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Table 1  Lattice parameters, Raman shifts of Eg and A1g modes, and bond lengths for 

1%Sn–NTO, 2.5%Sn–NTO, and 5%Sn–NTO ceramics.

Sample condition 1%Sn–NTO 2.5%Sn–NTO 5%Sn–NTO

a = b (Å)  4.605(9) 4.608(7) 4.611(9)

c (Å)  2.965(6) 2.969(2) 2.973(9)

Eg (cm-1) 438.7 438.0 436.5

A1g (cm-1) 606.1 606.6 607.2

Bond length (Å)    A = Ta, Sn, Ti

A(0,0,0)−O(0.19480, -0.19480, 0.50000) 1.952(0) 1.953(0) 1.956(0)

A(0,0,0)−O(0.30520, 0.30520, 0.00000) 1.988(0) 1.989(0) 1.991(0)

A(0,0,0)−O(0.30520, -0.69480, 0.00000) 3.495(1) 3.497(1) 3.500(1)

A(0,0,0)−A(0, 0, 1) 2.966(1) 2.969(1) 2.974(1)
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AA AAFig. S1 SEM mapping of (a) Ti, (b) O, (c) Sn, and (d) Nb for 5%Sn–NTO ceramic.

Fig. S1 presents mapping images of all elements in 5%Sn–NTO ceramic sintered at 

1200 °C for 3h. Generally, a second phase was observed in specific regions, such as grain 

boundaries, which were indicated by lighter areas in the elemental mapping. Notably, a 

homogeneous distribution of Sn, Nb, Ti, and O elements was detected along both grains 

and grain boundaries on the surface morphology of the 5% Sn–NTO ceramic. There was 

no accumulation of several phases in specific regions, indicating the absence of secondary 

phases. The result is similar to other works in co–doped rutile TiO2 ceramics [1, 2].
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AA AAFig. S2 Rietveld profile fitting for (a) 1%Sn–NTO, (b) 2.5%Sn–NTO, and (c) 5%Sn–

NTO ceramics.  

Fig. S2 illustrates the Rietveld refinement fitting for the 1%Sn–NTO, 2.5% Sn–NTO 

and 5% Sn–NTO ceramics, repectively, using X’pert High Score Plus program. A rutile 

TiO2 phase was observed in all samples. Lattice parameters (a and c) and bond lengths 

(A–O and A–A, where A= Ta, Sn, Ti) were calculated and summarized in Table 1. These 

values increased with higher Sn4+ concentrations. The results were attributed to the effect 

of Nb5+ and Sn4+ radii, where r6(Nb4+) = 64.0 pm and r6(Sn4+) = 69.0 pm, which are larger 

than the Ti4+ host ions (r6(Ti4+) = 60.5 pm) by approximately 5.8% and 14.0%, 

respectively [2, 3]. The variance in dopant radii is was associated with the expansion of 

lattice parameters and bond lengths, influenced by the presence of Sn4+ ions. Importantly, 

the absence of a second phase in the 1–5%Sn–NTO ceramics indicated that both dopants 

completely replaced Ti4+ sites [2].
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Fig. S3 Raman spectra of Sn–NTO ceramics sintered at 1200 °C for 3h. The inset shows 

Raman shift of Eg and A1g modes of Sn–NTO ceramics as a function of Sn4+ 

concentrations. 

Fig. S3 shows Raman peaks of rutile TiO2 include B1g, Eg and A1g modes, as well as 

the multi–phonon peak of a second–order (2nd order) effect for  Sn–NTO ceramics [4, 5]. 

In the inset of Fig. S3, the Raman peaks of Eg were revealed to shift toward the low 

energy side in the range from 439 to 437 cm-1 with increasing Sn4+ concentrations. The 

result can be attributed to the lattice distortion and the movement of oxygen along c–axis 

[4]. In contrast, the A1g mode exhibited a slight shift to higher frequency side from 601 to 

607 cm-1 with increasing Sn4+ concentrations, as a result of the influence of the Ti–O 

stretch modes [6]. Both Eg and A1g peak shift values were determined using the Lorentz 

model, as listed in Table 1.
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