Pioneering the preparation of porous PIM-1 membranes for enhanced water vapor flow

Esra Caliskan¹, Sergey Shishatskiy¹, Volker Abetz^{1,2}, Volkan Filiz^{1*}

¹ Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany;

² Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King-Platz 6,

20146 Hamburg, Germany

* Correspondence: volkan.filiz@hereon.de; Tel.: +49-41-5287-242

Supplementary Information

Name	Composition (%wt.)	Precipitation	Batch	Membrane	M _w
		bath		casting	(kDa)
				thickness	
PM-1	PIM/THF/DMAc/EtOH:	Water	PIM-LT-1	200 µm	76
	17.5/67.5/12.75/2.25				
PM-2	PIM/THF/DMAc:	Water	PIM-LT-1	150 μm	76
	17.25/69.5/13.25				
PM-3	PIM/NMP/THF:	Water	PIM-LT-2	150 μm	76
	12 5/69 5/18			(on glass	
	12.0,09.0,10			substrate)	
PM-4	PIM/DCB:	МеОН	PIM-LT-2	150 μm	76
	10/90			(on glass	
	10/20			substrate)	

Table S1: Composition of casting solutions and membrane casting parameters

PM-5	PIM/DCB:	MeOH/BuOH	PIM-LT-2	150 μm	76
	10/00	50.50		(on glass	
	10/90	50.50		substrate)	
PM-7	PIM/NMP/THF:	MeOH	PIM-LT-2	150 μm	76
	13/80/7			(on glass	
	15/00/7			substrate)	
PM-8	PIM/NMP/THF:	Water	PIM-LT-2	150 μm	76
	14.5/80.5/5				
PM-10	PIM/NMP/THF:	Water	PIM-LT-1	150 μm	76
	12/70/9				
	13/79/0				
PM-12	PIM/NMP/THF:	Water	PIM-HT	150 μm	142
	11.5/72/16.5				
PM-14	PIM/NMP/THF:	Water	PIM-LT-2	150 µm	76
	13/80/7				

Figure S1: Comparative FTIR spectrum of PM-6, PM-9, PM-11 and PM-13

FTIR analysis was carried out to characterize the porous PIM-1 membranes which are PM-6, PM-9, PM-11 and PM-13. FTIR spectrum show the absortion bands at 2239 cm⁻¹ and 1265 cm⁻¹ which correspond to nitrile groups (C=N streching). The absorption band between 2800-2900 cm⁻¹ and at 1146 cm⁻¹ are associated with CH₂ streching and bending vibration modes. The spectrum in the region at 1350-1250 cm⁻¹ originates from C-O streching mode. Characteristic C-N streching appears at 1009 cm⁻¹ and aromatic sp² C-H bending is visible at 874 cm⁻¹.

Figure S2: Surface (a, b) and cross-sectional (c, d) morphology of PM-1

Figure S3: Surface (a, b) and cross-sectional (c, d) morphology of PM-2

Figure S4: Surface (a, b) and cross-sectional (c, d) morphology of PM-3

Figure S5: Surface (a, b) and cross-sectional (c, d) morphology of PM-4

Figure S6: Surface (a, b) and cross-sectional (c, d) morphology of PM-5

Figure S7: Surface (a, b) and cross-sectional (c, d) morphology of PM-7

Figure S8: Surface (a, b) and cross-sectional (c, d) morphology of PM-8

Figure S9: Surface (a, b) and cross-sectional (c, d) morphology of PM-10

Figure S10: Surface (a, b) and cross-sectional (c, d) morphology of PM-12

Figure S11: Surface (a, b) and cross-sectional (c, d) morphology of PM-14

	Water permeance	Batch	
	$(m^3(STP)m^{-2}h^{-1}bar^{-1})$		
PM-1	35	PIM-LT-1	
PM-2	42	PIM-LT-1	
PM-8	124	PIM-LT-2	
PM-10	350	PIM-LT-1	
PM-14	201	PIM-LT-2	

Table S2: Water vapor permeance of PIM-1 membranes

The measurement was performed at 30 °C and first measurement points of each membrane are displayed in **Table-S2**. PM-3, PM-4, PM-5 and PM-7 membranes were casted on a glass substrate. Therefore, water vapor permeance measurement could not be carried out since the membranes were not mechanically stable, it was difficult to handle these samples.

Figure S12: Water flux of membranes

Water flux measurement of PM-1 could not be carried out due to exfoliation of the membrane from the support.