Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary files

Folate conjugated albumin as a targeted nanocarrier for the delivery of Fisetin: *In-silico* and *in-vitro* biological studies

Raghu Solanki¹, Amit Srivastava², Sejal Patel¹, Sanju Kumari Singh¹, Bhavana Jodha¹, Umesh Kumar^{2,3}, Sunita Patel^{1*}

¹School of Life Sciences, ²School of Nano Sciences, Central University of Gujarat, Gandhinagar-382030, India

³Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh-123031, India

Correspondence: Dr. Sunita Patel (sunitap@cug.ac.in)

Figure S1. Hydrodynamic size distribution of CNPs (a) and FNPs (b) determined using DLS.

Figure S2. UV spectrum of FA, BSA, FST, CNPs and FFANPs.

Figure S3. Standard curve of Folic acid.

Figure S4. 3D structural comparison of BSA (a) and BSA/FST/FA complex system (b).

Figure S5. Ramachandran plot of BSA (a) and BSA/FST/FA complex (b).

Figure S6. Morphological analysis of HeLa cells after treatment with CNPs, FST, FNPs and FFANPs at IC_{50} concentration dose for 24 h and 48 h.

Figure S7. Cells were treated with CNPs, FST, FNPs and FFANPs, photographed were captured and % wound closure calculated by using ImageJ software.

Figure S8. Quantitative cellular uptake. CTCF values were calculated from respective fluorescence images of HeLa cells after treatment with C6, C6NPs and FAC6NPs for 1 h, 2 h and 4 h.

Compound	Binding Energy	Amino Acid	Types of Bonding	
	(kcal/mol)			
BSA/FST	-8.1	GLU-125(A) (3.0,2.7)	Hydrophobic, π –	
			cation	
		LYS-136(A) (2.9)	H-bond	
		LYS-350(B) (2.9)	H-bond	
		VAL-481 (B) (3.2)	H-bond	
		LEU-480(B) (3.1)	H-bond	
BSA/FA	-8.8	TYR-149(A) (3.0)	H-bond	
		TYR-156(A) (2.8)	Hydrophobic, π –	
			cation	
		LYS-187(A) (2.9)	Hydrophobic, $\pi - \pi$	
		ARG-194(A) (3.0, 3.1)	π –cation, $\pi - \pi$,	
			Hydrophobic	
		ARG-256(A) (3.2, 3.1)	π –cation, $\pi - \pi$	
		GLU-152(B) (2.9)	H-Bond	
		GLN-220(B) (3.3)	H-Bond	
		HIS-287(B) (3.2)	H-bond	
		GLU-339(B) (3.0)	H-bond	
		TYR-340(B) (2.8)	H-bond	
		VAL-342(B) (3.3)	H-bond	
BSA/FST/FA		GLU-152(A) (2.9)	H-bond	
	-12.3	ARG-435(A) (3.3,3.3)	Hydrophobic, π –	
			cation	
		TYR-451(A) (2.8)	H-Bond	
		GLU-186(B) (3.0)	H-Bond	
		LEU-189(B) (3.3)	H-Bond	
		SER-192(B) (2.8)	H-Bond	
		ARG-427(B) (2.8)	H-Bond	
		THR-518(B) (2.9)	H-Bond	

Table S1. Intermolecular docking score and analysis of BSA amino acid with FST and FA.

Table S2. Analysis of BSA/FST/FA complex structure amino acid through Ramachandran *Plot.*

	Most Favoured Regions [A, B, L] (%)	Additional Allowed Regions [a, b, l, p] (%)	Generously Allowed Region (%)	Disallowed Regions (%)	G- Factor
BSA/FST/FA	91.6	5.9	1.9	0.6	-0.27

Table S3. Analysis of BSA/FST/FA complex structure amino acid through Ramachandran *Plot.*

Free Energy binding (Kcal/mol)	BSA/Fisetin/Folic Acid		
AEelectrostatic	-39.28±0.38		
ΔEvdw	-46.87±0.20		
ΔG_{GB}	18.35±0.52		
ΔG _{SA}	-22.82±0.87		
ΔΗ	-35.77±0.77		
-ΤΔS	19.5±0.33		
ΔG	-71.12±0.07		