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Table 1 Lattice parameters, Raman shifts of E, and A;, modes, and bond lengths for

1%Sn—NTO, 2.5%Sn—NTO, and 5%Sn—NTO ceramics.

Sample condition 1%Sn—NTO 2.5%Sn—NTO 5%Sn—NTO
a=b(A) 4.605(9) 4.608(7) 4.611(9)

¢ (A) 2.965(6) 2.969(2) 2.973(9)
E, (cmM) 438.7 438.0 436.5
A (em™) 606.1 606.6 607.2
Bond length (A) A =Ta, Sn, Ti

A0,0,070(0.19480, -0.19480, 0.50000) 1.952(0) 1.953(0) 1.956(0)
A0,0,00(0.30520, 0.30520, 0.00000) 1.988(0) 1.989(0) 1.991(0)
A0,0,070(0.30520, -0.69480, 0.00000) 3.495(1) 3.497(1) 3.500(1)

A«0,0,07Aw,0, 1) 2.966(1) 2.969(1) 2.974(1)
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Fig. S1 SEM mapping of (a) Ti, (b) O, (c) Sn, and (d) Nb for 5%Sn—NTO ceramic.

Fig. S1 presents mapping images of all elements in 5%Sn—-NTO ceramic sintered at
1200 °C for 3h. Generally, a second phase was observed in specific regions, such as grain
boundaries, which were indicated by lighter areas in the elemental mapping. Notably, a
homogeneous distribution of Sn, Nb, Ti, and O elements was detected along both grains
and grain boundaries on the surface morphology of the 5% Sn—NTO ceramic. There was
no accumulation of several phases in specific regions, indicating the absence of secondary

phases. The result is similar to other works in co—doped rutile TiO, ceramics [1, 2].
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Fig. S2 Rietveld profile fitting for (a) 1%Sn—-NTO, (b) 2.5%Sn—-NTO, and (c) 5%Sn—

NTO ceramics.

Fig. S2 illustrates the Rietveld refinement fitting for the 1%Sn—NTO, 2.5% Sn—NTO
and 5% Sn—NTO ceramics, repectively, using X’ pert High Score Plus program. A rutile
Ti0, phase was observed in all samples. Lattice parameters (¢ and ¢) and bond lengths
(A—O and A-A, where A= Ta, Sn, Ti) were calculated and summarized in Table 1. These
values increased with higher Sn*" concentrations. The results were attributed to the effect
of Nb°* and Sn*" radii, where r¢(Nb*") = 64.0 pm and r4(Sn*") = 69.0 pm, which are larger
than the Ti*" host ions (r¢(Ti*") = 60.5 pm) by approximately 5.8% and 14.0%,
respectively [2, 3]. The variance in dopant radii is was associated with the expansion of
lattice parameters and bond lengths, influenced by the presence of Sn*" ions. Importantly,

the absence of a second phase in the 1-5%Sn—NTO ceramics indicated that both dopants

completely replaced Ti%" sites [2].
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Fig. S3 Raman spectra of Sn—NTO ceramics sintered at 1200 °C for 3h. The inset shows
Raman shift of E, and A;, modes of Sn—NTO ceramics as a function of Sn*

concentrations.

Fig. S3 shows Raman peaks of rutile TiO, include B, E, and A;, modes, as well as
the multi—phonon peak of a second—order (2" order) effect for Sn—NTO ceramics [4, 5].
In the inset of Fig. S3, the Raman peaks of E, were revealed to shift toward the low
energy side in the range from 439 to 437 cm™! with increasing Sn*" concentrations. The
result can be attributed to the lattice distortion and the movement of oxygen along c—axis
[4]. In contrast, the A;, mode exhibited a slight shift to higher frequency side from 601 to
607 cm’! with increasing Sn*" concentrations, as a result of the influence of the Ti-O

stretch modes [6]. Both E; and A, peak shift values were determined using the Lorentz

model, as listed in Table 1.
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