Supplementary Information

Table S1. Density of CO₂ and CH₄ mixtures with different molar ratios at different temperatures and pressures

Gas	Condition	Density
CO ₂	323 K/15 MPa	696.80
25% CH ₄ +75%CO ₂	323 K/15 MPa	400.62
50% CH ₄ +50%CO ₂	323 K/15 MPa	260.33
	343 K/30 MPa	386.14
	363 K/45 MPa	447.54
	383 K/60 MPa	482.53
CH ₄	323 K/15 MPa	105.50

Tables S1 shows the densities of supercritical CO_2/CH_4 mixtures at different mole ratios and the density of a 50% CH_4 +50% CO_2 mixture at different temperatures and pressures. The density of pure methane and CO_2 under the conditions of 323 K and 15 MPa is 701.08 kg/m³ and 102.48 kg/m³ respectively (according to NIST), which is very close to our calculated values. Additionally, the density of the supercritical CO_2/CH_4 mixture calculated in our simulation is very similar to the density reported in the database by the Aimoli group [Aimoli et al., 2014]. This indicates that the system is in a critical state.

[1] C. G. Aimoli, E. J. Maginn and C. R. A. Abreu, Journal of Chemical & Engineering Data, 2014, 59, 3041-3054.