Tunable Ohmic van der Waals-type Contacts in Monolayer C₃N Field-effect Transistors

Weiqi Song¹, Jingrou Dai², Feihu Zou¹, Yize Niu¹, Yao Cong², Qiang Li¹, Yuanyuan Pan^{1, *} ¹College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, China

²State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of

Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China

*E-mail: panyy@qdu.edu.cn

Table S1. Lattice constants of ML C₃N and independent 2D metal electrodes (graphene, $Ti_2C(OH/F)_2$, and $Zr_2C(OH/F)_2$) and bulk metals (Au, Ni, Pd, and Pt).

Lattice parameter										
	ML C ₃ N	graphene	Zr_2CF_2	Ti_2CF_2	$Ti_2C(OH)_2$	Zr ₂ C(OH) ₂	Ni	Au	Pd	Pt
a (Å)	4.86	2.46	3.05	3.05	3.04	3.04	2.47	2.86	2.77	2.71
<i>b</i> (Å)	4.21	2.46	3.05	3.05	3.04	3.04	2.47	2.86	2.77	2.71

Figure S1. PDOS of the pristine ML C₃N. The red dash line, the blue line, the yellow line, and the black dash line are the DOS of the p_z orbital, *s* orbital, p_{x+y} orbital, and the total orbital of the ML C₃N, respectively. The Fermi level is set at zero energy and denoted by the lateral black dashed lines.

ML C₃N-Au

Figure S2. A possible band diagram in terms of the quantum transport calculations of ML C₃N FETs with Au in the zigzag direction. E_C and E_V are the conduction and valence band edges of the ML C₃N, respectively. E_F and E_{FC} denote the Fermi level of the ML C₃N-electrode junctions and the band gap center of the channel ML C₃N, respectively.