int J Hydrogen Energy*, 2023, **48**, 21214-21223.
- 10. M. G. A. Saleh, S. A. El Wanees, I. D. Alruwaili, A. Akremi, A. M. Elbasiony and M. Brakat, *Int. J. Electrochem. Sci.*, 2023, **18**, 100372.