Effective retention of cesium ions from aqueous environment using morphologically modified

kaolinite nanostructures: experimental and theoretical studies

Ashour M. Ahmed^{1,2*}; Nourhan Nasser^{3,4}, M. Abdel Rafea²; Mostafa R. Abukhadra^{* 3,4}

¹Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
²Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
³Geology Department, Faculty of Science, Beni-Suef University, Beni Suef city, Egypt
⁴Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef city, Egypt
⁶Corresponding author*.Tel: +2001288447189. E-mail: <u>Abukhadra89@Science.bsu.edu.eg (M.R.A)</u>

Table.S1. Nonlinear equations of kinetic, classic isotherm, and advanced isotherm models

	Kinetic model	3
Model	Equation	Parameters
Pseudo-first-order	$Q_t = Q_e (1 - e^{-k_1 t})$	$Q_t(\text{mg/g})$ is the adsorbed ions at time (t), and K_1 is the rate constant of the first-order adsorption (1/min)
Pseudo-second-order	$Q_t = \frac{Q_e^2 k_2 t}{1 + Q_e k_2 t}$	Qe is the quantity of adsorbed ions after equilibration (mg/g), and K_2 is the model rate constant (g/mg min).
	Classic Isotherm m	odels
Model	Equation	Parameters
Langmuir	$Q_e = \frac{Q_{max} bC_e}{(1 + bC_e)}$	C_e is the rest ions concentrations (mg/L), Q_{max} is the theoritical maximum adsorption capacity (mg/g), and <i>b</i> is the Langmuir constant (L/mg)
Freundlich	$Q_e = K_f C_e^{1/n}$	K_F (mg/g) is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities
Dubinin–Radushkevich	$Q_e = Q_m e^{-\beta \varepsilon^2}$	β (mol²/KJ²) is the D-R constant, ϵ (KJ²/mol²) is the polanyil potential, and Q_m is the adsorption capacity (mg/g)
	Advanced isotherm	models
Model	Equation	Parameters
Monolayer model with one	$Q = nN = \frac{nN_M}{m} = \frac{Q_o}{m}$	Q is the adsorbed quantities in mg/g
energy site (Model 1)	$Q = nN_o = \frac{nN_M}{1 + (\frac{C1/2}{C})^n} = \frac{Q_o}{1 + (\frac{C1/2}{C})^n}$	n is the number of adsorbed ion per site
		Nm is the density of the effective receptor sites (mg/g)
Monolayer model with two energy sites (Model 2)	$Q = \frac{n_1 N_{1M}}{\binom{C_1}{1 + \binom{C_2}{2}}} + \frac{n_2 N_{2M}}{\binom{C_2}{2}} + \frac{n_2 N_{2M}}{\binom{C_2}{2}}$	Q_{\circ} is the adsorption capacity at the saturation state in mg/g
Double layer model with one		C1/2 is the concentration of the ions at half saturation stage in mg/L
energy site (Model 3)	$Q = Q_o \frac{\left(\frac{C}{C1/2}\right)^n + 2\left(\frac{C}{C1/2}\right)^{2n}}{1 + \left(\frac{C}{C1/2}\right)^n + \left(\frac{C}{C1/2}\right)^{2n}}$	C1 and C2 are the concentrations of the ions at the half saturation stage for the first active sites and the second active sites, respectively
Double layer model with two energy sites (Model 3)	$Q = Q_o \frac{\left(\frac{C}{C1}\right)^n + 2\left(\frac{C}{C2}\right)^{2n}}{1 + \left(\frac{C}{C1}\right)^n + \left(\frac{C}{C2}\right)^{2n}}$	n1 and n2 are the adsorbed ions per site for the first active sites and the second active sites, respectively

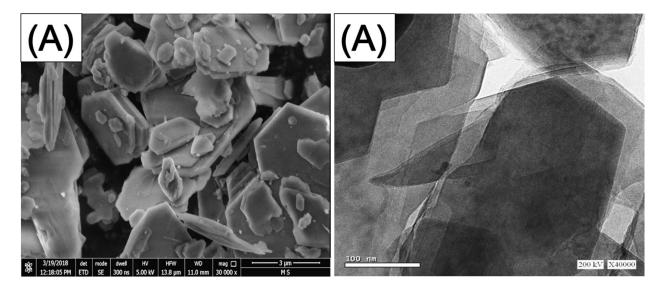


Fig.S1. SEM image (A) and HRTEM image (B) of the used raw kaolinite