Supplementary Information

Ultrasmall cerium oxide nanoparticles as highly sensitive X-ray contrast agents and their antioxidant effect

Abdullah Khamis Ali Al Saidi, ${ }^{\text {a }}$ Adibehalsadat Ghazanfari, ${ }^{\text {a }}$ Ahrum Baek, ${ }^{\text {b }}$ Tirusew Tegafaw, ${ }^{\text {a }}$ Mohammad Yaseen Ahmad, ${ }^{\text {a }}$ Dejun Zhao, ${ }^{a}$ Ying Liu, ${ }^{a}$ Ji-ung Yang, ${ }^{\text {c }}$ Ji Ae Park, ${ }^{\text {c }}$ Byeong Woo Yang, ${ }^{\text {d }}$ Kwon Seok Chae, ${ }^{\text {e }}$ Sung-Wook Nam, ${ }^{\text {f }}$ Yongmin Chang ${ }^{* f}$ and Gang Ho Lee ${ }^{*}$
${ }^{\text {a}}$ Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea
${ }^{\mathrm{b}}$ Institute of Biomedical Engineering, School of Medicine, Kyungpook National University, Taegu 41944, South Korea
${ }^{\text {c Division of }}$ Applied RI, Korea Institute of Radiological \& Medical Sciences, Seoul, 01812, South Korea
${ }^{\mathrm{d}}$ Theranocure, Medlifescience Bldg. 1, Chilgok, Bukgu,Taegu 41405, South Korea
${ }^{\text {e}}$ Department of Biology Education, Teachers' College, Kyungpook National University, Taegu 41566, South Korea
${ }^{\mathrm{f}}$ Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, South Korea
*Corresponding authors: ghlee@mail.knu.ac.kr (G.H.L.); ychang@knu.ac.kr (Y.C.)

1. Synthesis

Fig. S1 One-pot polyol synthesis of polymer-coated ultrasmall CeO_{2} nanoparticles: polymer $=$ poly(acrylic acid) (PAA) and poly(acrylic acid-co-maleic acid) (PAAMA).

1.1 Chemicals

Chemicals used in the synthesis such as cerium (III) nitrate hexahydrate $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right.$, 99%], sodium hydroxide $(\mathrm{NaOH},>99.99 \%)$, hydrogen peroxide solution $\left(\mathrm{H}_{2} \mathrm{O}_{2}, 50 \mathrm{wt} . \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, rhodamine $\mathrm{B}\left(\mathrm{Rh} \mathrm{B} ; \mathrm{C}_{28} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{3}, 97 \%\right)$, PAA $\left[\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{\mathrm{n}}, 99 \%\right.$, $\left.\mathrm{Mw}=\sim 1,800 \mathrm{amu}\right]$, PAAMA $\left[\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{\mathrm{x}}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{\mathrm{y}}, 99 \%, \mathrm{Mw}=\sim 3,000 \mathrm{amu}\right]$, and triethylene glycol (TEG;
$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}, 99 \%$), potassium bromide ($\mathrm{KBr}, \geq 99 \%$), and dialysis tube [molecular weight cut off $(M W C O)=2,000 \mathrm{amu}]$ were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}, 99 \%\right)$ was purchased from Duksan (Ansan, South Korea). All chemicals were used as received.

1.2 Synthesis of polymer-coated ultrasmall CeO_{2} nanoparticles (polymer $=\mathbf{P A A}$ and PAAMA)

A schematic one-pot polyol synthesis is shown in Fig. S1. A precursor solution is prepared by dissolving 2 mmol of $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in 20 mL of TEG in a $100-\mathrm{mL}$ three-necked round bottom flask via magnetic stirring at $60^{\circ} \mathrm{C}$ for 30 min under atmospheric conditions. In a separate beaker, 10 mmol of NaOH in 20 mL of TEG was prepared via magnetic stirring at $60^{\circ} \mathrm{C}$ for 3 h under atmospheric conditions. In another beaker, 0.5 mmol of polymer (i.e., PAA or PAAMA) in 10 mL of TEG was prepared via magnetic stirring at room temperature for 3 h under atmospheric conditions. The NaOH solution was slowly added to the precursor solution until the pH of the mixed solution reached $9 \sim 10$. Then the mixed solution was slowly heated to $110{ }^{\circ} \mathrm{C}$ with magnetic stirring for 4 h . The polymer solution was slowly added to the mixed solution and magnetically stirred under the same conditions for 12 h . For temperature control, the three-necked round bottom flask was suspended in a silicone oil bath placed on a hot plate. The product solution was cooled to room temperature, poured into a 1 L beaker, diluted with 500 mL of ethanol, magnetically stirred for 15 min , and then kept in a refrigerator $\left(4{ }^{\circ} \mathrm{C}\right)$ for a few days until polymer-coated CeO_{2} nanoparticles settled to the bottom of the beaker. The top transparent solution was decanted and the remaining product
nanoparticle solution was washed with ethanol again using the same process thrice. To remove ethanol from the nanoparticles, 400 mL of triple-distilled water was added and the solution was reduced to approximately 50 mL via rotary evaporation. The product solution was dialyzed using a dialysis tube ($\mathrm{MWCO}=2,000 \mathrm{amu}$) against 1 L of triple-distilled water for one day with magnetic stirring under atmospheric conditions: the triple-distilled water was replaced with fresh water thrice during dialysis.

2. Tyndall effect

The colloidal dispersion was confirmed by Tyndall effect (Fig. S2).

Fig. S2 Laser light scattering (indicated with vertical dotted arrows) of the aqueous nanoparticle suspension samples, confirming the colloidal dispersion, but such scattering in triple-distilled water was not observed.

3. High-resolution transmission electron microscope images

3.1 PAA-coated ultrasmall CeO_{2} nanoparticles

Fig. S3 HRTEM images of PAA-coated ultrasmall CeO_{2} nanoparticles.
3.2 PAAMA-coated ultrasmall CeO_{2} nanoparticles

Fig. S4 HRTEM images of PAAMA-coated ultrasmall CeO_{2} nanoparticles.

4. EDS spectra

Fig. S5 EDS spectra of (a) PAA- and (b) PAAMA-coated ultrasmall CeO_{2} nanoparticles.

5. Fourier transform-infrared (FT-IR) absorption frequencies

Table S1 Observed FT-IR absorption frequencies in cm^{-1}.

Vibration	PAA	PAAMA	PAA-CeO	PAAMA-CeO $_{2}$
C-H stretch	2943	2939	2929	2925
$\mathrm{C}=\mathrm{O}$ stretch	1696	1694	1696	1694
COO^{-}antisymmetric stretch	-	-	$1558(138)^{1}$	$1399(295)^{1}$
COO^{-}symmetric stretch	-	-	$1545(151)^{1}$	$1392(302)^{1}$

${ }^{1}$ The values in parentheses indicate the red-shifts from $\mathrm{C}=\mathrm{O}$ stretching vibrations.

