Supporting Information

Preparation of Imidazole-Modified Paper Membrane for Selective Extraction of Gallic Acid and its Structural and Functional Analogues from *Pomegranate Peel*

Xiaoxue Sun ^{1#}, Jingyu Zhang ^{1#}, Xiaohui Han ¹, Shumin Li ¹, Xuerui Zhang ¹ and Xiaodong Bi ^{1,2*}

1. School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.

2. Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences) Jinan 250117, Shandong, China.

[#]X. Sun and J. Zhang contributed equally.

*Corresponding author. Email: xiaodongb_pharm@126.com

Contents

Table S1 Method comparison for analysis of gallic acid (GA) or other phenolic acids

Table S2 CFD simulation parameters.

Table S3 Searching results in MS library

Fig.S1 TIC (positive mode) of LC-TOF/MS for the MSPE-proposed *Pomegranate Peel* extract

Fig.S2 TIC (negative mode) of LC-TOF/MS for the MSPE-proposed *Pomegranate Peel* extract

Fig.S3 Secondary MS result for compound 1 (Catechin)

Fig.S4 Secondary MS result for compound 2 (Ellagic acid)

Fig.S5 Secondary MS result for compound 3 (Quercetin 3-O-galactoside)

Fig.S6 Secondary MS result for compound 4 (Corilagin)

Fig.S7 Secondary MS result for compound 5 (Gallic acid)

Fig.S8 Secondary MS result for compound 6 (beta-Glucogallin)

Literature	Adsorption	Adsorbent	Sample	Method	
	Method	materials		parameters or	
				others	
Food Anal. Meth.	d-SPE	Mixture of	Myrciaria	Linear range: 0.1–	
2020 , <i>13</i> (1), 155-	(dispersive	diatomaceous	cauliflora	137 μg/kg by	
165,	solid-phase	earth (DE) and	peel	UHPLC-MS/MS	
	extraction)	graphitized			
		carbon black			
		(GCB)			
J. Chromatogr. A	d-SPE	C-18 (50 mg)	wine	Linear range:0.1-50	
2014 , <i>1342</i> , 44-				µg/mL by LC-	
53,				MWD	
				(-multi-wavelength	
				detection)	
J. Chromatogr. A	In-syringe	Ni-Co layered	fruit juice	Linear range: 1-500	
2016 , <i>1453</i> , 1-9,	extraction	double		µg/L by LC-UV	
		hydroxides			
		(LDH)			
J. Chromatogr. B	SPE (solid-	MIP	phyllanthus	Purification	
2017 , <i>1041</i> , 98-	phase	(molecularly	urinaria L.		
103,	extraction)	imprinting			
		polymer)			
Anal. Bioanal.	SPE	MIP	pomegranate	Linear range:	
Chem. 2015 , 407			rind	0.005–1.0 μg/mL	
(25), 7681-7690,				and 5.0-	
				1000µg/mL by LC-	
				UV	
J. Sep. Sci. 2011 ,	SPE	MIP (200 mg)	Rhizoma	Recovery 40% for	
34 (19), 2602-			homalomenae	GA by LC-DAD	
2610,					
Food Chem.	SPE	Sephadex LH-	wine	Recovery 44%-99%	
2017 , <i>226</i> , 23-31		20 (820 mg)		by LC-MS/MS	
J. Pharm. Biomed.	μ-SPE (micro	Ika Ultra-	sea algae	Linear range: 0.2-5	
Anal. 2017 , 135,	SPE)	Turrax [®] Tube		ng/mL by LC-	
87-96,		Drive		MS/MS	
This work	MSPE	Imidazole-	Pomegranate	Linear range	
	(membrane		Peel	(separated): 0.5-5	
	SPE)	Membrane		ng/mL, 5-100 ng/mL,	
				100-500 ng/mL by	
				LC-UV	

Table S1 Method comparison for analysis of gallic acid (GA) or other phenolic acids

Table.S2 CFD simulation parameters						
Item	Detailed settings					
Geometry	Cylinder: radius:12.5 mm, height:2 mm					
(membrane zone)	upper surface-inlet, lower surface-outlet					
	built in 2D axial symmetry model					
Boundary conditions	Inlet: velocity inlet					
	Outlet: pressure outlet					
Initial conditions	Concentration = 0 (in all zone at time = 0)					
Compounds information	Molecular weight: 170.12 g/mol					
	Diffusion coefficient: 10 ⁻⁸ m ² /s					
Sample description	Concentration: 20 µg/mL					
	Solvent: water (density: 1000.0 kg/m ³)					
	Volume: 5 mL					
	Flow time: 300 second					
	Injection: Concentration × Rectangular wave					
Porous medium	Fluid:					
(all zone)	Velocity: 0.0034 cm/s (calculated by volume, flow time and					
	geometry size)					
	Diffusion: by solvent, others-default					
	Porous zone:					
	Porosity:0.6 (estimated)					
	Adsorption: (temperature impact was not considered)					
	Base density: 1200 kg/m ³ (estimated)					
	Langmuir model:					
	$K_i \times C_{max,i} \times C_i$					
	$C_{p,i} = \frac{1}{1 + K_L \times C_i}$ where					
	$C_{p,i}$ - absorbed concentration on filter (mol/kg)					
	C_i – concentration left in free solution (mol/kg)					
	K_i - Langmuir constant for compound i(m ³ /mol)					
	$C_{max,i}$ – the maximum absorbed amount for compound i(mol/kg),					
	i = 1-8					
	$C_{max,i} = N_i \times S / M_i$, where					
	N_i -monolayer capacity for compound i (g/m ²)					
	S – BET specific surface area (m ² /g), in this work, the value 10 m ² /g					
	was used.					
Meshing	Extremely fine, controlled by physical field					
Solution	Transient, time step:1s within 0-300s					
Convergence	Yes					
Others	1. For calculating the recovery, the field probe was used for later					
	integral calculus.					
	2. For obtaining the breakthrough curve, point diagram of					
	concentration vesus time at the center of the outlet was obtained in the					
	postprocessing.					

Number	Name	CAS	ESI	RT/min	Mw	m/z	m/z range (EIC)	Peak area
			mode*					
1	Catechin	7295-85-4	+	2.49	290.0790	291.0860	291.0802-291.0981	126252741
2	Ellagic acid	476-66-4	+	7.09	302.0063	303.0149	303.0088-303.0210	131585576
3	Quercetin 3-O-	482-36-0	+	7.71	464.0955	465.1030	465.0937-465.1123	117029614
	galactoside							11/958014
4	Corilagin	23094-69-1	-	3.9	634.0860	633.0743	633.0616-633.08706	456040405
5	Gallic acid	149-91-7	-	1.26	170.0251	169.0145	169.0111-169.0179	602067382
6	beta-Glucogallin	13405-60-2	-	1.15	332.0743	331.069	331.0624-331.0756	142691542

Table S3 Searching results in MS library

*ESI mode: "+" meant positive, "-" meant negative.

Fig.S1 TIC (positive mode) of LC-TOF/MS for the MSPE-proposed *Pomegranate Peel* extract

Fig.S2 TIC (negative mode) of LC-TOF/MS for the MSPE-proposed *Pomegranate Peel* extract

Fig.S3 Secondary MS result for compound 1 (Catechin) The rectangle in the figure (Fig.S3-S8) was added by origin software to marking peaks automatically

Fig.S4 Secondary MS result for compound 2 (Ellagic acid)

Fig.S5 Secondary MS result for compound 3 (Quercetin 3-O-galactoside)

Fig.S6 Secondary MS result for compound 4 (Corilagin)

Fig.S7 Secondary MS result for compound 5 (Gallic acid)

Fig.S8 Secondary MS result for compound 6 (beta-Glucogallin)