Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI)

Improvement of Rate Capability of All-Solid-State Cells with Fe-Based Polysulfide Positive Electrode Materials by Modifying Microstructure

Tomonari Takeuchi,^a* Noboru Taguchi,^a Mitsunori Kitta,^a Toyonari Yaji,^b

Misae Otoyama,^a Kentaro Kuratani,^a and Hikari Sakaebe^{a,c}

^a National Institute of Advanced Industrial Science and Technology (AIST)

Midorigaoka 1-8-31, Ikeda, Osaka 563-8577, Japan

^b Synchrotron Radiation Center, Ritsumeikan University

Kusatsu, Shiga 525-8577, Japan

° Present address: Kyushu University, 6-1 Kasuga koen, Kasuga-shi, Fukuoka 816-8580, Japan

XANES spectra

Figure S1 shows the S K-edge X-ray absorption near-edge structure (XANES) spectra for the Li₈FeS₅-Li₂FeS₂ and Li₈FeS₅-H samples.

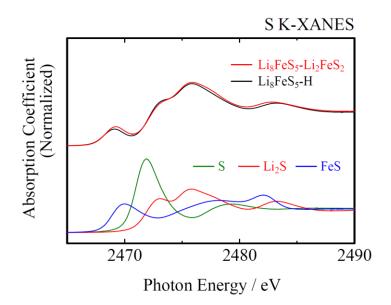


Figure S1 S K-edge XANES spectra for the Li_8FeS_5 -H and Li_8FeS_5 -Li_2FeS_2 samples. Li_2S, S, and FeS were used as references.