Investigation of Chain-Length Selection by the Tenellin Iterative HighlyReducing Polyketide Synthase

Katharina Schmidt and Russell J. Cox

BMWZ and Institute for Organic Chemistry
Leibniz Universität Hannover

Schneiderberg 38

30167 Hannover, Germany

Electronic Supplementary Information

Content
1 Methods 3
1.1 Cloning Procedure, Vectors and Oligonucleotides 3
1.2 Strains and Cultivation5
1.2.1 Growth and Maintenance7
1.2.2 Transformations7
1.3 Analytical LCMS 7
2 Results 8
2.1 Protein Structures 8
2.1.1 Comparison of TENS model and LOVB Structure 8
2.1.2 Protein Models of TENS, DMBS, MILS, and vFAS9
2.2 Spectroscopic Data for Identified Compounds 11
2.2.1 Detailed Analysis of Compound 10 12
2.3 Overview of all Generated Transformants 16
3 Multiple Alignment 18
4 References 19

1
 Methods

1.1 Cloning Procedure, Vectors and Oligonucleotides

The strategy for vector construction (Figure S1) was based on yeast homologous recombination. The enzymes (EcoRI, Fsel) used for vector digestion within the tenS gene were purchased from New England Biolabs (Beverly, MA, USA) and used according to the manufacturer's instructions with appropriate supplied buffers.

The proofreading $\mathrm{Q} 5^{\circ} 2 \times$ Master Mix (New England Biolabs) was used to obtain DNA fragments needed for further cloning procedure (F1-F3) with the pEYA-tenS as a template. The information provided by the manufacturer served as a template. Mutations/swap sequences were introduced by synthetic fragments (Twist Bioscience) to rebuild pEYA-tenS*.

Figure $\mathbf{S 1}$ Cloning strategy.

The transformation of S. cerevisiae was done using the LiOAc/SS carrier DNA/PEG protocol developed by Gietz and Woods. ${ }^{1,2}$ Therefore, fresh yeast cells were incubated with the transformation-mix ($50 \mu \mathrm{l} 2 \mathrm{mg} / \mathrm{ml}$ ssDNA, $240 \mu \mathrm{l} 50 \%$ PEG $3350,36 \mu \mathrm{l} 1 \mathrm{M}$ LiAc, up to $5 \mu \mathrm{~g}$ DNA (cut plasmid, fragments, equimolar)) for $42^{\circ} \mathrm{C}$ for 50 min . Cells were pelleted at $11000 \times \mathrm{g}$ for 30 s and resuspended with 500μ l water. 250μ l of the cell mixture was spread on selective SM-URA plates and incubated for $3-5$ days at $30^{\circ} \mathrm{C}$. The vector DNA was then purified from yeast, transformed into E. coli Top 10. DNA samples were sequenced by Eurofins Genomics (Mix2Seq OVERNIGHT, Ebersberg).

Gateway LR Clonase II Enzyme mix kit (Invitrogen) ${ }^{3}$ was used to transfer genes from the entry vector pEYA-tenS* to the destination vector pTY-GS-argB-tenC (Figure S1). The manufacturer's instructions were followed. For E.coli Top10 transformation, the vector mixture ($10 \mu \mathrm{l}$) was added to $50 \mu \mathrm{l}$ competent cells.

Information about the used vectors in this work are summarised in Table S1.

Table S1 Summary of used vectors.

Name	Description	Selection
pEYA-tenS	pEYA shuttle vector including tenS gene	Kan ${ }^{\text {R }}$
pTY-argB-tenC	fungal expression vector with trans-ER tenC gene	$\arg B, \mathrm{arb}^{\mathrm{R}}, \mathrm{URA3}$
pTY-argB-tenS-tenC	pTY-argB-tenC including tenS gene	$\operatorname{argB}, \mathrm{arb}^{\mathrm{R}}$, URA3
pEYA-tenS* sbh:DmbS	T2395 to V2409 swap to DmbS sequence	Kan ${ }^{\text {R }}$
pEYA-tenS* sbh:MilS	T2395 to V2409 swap to MilS sequence	Kan ${ }^{\text {R }}$
pEYA-tenS* 2400N, L2401R, 2404M, V2406A	Mutations 2400N, L2401R, 2404M, V2406A	Kan ${ }^{\text {R }}$
pTY-argB-tenS*-tenC sbh:DmbS	fungal expression vector with trans-ER tenC gene, T2395 to V2409 swap to DmbS sequence	$\arg B, \operatorname{arb}^{\mathrm{R}}, \mathrm{URA3}$
pTY-argB-tenS*-tenC sbh:MilS	fungal expression vector with trans-ER tenC gene, T2395 to V2409 swap to MilS sequence	$\arg B, \operatorname{arb}^{\mathrm{R}}, \mathrm{URA3}$
```pTY-argB-tenS*-tenC 2400N, L2401R, 2404M, V2406A```	fungal expression vector with trans-ER tenC gene, mutations 2400N, L2401R, 2404M, V2406A	$\arg B$, Carb R, URA3
pEYA-tenS* AlaN	pEYA-tenS with alanine muatations at position N ( N between D2394 to S2410)	Kan ${ }^{\text {R }}$
pTY-argB-tenS*AlaN-tenC	pTY-argB-tenC including tenS gene alanine muatations at position N ( N between D2394 to S2410)	$\arg B$, Carb R,   URA3

Information about the used oligonucleotides in this work are summarised in Table S2. They were synthesized by Sigma Aldrich and supplied lyophilised. They were dissolved according to the manufacturer's instructions.

Table S2 Summary of used oligonucleotides.

Description	Name	Sequence
Fragment 1	A1	CGCATTCTCCACGGCTATTGGAAAC
	A2	CCTGCTGATCTTCCTGAACGTCG
	A3	GATGCCCAGCTCCAAAAGGCC
Fragment 3	A5	CTGTATTATTCAGAATGGCAGCGCTCGAGCTTAGCAAGACAAAAAAGTC
	A4_alascan	A5_alascan
synthetic   fragments   including   mutations	sbh = DmbSACAACCAAGCATAATGG	


| synthetic |
| :---: | :---: | :--- |
| fragments |
| including |
| mutations | sbh = MilS | GCTCGAGCGCTGCCATTGCGAATAATACAGGCCAGTCAAACTACCACTGCGCAAATCTCTA |
| :--- |
| mATGGACAGCCTGGTCACCAATCGGCGCTCGAGAGGACTCGCAGCTTCCATTATCCATATC |
| GGTCATGTCTGCGACACGGGATACGTTGCCCGCTTGGTTGACGACACCAAGGTGCAGATG |
| AACCGAGGTACCATGCGAGCCATGAGTGTCTCTGAGACGGATGTGCATCATGCCTTTGCT |
| GAGGCGGTCCGCGGGGGGCAGCCAGACAGCCGGAGCGGCTCCCACAACATCATAATGG |
| GTATTGA |

### 1.2 Strains and Cultivation

Information about the used strains in this work are summarised in Table S3.

Table S3 Summary of used strains.

Organism	Strain	Genotype	Reference
E. coli	OneShot ${ }^{\circledR}$   Top10	$F^{-}$mcrA $\Delta$ ( mrr-hsdRMS-mcrBC)   Ф80lacZロM15 $\Delta$ lacX74 recA1   araD139 $\Delta$ ( araleu)7697 galU galK rpsL   (StrR) endA1 nupG	Thermo Fisher Scientific
	OneShot ${ }^{\circledR}$ ccdB survival $2 T 1^{\text {R }}$	F-mcrA $\Delta$ (mrr-hsdRMS-mcrBC)    $\Delta$ (ara-leu)7697 galU galK rpsL (Str ${ }^{R}$ ) endA1 nupGfhuA::IS2	Thermo Fisher Scientific
$S$. cerevisiae	CEN.PK2	MATa/a ura3-52/ura3-52trp1-289/trp1289 leu2-3_112/leu2-3_112 his3D1/his3 D1MAL2-8C/MAL2-8C SUC2/SUC2	Euroscarf
A. oryzae	NSAR1	$\triangle \operatorname{argB~sC}{ }^{-} \triangle$ adeA niad ${ }^{-}$	Lazarus group, Bristol

All media (Table S4), buffers and solutions used in this work were prepared with Millipore water (GenPure Pro UV/UF milipore device, Thermo Fisher Scientific) and sterilised by autoclaving 15 min at $121{ }^{\circ} \mathrm{C}$ (Autoclave 2100 Classic, Prestige Medical) or sterilised by disposable syringe filters (pore size $0.2-0.4 \mu \mathrm{~m}$, Carl Roth). The pH was adjusted with 2 M HCl or 2 M NaOH by using a FiveEasy Standard pH Meter Line (Mettler Toledo).

Table S4 Media used in this work.

Media	Composition [\% (w/v)]
CMP media	3.5 \% Czapek Dox broth (Duchefa Biochemie), 2 \% D(+)-Maltose monohydrate (Duchefa Biochemie), 1 \% Polypeptone (Roth), 3.5 \% Czapek Dox broth (Duchefa Biochemie)
CZD/S agar	3.5 \% Czapek Dox broth (Duchefa Biochemie), 18.22 \%   D-Sorbitol ( $=1 \mathrm{M}$ ) (Roth), 0.1 \% Ammonium sulfate (Roth), 0.05 \% Adenine (Roth), 0.15 \% L-Methionine (Roth), 1.5 \% Agar (Duchefa Biochemie)
CZD/S   softagar	3.5 \% Czapek Dox broth (Duchefa Biochemie), 18.22 \% D-Sorbitol (=1 M) (Roth), 0.1 \% Ammonium sulfate (Roth), 0.05 \% Adenine (Roth), 0.15 \% L-Methionine (Roth), 0.8 \% Agar (Duchefa Biochemie)
DPY agar	2 \% Dextrin from potato starch (Sigma Aldrich), 1 \%   Polypeptone (Roth), 0.5 \% Yeast extract (Duchefa Biochemie), 0.5 \%   Monopotassium phosphate (Roth), 0.05 \% Magnesium sulfate hexahydrate   (Sigma Aldrich), 2.5 \% Agar (Duchefa Biochemie)
GN media	2 \% D(+)-Glucose Monohydrate (Roth), 1 \% Nutrient broth Nr. 2 from Oxoid (Fisher Scientific)
LB agar	0.5 \% Yeast extract (Duchefa Biochemie), 1 \% Tryptone (Duchefa Biochemie), 0.5 \% Sodium chloride (Roth or VWR), 1.5 \% Agar (Duchefa Biochemie)
LB media	0.5 \% Yeast extract (Duchefa Biochemie), 1 \% Tryptone (Duchefa Biochemie), 0.5 \% Sodium chloride (Roth or VWR)
SM-URA agar	0.17 \% Yeast nitrogen base (Sigma Aldrich), 0.5 \% Ammonium sulfate (Roth), 2 \% D(+)-Glucose monohydrate (Roth), 0.077 \% Complete supplement mixture minus Uracil (Sigma Aldrich), 2.5 \%   Agar (Duchefa Biochemie)
SOC media	0.5 \% Yeast extract (Duchefa Biochemie), 2 \% Tryptone (Duchefa Biochemie), 0.06 \% Sodium chloride (Roth or VWR), 0.02 \% Potassium chloride (Roth), 25 mM Magnesium chloride hexahydrate (Roth), $1 \% \mathrm{D}(+)$-Glucose monohydrate (Roth)
YPAD agar	1 \% Yeast extract (Duchefa Biochemie), 2 \% Tryptone (Duchefa Biochemie), 2 \% D(+)-Glucose monohydrate (Roth), 0.03 \% Adenine (Roth), 1.5 \% Agar (Duchefa Biochemie)
YPAD   media	1 \% Yeast extract (Duchefa Biochemie), 2 \% Tryptone (Duchefa Biochemie), 2 \% D(+)-Glucose monohydrate (Roth), 0.03 \% Adenine (Roth)

Antibiotics (carbenicillin, kanamycin) were prepared in 1000x concentrated stock solution in distilled water in a concentration of $50 \mu \mathrm{M}$. Stocks were sterilized through $0.45 \mu \mathrm{~m}$ syringe filter and stored at $-20^{\circ} \mathrm{C}$. Antibiotics were diluted for a final concentration of $50 \mu \mathrm{~g} / \mathrm{ml}$ by adding them to the final media.

### 1.2.1 Growth and Maintenance

E. coli cells were grown on LB-agar or in liquid LB-medium with corresponding antibiotics. The cells were cultivated at $37^{\circ} \mathrm{C}$ for approx. 12 h . If grown in liquid media, the culture was shaking at 200 rpm.
S. cerevisiae cells were grown on solid YPAD agar at $30^{\circ} \mathrm{C}$ for $3-5$ days. One single colony was used for inoculation for 10 ml liquid YPAD medium. The culture was grown overnight at $30^{\circ} \mathrm{C}$ and 200 rpm . After transformation of cells with vectors containing ura3 selection marker the cultivation took place with selective SM-URA-Agar and at $30^{\circ} \mathrm{C}$ for $3-5$ days.
A. oryzae strain NSAR1 was grown on DPY-agar plates for 3-7 days at $28^{\circ} \mathrm{C}$. A. oryzae strain NSAR1 transformants were grown in 100 ml CMP liquid medium in 500 ml baffled shake flasks for 6 days at $28^{\circ} \mathrm{C}$ and 110 rpm .

### 1.2.2 Transformations

Competent E.coli strains were thawed on ice after $-80^{\circ} \mathrm{C}$ storage. $60-100 \mathrm{ng}$ purified plasmid was added to $50 \mu \mathrm{l}$ E.coli cells and placed on ice for 30 min , followed by a heat shock at $42{ }^{\circ} \mathrm{C}$ for 30 s and cooling on ice for 2 min . $250 \mu \mathrm{l}$ SOC-medium was added to the cells and the mixture was incubated at $37^{\circ} \mathrm{C}$ and 300 rpm for 1 h . The transformed cells were spread out on LB-agar plates containing appropriate antibiotics and incubated at $37^{\circ} \mathrm{C}$ overnight.
A. oryzae NSAR1 was grown on DPY-plates at $28^{\circ} \mathrm{C}$ for $5-7$ days. The mycelium was used to inoculate 50 ml GN-medium in 250 ml shake flask. The culture was incubated at $28^{\circ} \mathrm{C}$ and 110 rpm for approx. 18 h . The biomass was separated from the media by filtration with a miracloth filter. Mycelia was incubated with VinoTaste ${ }^{\circledR}$ Pro (Novozymes) solution ( $10 \mathrm{mg} / \mathrm{ml}$ enzyme) while shaking at room temperature and 2 rpm for 3-5 hours. The protoplasts were obtained by filtration with a miracloth filter and centrifuged at $3000 \times g$ for 5 min . The resulting pellet was re-suspended with solution 1 ( $100 \mu \mathrm{l}$ per transformation, 0.8 M sodium chloride, 10 mM calcium chloride, 50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$ ). Vector DNA was added to $100 \mu$ l protoplast suspension and incubated on ice for 2 min . Then 1 ml of solution 2 ( $60 \%(w / v)$ PEG $3350,0.8 \mathrm{M}$ sodium chloride, 10 mM calcium chloride, 50 mM Tris- $\mathrm{HCl}, \mathrm{pH}$ 7.5) was added to the mixture and incubated at room temperature for 20 min . After incubation 5 ml of appropriate selective softagar was added to the mixture and overlaid over prepared plates with corresponding agar. Plates were incubated at $28^{\circ} \mathrm{C}$ for $4-6$ days. When mycelia was visible, the transformants undergo two further selection rounds to avoid false-positive transformants. The colonies are picked from the agar, placed on fresh selection agar plates, and grown for 3-5 days. For the preparation of liquid cultures the transformants were grown on DPY agar plates for 5 days. The spores were used to inoculate 100 ml CMP liquid medium.

### 1.3 Analytical LCMS

Analytical LCMS was run to analyse the extracts from fungal cultures. The Waters LCMS system containing a Waters 2767 autosampler, Waters 2545 pump, a Phenomenex Kinetex column ( $2.6 \mu \mathrm{~m}$, C18, 100 Å, $4.6 \times 100 \mathrm{~mm}$ ), a Phenomenex Security Guard precolumn (Luna, C5, 300 Å) was used with a flow rate of $1 \mathrm{ml} / \mathrm{min}$. The equipped detectors were a diode array detector (Waters 2998) in the range 210 to 600 nm and an ELSD detector (Waters 2424) together with a mass spectrometer, Waters SQD-2 mass detector (ES ${ }^{+}$and ES', 150 and $1000 \mathrm{~m} / \mathrm{z}$ ). For elution, a solvent gradient was run
for 15 min starting at $10 \%$ acetonitrile/ $90 \%$ HPLC grade water ( $0.05 \%$ formic acid) and ramping to $90 \%$ acetonitrile.

## 2 Results

### 2.1 Protein Structures

### 2.1.1 Comparison of TENS model and LOVB Structure



Figure S2 Alignment of TenS KR models to LovB cryo-EM KR structure: A, TenS AlphaFold model vs. LovB in frontal view; B, TenS AlphaFold model vs. LovB in side view (grey = LovB, green = AlphaFold model, yellow = cofactor from experimental LovB data).

Table S5 Structural comparison and resulting RMSD of LovB with threaded and AlphaFold model.

compared area	omplete domain	xcluding sbh	nly sbh
RMSD of AlphaFold model to LovB [Å]	0.90	0.87	2.81

### 2.1.2 Protein Models of TENS, DMBS, MILS, and vFAS



Figure S3 Structural protein models based on AlphaFold: A, TenS (sbh dark green); B, DmbS (sbh magenta); C, MilS (sbh yellow); D, mFAS (pig, sbh cyan).

### 2.1.3 Comparison of sbh in TENS, AmphB and Tylosin KR1 structures



Figure S4. Overlay of TENS KR model (green-yellow), AmphB KR (cyan) and Tylosin KR1 (magenta) showing location of cofactor (grey), Amph B substrate (cyan) and TENS substrate (magenta). The substrate-binding helix (sbh) of the TENS KR is indicated in yellow and overlays well with the 'lid-helix' of the Amph B structure, but the lid-helix of the Tylosin structure approaches the bound substrates more closely. Distances calculated between amide nitrogen of N -terminal residues of the helices and the amide nitrogen of the active site tyrosine.
2.2 Spectroscopic Data for Identified Compounds

Table S6 Overview of UV-, ES--, ES ${ }^{+}$-spectra for detected compounds.

No	Structure	UV spectrum	ES	$E S^{+}$
1				
4/5	  prototenellin B isomer   Mass: 313.13			
6				
7				
8				
12				
10				
9				
11				

### 2.2.1 Detailed Analysis of Compound 10

Hexaketide products are produced as a mixture of methylation isomers (see X.-L. Yang, S. Friedrich, S. Yin, O. Piech, K. Williams, T. J. Simpson and R. J. Cox, Chem. Sci., 2019, 10, 8478-8489). ${ }^{4}$ These are hydroxylated to produce a similar mixture of hexaketide alcohols so that the peak indicated as compound 10 actually consists of three isomers. LCMS analysis (below) supports this conclusion.

## Expansion of hexaketide alcohol peaks



### 6.78 min peak





### 6.84 min peak





### 6.99 min peak





### 2.3 Overview of all Generated Transformants

Table S7 Overview of all pretenellin A producing transformants.

Experiment	Transformant	Detected compounds						
		Pentaketides				Hexaketides		
		6	12	7	1	9	10	11
substrate binding helix = DmbS	A	X		X	X	X	X	
	B	X		X	X	X	X	
	C	X		X	X	X	X	
	D	X		X	X	X	X	
	E			X	X	X	X	
	F	X		X	X	X	X	
	G	X		X	X	X	X	
	H	X		X	X	X	X	
	1	X		X	X	X	X	
substrate binding helix $=$ MilS	A	X		X	X	X	X	X
	B				X	X	X	
	C				X		X	
	D				X	X	X	X
$\begin{aligned} & \text { S2400N, } \\ & \text { L2401R, } \\ & \text { T2404M, } \\ & \text { V2406A } \end{aligned}$	A			X	X	X	X	
	B			X	X			
	C			X	X			
	D	X		X	X	X	X	
	E	X		X	X	X	X	
T2395A	A	X		X	X			
	B	X		X	X			
	C	X		X	X			
	D	X	X	X	X			
	E	X		X	X			
	F	X		X	X			
	G	X	X	X	X			
K2396A	A	X	X	X	X			
	B	X	X	X	X			
	C	X		X	X			
	D	X	X	X	X			
	E			X	X			
V2397A	A	X			X			
	B				X			
	C				X			
Q2398A	A	X			X			
	B	X	X		X			
	C	X			X			
	D	X		X	X			
M2399A	A	X		X	X			
S2400A	A	X		X	X			
	B	X		X	X			
	C	X	X	X	X			
	D	X	X	X	X			
	E	X	X	X	X			
L2401A	A		X		X			
	B	X	X		X			
	C				X			



## 3 Multiple Alignment



## 2251 <br> 2300



TENS
DMBS
(2244) ADPEMLNEAERYGAAVQVVPMDACSKDSVQTVVDMIRATMPPIAGVCNAA

MILS
(2239)

AmphB
mFAS pig (1923)
mFAS rat (1917)
GYQARQVREWRRQGVQVLVSTSNASSLDGARSLITEATQLGPVGGVFNLA GYQAKHVREWRRQGIHVLVSTSNVSSLEGARALIAEATKLGPVGGVFNLA

23012350
KR KR
TENS
DMBS
MILS
AmphB
mFAS pig (1973)
mFAS rat (1967)

TENS
DMBS
MILS
AmphB
mFAS pig
mFAS rat (2017)

TEN
DMBS
MILS
AmphB
mFAS pig (2073)
mFAS rat (2067)
2351
2400

(2342) AAILNNTGQSNYHCANLYMDSLVTNRRSRGLAASIIHVGHVCDTGYVARL (2337) AAILNNMGQSNYHCANLYMDSLVKHRRSRGLAASIIHIGHVCDTGYVARM
(2235) ATIANNIGQSNYHCANLYMDSLVAQRRSRGLAASIIHIGYICDTGYVARL AAVFGSGGQPGYAAANAYLDALAEHRRSLGLTASSVAWGTWGEVGMATDP SCGRGNAGQANYGFANSAMERICEKRRHDGLPGLAVQWGAIGDVGVVLET SCGRGNAGQSNYGFANSTMERICEQRRHDGLPGLAVQWGAIGDVGIILEA

24012450


VDDTKVQMSLGTTRVMSVSETDVHHAFAEAVRGGQPDSRSGSHNIIMGIE
VDDNRIQSNIATMRAMRLSETDVHHAFAQAVRGGQLDSRSGSYNIIMGIE GDDAKVHSNRDVMRATTLSETDVHHAFAEAVRGGSPGSPIGSYNIIMGID EVHDRLVRQGVLAMEPPEHALGALDQMLNDDTAAAPITMDWEMFAPAFTN
 MGTNDTVVGGTLPQRISSCMEVLDLFLNQPHAVLS

2500
KR
KR
TENS (2442) PPTKPLDLTKRKPVWISDPRLGPCLPFSTLENQMMASEQAAAASAVDSLA
DMBS (2437) PPTKPLDLTRRQAVWLSDPRLGHMLPYSTLENQMIASGQAAA-S-ADSLA
MILS (2435) PPTKSLDSSRRKALWLSDPRLGHMVPYSASADQAVTSEQA
AmphB
(478) RPSALLSTVPEAVSALSDE---------------------
mFAS pig (2108) --------------------------SFVLAEKKAAAPRDGSSQK-------
mFAS rat (2102) --------------------------SFVLVEKKAVAHGDGEAQR--------
Identity within PKS-NRPS, $\ldots$ : Identity within mFAS, RED: Identity between PKS-NRPS and mFAS

## 4 References

1 R. D. Gietz and R. H. Schiestl, Nat. Protoc., 2007, 2, 35-37.
2 R. D. Gietz and R. A. Woods, Methods Mol. Biol., 2006, 313, 107-120.
3 F. Katzen, Expert Opin. Drug Discov., 2007, 2, 571-589.
4 X.-L. Yang, S. Friedrich, S. Yin, O. Piech, K. Williams, T. J. Simpson and R. J. Cox, Chem. Sci., 2019, 10, 8478-8489.

