Supporting Information

Sesquiterpenoids and hexanorcucurbitacin from *Aquilaria malaccensis* agarwood with anti-inflammatory effects by inhibiting STAT1/AKT/MAPK/NLRP3 pathway

Chi Thanh Ma^{1,2,⊥}, Tianqi Huang^{2,3,⊥}, Jae Sik Yu^{2,⊥}, Tu Loan Ly⁴, Kim Long Vu Huynh⁴, Sung Won Kwon⁵, Jeong Hill Park⁵, Hyun Ok Yang^{2,*}

¹ Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang st., dist. 1, Ho Chi Minh city 700000, Vietnam.

² Department of Integrative Biological Sciences and Industry & Convergence Research Center for Natural Products, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

³ Korea Institute of Science and Technology (KIST) School, Korea University of Science and Technology (UST), 5 Hwarang-ro 14-gil, Wolgok 2(i)-dong, Seongbuk-gu, Seoul 02792, Republic of Korea.

⁴ Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh city, Vietnam.

⁵ Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

 $^{\perp}$ These authors contributed equally.

* Corresponding author: Hyun Ok Yang

Department of Integrative Biological Sciences and Industry, Sejong University

209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

Tel: +82-02-3408-1959 Fax: +82-02-3408-4336

E-mail: <u>hoyang@sejong.ac.kr</u>

TABLE OF CONTENTS

Figure S1. ¹ H NMR spectrum of compound 1 in CD ₃ OD (800 MHz)	6
Figure S2. ¹³ C NMR spectrum of compound 1 in CD ₃ OD (800 MHz)	6
Figure S3: HSQC spectrum of compound 1 in CD ₃ OD (800 MHz)	7
Figure S4: HMBC spectrum of compound 1 in CD ₃ OD (800 MHz)	7
Figure S5: COSY spectrum of compound 1 in CD ₃ OD (800 MHz)	8
Figure S6: NOESY spectrum of compound 1 in CD ₃ OD (800 MHz)	8
Figure S7: MS spectrum of compound 1	9
Figure S8: UV spectrum of compound 1	10
Figure S9: CD spectrum of compound 1	10
Figure S10: ¹ H NMR spectrum of compound 2 in CD ₃ OD (400 MHz)	11
Figure S11: ¹³ C NMR spectrum of compound 2 in CD ₃ OD (400 MHz)	11
Figure S12: HSQC spectrum of compound 2 in CD ₃ OD (400 MHz)	12
Figure S13: HMBC spectrum of compound 2 in CD ₃ OD (400 MHz)	12
Figure S14: COSY spectrum of compound 2 in CD ₃ OD (400 MHz)	13
Figure S15: NOESY spectrum of compound 2 in CD ₃ OD (400 MHz)	13
Figure S16: MS spectrum of compound 2	14
Figure S17: UV spectrum of compound 2	15
Figure S18: Experimental ECD spectrum of compound 2	15
Figure S19: ¹ H NMR spectrum of compound 3 in CDCl ₃ (800 MHz)	16
Figure S20: ¹³ C NMR spectrum of compound 3 in CDCl ₃ (800 MHz)	16
Figure S21: HSQC spectrum of compound 3 in CDCl ₃ (800 MHz)	17
Figure S22: HMBC spectrum of compound 3 in CDCl ₃ (800 MHz)	17
Figure S23: COSY spectrum of compound 3 in CDCl ₃ (800 MHz)	
Figure S24: NOESY spectrum of compound 3 in CDCl ₃ (800 MHz)	
Figure S25: MS spectrum of compound 3	19
Figure S26: UV spectrum of compound 3	20
Figure S27: Experimental ECD spectrum of compound 3	20
Figure S28: ¹ H NMR spectrum of compound 4 in CDCl ₃ (500 MHz)	21
Figure S29: ¹³ C NMR spectrum of compound 4 in CDCl ₃ (500 MHz)	21
Figure S30: HSQC spectrum of compound 4 in CDCl ₃ (500 MHz)	22
Figure S31: HMBC spectrum of compound 4 in CDCl ₃ (500 MHz)	22
Figure S32: COSY spectrum of compound 4 in CDCl ₃ (500 MHz)	23
Figure S33: NOESY spectrum of compound 4 in CDCl ₃ (500 MHz)	23
Figure S34: MS spectrum of compound 4	24
Figure S35: UV spectrum of compound 4	25

Figure S36: Experimental ECD spectrum of compound 4	25
Figure S37: ¹ H NMR spectrum of compound 5 in CDCl ₃ (800 MHz)	26
Figure S38: ¹³ C NMR spectrum of compound 5 in CDCl ₃ (800 MHz)	26
Figure S39: HSQC spectrum of compound 5 in CDCl ₃ (800 MHz)	27
Figure S40: HMBC spectrum of compound 5 in CDCl ₃ (800 MHz)	27
Figure S41: COSY spectrum of compound 5 in CDCl ₃ (800 MHz)	
Figure S42: NOESY spectrum of compound 5 in CDCl ₃ (800 MHz)	
Figure S43: MS spectrum of compound 5	29
Figure S44: UV spectrum of compound 5	
Figure S45: Experimental ECD spectrum of compound 5	
Figure S46: ¹ H NMR spectrum of compound 6 in CDCl ₃ (800 MHz)	
Figure S47: ¹³ C NMR spectrum of compound 6 in CDCl ₃ (800 MHz)	
Figure S48: HSQC spectrum of compound 6 in CDCl ₃ (800 MHz)	
Figure S49: HMBC spectrum of compound 6 in CDCl ₃ (800 MHz)	
Figure S50: COSY spectrum of compound 6 in CDCl ₃ (800 MHz)	
Figure S51: NOESY spectrum of compound 6 in CDCl ₃ (800 MHz)	
Figure S52: MS spectrum of compound 6	
Figure S53: UV spectrum of compound 6	
Figure S54: Experimental ECD spectrum of compound 6	35
Figure S55: ¹ H NMR spectrum of compound 7 in CDCl ₃ (800 MHz)	
Figure S56: ¹³ C NMR spectrum of compound 7 in CDCl ₃ (800 MHz)	
Figure S57: HSQC spectrum of compound 7 in CDCl ₃ (800 MHz)	
Figure S58: HMBC spectrum of compound 7 in CDCl ₃ (800 MHz)	
Figure S59: COSY spectrum of compound 7 in CDCl ₃ (800 MHz)	
Figure S60: NOESY spectrum of compound 7 in CDCl ₃ (800 MHz)	40
Figure S61: MS spectrum of compound 7	41
Figure S62: UV spectrum of compound 7	42
Table S1. Boltzmann distribution of conformers 1	43
Table S2. Boltzmann distribution of conformers 2	
Table S3. Boltzmann distribution of conformers 3	44
Table S4. Boltzmann distribution of conformers 4	44
Table S5. Boltzmann distribution of conformers 5	
Table S6. Boltzmann distribution of conformers 6	45
Table S7. Crystal data and structure refinement for 7	46

1. Plant material

The agarwood chips of *A. malaccensis* was purchased from Industrial Plantation Co. (Vientiane, Laos) in January 2010. A voucher specimen (AM-2010-01) was authenticated by Professor Jeong Hill Park (Natural Products Research Institute, Seoul National University) and deposited at the Herbarium of the Natural Product Research Institute, Seoul National University, Korea.

2. Extraction and isolation

The agarwood chips of *A. malaccencis* (9.0 kg) was ground and extracted with 70% MeOH under reflux (20 L X 3h, 3 times). The solvent was evaporated under reduced pressure to obtain a crude extract (864 g), which was suspended in water and successively partitioned with diethyl ether, EtOAc, *n*-BuOH, achieving 225, 155, and 289 g of residue, respectively.

The diethyl ether fraction (30 g) was applied on a silica gel column (230-400 mesh, 300 g), eluted with *n*-hexane/EtOAc (gradient 40:1 \rightarrow 1:1, v/v) to obtain 7 fractions (DE1-DE7). Fraction DE2 was separated by a silica gel column chromatography (CC) (*n*-hexane/EtOAc, gradient 20:1 to 8:2, v/v) to afford 4 fractions (DE2.1-DE2.4). Fraction DE2.3 was applied to a silica gel CC, eluted with *n*-hexane/EtOAc (95:5 to 7:3, v/v) to obtain 3 fractions (DE2.3.1-DE2.3.3). Fraction DE2.3.2 was separated by semi-preparative RP-HPLC (MeOH/H₂O, 65:35, v/v) to give **10** (4.29 mg) and **12** (30.4). Fraction DE3 (3.36 g) was further subjected to a silica gel CC (*n*-hexane/EtOAc, gradient 95:5 to 7:3, v/v) to achieve 9 sub-fractions (DE3.1-DE3.9). Fraction DE3.3 (450 mg) was subjected to semi-preparative RP-HPLC (MeOH/H₂O, 65:35, v/v) and then purified by Sephadex LH-20 CC (MeOH) to yield **14** (72.9 mg). Fraction DE3.4 (237 mg) was applied to a Sephadex LH-20 CC (MeOH) to furnish 5 sub-fractions (DE3.4.1-DE3.4.5). Fraction 3.4.3 (81.7 mg) was further isolated by using semi-preparative RP-HPLC (CH₃CN/H₂O, 45:55, v/v) to obtain **2** (3.5 mg), and **8** (23.5 mg), respectively. Compounds **9** (4.5 mg) and **15** (4.8 mg) were obtained from fraction DE3.4.5 (71.5 mg) by semi-preparative RP-HPLC (MeOH/H₂O, 65:35, v/v). Fraction DE3.5 was loaded on a Sephadex LH-20 CC (MeOH) to give 5 sub-fractions (DE3.5.1-DE3.5.5). By using semi-preparative RP-HPLC (MeOH/H₂O, 65:35, v/v), compounds **4** (6.7 mg) and **13** (15.8 mg) were obtained from fraction DE3.5.3 (118.2 mg) and DE3.5.4 (87.2 mg), respectively. Fraction DE4 (7.6 g) was applied to a silica gel CC (*n*-hexane/EtOAc, gradient 95:5 to 1:1, v/v) to obtain 10 sub-fractions (DE4.1 – DE4.10). Compounds **1** (1.0 mg) and **3** (3.3 mg) were obtained from fraction DE4.5 (96.8 mg) by semi-preparative RP-HPLC (CH₃CN/H₂O, 35:65, v/v). Fraction DE4.6 (781 mg) was isolated and purified by semi-preparative RP-HPLC (MeOH/H₂O, 65:35, v/v) to obtain **5** (2.08 mg), and **11** (10.3 mg).

The EtOAC fraction (51.5 g) was separated by a silica gel CC (*n*-hexane/EtOAc, gradient 200:1 to 1:1, v/v) to afford 5 fractions (EA1-EA5). Fraction EA2 (20 g) was continuously fractionated by a silica gel CC (*n*-hexane/EtOAc, gradient 95:5 to 1:1, v/v) to achieve 17 fractions (EA2.1-EA2.17). Fraction EA2.10 was separated to a Sephadex LH-20 (MeOH) column to yield 3 fractions (EA2.10.1-EA2.10.3). Compounds **6** (5.19 mg) and **7** (2.6 mg) were achieved from fractions EA2.10.1 by semi-preparative RP-HPLC (MeOH/H₂O, 65:35, v/v). By crystallization method in MeOH, compound **16** (125.8 mg) was obtained from fraction EA2.14.

Figure S1. ¹H NMR spectrum of compound **1** in CD₃OD (800 MHz)

Figure S2. ¹³C NMR spectrum of compound 1 in CD₃OD (800 MHz)

Figure S3: HSQC spectrum of compound 1 in CD₃OD (800 MHz)

Figure S4: HMBC spectrum of compound 1 in CD₃OD (800 MHz)

Figure S5: COSY spectrum of compound 1 in CD₃OD (800 MHz)

Figure S6: NOESY spectrum of compound 1 in CD₃OD (800 MHz)

x10 4 Cpd	1: C15H200	3: +ESI Scar	1 (0.	159-0.309	9 min, 10 scans) Frag	g=100.0V C	O-15-5-5_15.d	Subtract
7-		249.	249.1479					
6 -		(M+	H)+					
5-								
4								
4		1						
3-								
2-				287.1254	1			
1- 14	7.0556			(M+K)+			497.282	27
(M-	+2Na)+2				and a start start and	1	(2M+H)	+
O Later	ALL	فالمصط المقوسيا فاستقرمه	لقلمسال	الستقتيبة اللاستية	and the second s	my motelline goods and	Lington and any starting the	ula aller
0	150 175	200 225 25	50 50	275 300	0 325 350 375 4	100 425	450 475 500	525 5
0 million	150 175	200 225 25	لنديال 50	275 300 Counts	0 325 350 375 4 vs. Mass-to-Charge (100 425 m/z)	450 475 500	525 5
0 Lift MS Spectru n/z	150 175 m Peak List Calc m/z	200 225 2	50 z	275 300 Counts	0 325 350 375 4 vs. Mass-to-Charge (1	400 425 m/z)	450 475 500	525 5
0 - 441 15 Spectru <i>n/z</i> 147.0556	150 175 m Peak List <i>Calc m/z</i> 147.0598	200 225 25 Diff(ppm) -28.94	50 z 2	275 300 Counts v Abund 187	0 325 350 375 4 vs. Mass-to-Charge (1 Formula C15 H20 Na2 O3	400 425 m/z)	450 475 500 Na)+2	525 5
0 - 45 147.0556 231.1375	150 175 m Peak List Calc m/z 147.0598 231.138	200 225 25 Diff(ppm) -28.94 -2.05	50 z 2 1	275 300 Counts v Abund 187 35872	Comparison of the second	100 425 m/z) Ion (M+2 (M+H	450 475 500 Na)+2 I)+[-H2O]	525 5
0 LALL 15 Spectru 147.0556 231.1375 248.1365	150 175 m Peak List Calc m/z 147.0598 231.138 248.1407	Diff(ppm) -28.94 -2.05 -17.04	z 2 1	275 300 Counts v Abund 187 35872 1181	Kullering of the second s	400 425 m/z) 425 (M+2 (M+4 (M+4 M*+	Na)+2 I)+[-H2O]	525 5
0 LALL MS Spectru <i>n/z</i> 147.0556 231.1375 248.1365 248.1648	150 175 m Peak List <i>Calc m/z</i> 147.0598 231.138 248.1407 248.1645	Diff(ppm) -28.94 -2.05 -17.04 1.27	z 2 1	275 300 Counts v Abund 187 35872 1181 584	Kullering of the second s	Ion (M+2 (M+4 (M+4) (M+4) (M+4) (M+4)	Na)+2 I)+[-H2O]	525 5
0 4.4CF MS Spectru m/z 147.0556 231.1375 248.1365 248.1648 249.1479	150 175 m Peak List <i>Calc m/z</i> 147.0598 231.138 248.1407 248.1645 249.1485	Diff(ppm) -28.94 -2.05 -17.04 1.27 -2.45	z 2 1	275 300 Counts v Abund 187 35872 1181 584 70577	Entry Annual Angel Control Angel Contro Angel Cont	100 425 m/z) (M+2 (M+H M*+ (M+N (M+H	Na)+2)+[-H2O] H4)+[-H2O])+	525 5
0 4.4C2 MS Spectru <i>m/z</i> 147.0556 231.1375 248.1365 248.1648 249.1479 266.1662	150 175 m Peak List Calc m/z 147.0598 231.138 248.1407 248.1645 249.1485 266.1751	Diff(ppm) -28.94 -2.05 -17.04 1.27 -2.45 -33.46	z 2 1	Abund 275 300 Counts v Abund 187 35872 1181 584 70577 1339	Formula C15 H20 Na2 O3 C15 H20 Na2 O3 C15 H20 O2 C15 H20 O3 C15 H21 O3 C15 H21 O3 C15 H24 N O3	100 425 m/z) Ion (M+2 (M+H M*+ (M+N (M+H (M+H	Na)+2 Na)+2 Na)+[-H2O] H4)+[-H2O] H4)+[-H2O] Na)+2 H4)+[-H2O]	525 5
0 1.4C. MS Spectru <i>n/z</i> 147.0556 231.1375 248.1365 248.1648 249.1479 266.1662 271.135	Artgr/Jail Artgr/Jail 150 175 m Peak List Calc m/z 147.0598 231.138 248.1407 248.1645 249.1485 266.1751 271.1305 271.1305	Diff(ppm) -28.94 -28.94 -200 -28.94 -2.05 -17.04 1.27 -2.45 -33.46 16.68	z 2 1 1 1	Abund 187 35872 1181 584 70577 1339 608	Formula C15 H20 Na2 O3 C15 H20 Na2 O3 C15 H20 O2 C15 H20 O3 C15 H20 O3 C15 H21 O3 C15 H21 O3 C15 H21 O3 C15 H21 O3 C15 H20 N03 C15 H21 O3 C15 H21 O3 C15 H20 N03 C15 H20 N03 C15 H20 N03 C15 H20 N03	100 425 m/z) Ion (M+2 (M+H M*+ (M+N (M+H (M+N (M+N (M+N)	Na)+2 Na)+2 Na)+2 H4)+[-H2O] H4)+[-H2O])+ H4)+ H4)+ H4)+	525 5
VI 147.0556 231.1375 248.1365 248.1648 249.1479 266.1662 271.135 287.1254	Artificial 150 175 m Peak List Calc m/z 147.0598 231.138 248.1407 248.1645 249.1485 266.1751 271.1305 287.1044	Diff(ppm) -28.94 -28.94 -2.05 -17.04 1.27 -2.45 -33.46 16.68 73.06	z 2 1 1 1 1 1	Abund 275 300 Counts Abund 187 35872 1181 584 70577 1339 608 10956	International and the second	100 425 m/z) 425 (M+2 (M+4 (M+4) (M+4) (M+1) (M+1) (M+1) (M+1) (M+1)	Na)+2 Na)+2 Na)+2 H4)+[-H2O] H4)+[-H2O]))+ H4)+ H4)+ h4)+ h4)+ h4)+	525 5
01-1812- MS Spectru <i>m/z</i> 147.0556 231.1375 248.1648 249.1479 266.1662 271.135 287.1254 497.2827	Artsyliait Art 150 175 m Peak List Calc m/z 147.0598 231.138 248.1407 248.1645 249.1485 266.1751 271.1305 287.1044 497.2898 289.289	Diff(ppm) -28.94 -28.94 -2.05 -17.04 1.27 -2.45 -33.46 16.68 73.06 -14.3	z 2 1 1 1 1 1 1	Abund 275 300 Counts 187 35872 1181 584 70577 1339 608 10956 448	International content of the second state International state <thinte< td=""><td>Ion 425 M/2) Ion (M+2) (M+2) (M+4) (M+4) (M+4) (M+4)</td><td>Na)+2 Na)+2 Na)+2 H4)+[-H2O] H4)+[-H2O] H4)+ H4)+ h4)+ H)+</td><td>525 5</td></thinte<>	Ion 425 M/2) Ion (M+2) (M+2) (M+4) (M+4) (M+4) (M+4)	Na)+2 Na)+2 Na)+2 H4)+[-H2O] H4)+[-H2O] H4)+ H4)+ h4)+ H)+	525 5

Figure S7: MS spectrum of compound 1

Figure S8: UV spectrum of compound 1

Figure S9: CD spectrum of compound 1

Figure S10: ¹H NMR spectrum of compound **2** in CD₃OD (400 MHz)

Figure S11: ¹³C NMR spectrum of compound **2** in CD₃OD (400 MHz)

Figure S12: HSQC spectrum of compound 2 in CD₃OD (400 MHz)

Figure S13: HMBC spectrum of compound 2 in CD₃OD (400 MHz)

Figure S14: COSY spectrum of compound 2 in CD₃OD (400 MHz)

Figure S15: NOESY spectrum of compound 2 in CD₃OD (400 MHz)

Figure S16: MS spectrum of compound 2

Figure S18: Experimental ECD spectrum of compound 2

Figure S19: ¹H NMR spectrum of compound **3** in CDCl₃ (800 MHz)

Figure S20: ¹³C NMR spectrum of compound **3** in CDCl₃ (800 MHz)

Figure S21: HSQC spectrum of compound **3** in CDCl₃ (800 MHz)

Figure S22: HMBC spectrum of compound **3** in CDCl₃ (800 MHz)

Figure S23: COSY spectrum of compound **3** in CDCl₃ (800 MHz)

Figure S24: NOESY spectrum of compound 3 in CDCl₃ (800 MHz)

x10 5 C	Cpd 1: C15H24	03: +ESI Scar	1 (0.	158, 0.2	58-0.324 min, 6 sca	ns) Frag=100.	0V CO-13-5	-8_3.d Si
	235.1682							
1.2	(M+H)+[-H2O]							
1-	1.11.1.11							
0.8-	253.17	90						
0.0	(M+H)	+						
0.6-				1				
0.4 -	1 1 1							
0.2		275.1593					504.36 (2M+NH4)-	571 +[_H2O]
0	and the state	(M+Na)+		h			(2101114)	-[-1120]
IS Spect	220 240 26	0 280 300	32	0 340 Counts	360 380 400 42 vs. Mass-to-Charge (20 440 460 m/z)	480 500	520 54
1S Spect	220 240 26	0 280 300	32	0 340 Counts	360 380 400 42 vs. Mass-to-Charge (20 440 460 m/z)	480 500	520 54
IS Spect <i>n/z</i> 235.16	220 240 26 trum Peak List <i>Calc m/z</i> 582 235.169	0 280 300 t Diff(ppm) 3 -4.63	32 z	0 340 Counts Abund 132643	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 O2	20 440 460 m/z)	480 500 [-H20]	520 54
MS Spect n/z 235.16 236.17	220 240 26 trum Peak List Calc m/z 582 235.169 721 236.172	io 280 300 t Diff(ppm) 3 -4.63 7 -2.18 -2.18 -2.18	32 z	0 340 Counts Abund 132643 21277	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 O2 C15 H23 O2	20 440 460 m/z) Ion (M+H)+ (M+H)+	480 500 [-H2O] [-H2O]	520 54
MS Spect m/z 235.16 236.17 253.1	220 240 26 trum Peak List Calc m/z 582 235.169 721 236.172 179 253.179	io 280 300 t Diff(ppm) 3 -4.63 3 -4.63 -2.18 -3.33	32 z	0 340 Counts Abund 132643 21277 69994	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 02 C15 H23 02 C15 H25 03	20 440 460 m/z) Ion (M+H)+ (M+H)+ (M+H)+	480 500 [-H2O] [-H2O]	520 54
MS Spect m/z 235.16 236.17 253.1 254.18	220 240 26 trum Peak List Calc m/z 235.169 721 236.172 179 253.179 325 254.183 254.183 183.183	0 280 300 t Diff(ppm) 3 -4.63 7 -2.18 8 -3.33 2 -2.86	32 z	0 340 Counts v 132643 21277 69994 11933	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 02 C15 H23 02 C15 H25 03 C15 H25 03	20 440 460 m/z) Ion (M+H)+ (M+H)+ (M+H)+ (M+H)+	480 500 [-H2O] [-H2O]	520 54
MS Spect m/z 235.16 236.17 253.1 253.1 254.18 270.20	220 240 26 trum Peak List Calc m/z 235.169 582 235.169 721 236.172 179 253.179 325 254.183 037 270.206	0 280 300 Diff(ppm) 3 -4.63 7 -2.18 8 -3.33 2 -2.86 4 -9.85	32 z 1 1 1	0 340 Counts v 132643 21277 69994 11933 2785	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 02 C15 H23 02 C15 H25 03 C15 H25 03 C15 H25 03 C15 H28 N 03	20 440 460 m/z) Ion (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+NH4	480 500 [-H2O] [-H2O])+	520 54
MS Spect m/z 235.16 236.17 253.1 254.18 270.20 275.15	220 240 26 Calc m/z 582 235.169 721 236.172 179 253.179 325 254.183 037 270.206 593 275.1614	0 280 300 Diff(ppm) 3 -4.63 7 -2.18 8 -3.33 2 -2.86 4 -9.85 8 -8.98	32 z 1 1 1 1	Abund 132643 21277 69994 11933 2785 3833	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 02 C15 H23 02 C15 H25 03 C15 H25 03 C15 H25 03 C15 H28 N 03 C15 H24 Na 03	20 440 460 m/z) Ion (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+NH4 (M+NH4	480 500 [-H2O] [-H2O])+ +	520 54
MS Spect m/z 235.16 236.17 253.1 254.18 270.20 275.15 487.	220 240 26 Calc m/z 582 235.169 721 236.172 179 253.179 325 254.183 037 270.206 593 275.1614 .34 487.3414	0 280 300 Diff(ppm) 3 -4.63 7 -2.18 8 -3.33 2 -2.86 4 -9.85 8 -8.98 8 -3.77	32 z 1 1 1 1 1	Abund 132643 21277 69994 11933 2785 3833 643	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 02 C15 H23 02 C15 H25 03 C15 H25 03 C15 H25 03 C15 H28 N 03 C15 H24 Na 03 C30 H47 05	Ion (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+N+4) (M+1) (M+1) <t< td=""><td>480 500 [-H2O] [-H2O])+ + +[-H2O]</td><td>520 54</td></t<>	480 500 [-H2O] [-H2O])+ + +[-H2O]	520 54
MS Spect m/z 235.16 236.17 253.1 254.18 270.20 275.15 487. 504.36	220 240 26 Calc m/z 582 235.169 721 236.172 179 253.179 325 254.183 037 270.206 593 275.161 .34 487.3411 571 504.368	0 280 300 biff(ppm) 3 -4.63 3 -4.63 -2.18 8 -3.33 -2.18 2 -2.86 -9.85 8 -8.98 -8.98 8 -3.77 -2.5	32 z 1 1 1 1 1 1 1	Abund 132643 21277 69994 11933 2785 3833 643 9511	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 O2 C15 H23 O2 C15 H25 O3 C15 H25 O3 C15 H25 O3 C15 H28 N O3 C15 H24 Na O3 C30 H47 O5 C30 H50 N O5	Ion (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+N+4) (2M+N+1) (2M+N+1)	480 500 [-H2O] [-H2O])+ + +[-H2O] 4)+[-H2O]	520 54
MS Spect <i>m/z</i> 235.16 236.17 253.1 254.18 270.20 275.15 487. 504.36 509.	220 240 26 Calc m/z 582 235.169 721 236.172 179 253.179 325 254.183 037 270.206 593 275.161 .34 487.341 571 504.368 .32 509.323	0 280 300 biff(ppm) 3 -4.63 3 -4.63 -2.18 8 -3.33 -2.18 2 -2.86 -9.85 8 -8.98 -8.98 8 -3.77 -2.5 7 -7.32 -7.32	32 z 1 1 1 1 1 1 1 1 1	0 340 Counts v 132643 21277 69994 11933 2785 3833 643 9511 2150	360 380 400 42 vs. Mass-to-Charge (Formula C15 H23 O2 C15 H23 O2 C15 H25 O3 C15 H25 O3 C15 H25 O3 C15 H28 N O3 C15 H24 Na O3 C30 H47 O5 C30 H50 N O5 C30 H46 Na O5	Ion (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+N+4) (2M+N+4) (2M+N+4) (2M+N+4) (2M+N+4)	480 500 [-H2O] [-H2O])+ + +[-H2O] 4)+[-H2O])+[-H2O]	520 54

Figure S25: MS spectrum of compound 3

Figure S27: Experimental ECD spectrum of compound 3

Figure S28: ¹H NMR spectrum of compound **4** in CDCl₃ (500 MHz)

Figure S29: ¹³C NMR spectrum of compound 4 in CDCl₃ (500 MHz)

Figure S31: HMBC spectrum of compound 4 in CDCl₃ (500 MHz)

Figure S32: COSY spectrum of compound 4 in CDCl₃ (500 MHz)

Figure S33: NOESY spectrum of compound 4 in CDCl₃ (500 MHz)

m/z	Calc m/z	Diff(ppm)	Z	Abund	Formula	Ion
219.1744	219.1743	0.07	1	42232	C15 H23 O	(M+H)+[-H2O]
220.1776	220.1777	-0.6	1	7100	C15 H23 O	(M+H)+[-H2O]
236.1775	236.1771	1.84		87	C15 H24 O2	M*+
237.185	237.1849	0.4		88199	C15 H25 O2	(M+H)+
238.1889	238.1883	2.36		14826	C15 H25 O2	(M+H)+
259.1671	259.1669	1.02	1	11999	C15 H24 Na O2	(M+Na)+
275.1412	275.1408	1.51	1	934	C15 H24 K O2	(M+K)+
472.3757	472.3785	-5.93	1	98	C30 H50 N O3	(2M+NH4)+[-H2O]
495.344	495.3445	-0.89	1	1806	C30 H48 Na O4	(2M+Na)+
511.3188	511.3184	0.68	1	56	C30 H48 K O4	(2M+K)+

Figure S34: MS spectrum of compound 4

Figure S35: UV spectrum of compound 4

Figure S36: Experimental ECD spectrum of compound 4

Figure S37: ¹H NMR spectrum of compound **5** in CDCl₃ (800 MHz)

Figure S38: ¹³C NMR spectrum of compound **5** in CDCl₃ (800 MHz)

Figure S39: HSQC spectrum of compound 5 in CDCl₃ (800 MHz)

Figure S40: HMBC spectrum of compound 5 in CDCl₃ (800 MHz)

Figure S41: COSY spectrum of compound 5 in CDCl₃ (800 MHz)

Figure S42: NOESY spectrum of compound 5 in CDCl₃ (800 MHz)

Figure S43: MS spectrum of compound 5

Figure S45: Experimental ECD spectrum of compound 5

Figure S46: ¹H NMR spectrum of compound **6** in CDCl₃ (800 MHz)

Figure S47: ¹³C NMR spectrum of compound 6 in CDCl₃ (800 MHz)

Figure S48: HSQC spectrum of compound 6 in CDCl₃ (800 MHz)

Figure S49: HMBC spectrum of compound 6 in CDCl₃ (800 MHz)

Figure S50: COSY spectrum of compound 6 in CDCl₃ (800 MHz)

Figure S51: NOESY spectrum of compound 6 in CDCl₃ (800 MHz)

Figure S52: MS spectrum of compound 6

Figure S53: UV spectrum of compound 6

Figure S54: Experimental ECD spectrum of compound 6

Figure S56: ¹³C NMR spectrum of compound 7 in CDCl₃ (800 MHz)

Figure S57: HSQC spectrum of compound 7 in CDCl₃ (800 MHz)

Figure S58: HMBC spectrum of compound 7 in CDCl₃ (800 MHz)

Figure S59: COSY spectrum of compound 7 in CDCl₃ (800 MHz)

Figure S60: NOESY spectrum of compound 7 in CDCl₃ (800 MHz)

Qualitative Compound Report

Figure S61: MS spectrum of compound 7

Figure S62: UV spectrum of compound 7

	B3-LYP/6-31G(d,p) Gibbs free energy (298.15 K)			
Conformers	Calculated Energy	Relative Energy	Boltzmann population	
	(Hartree)	(kcal/mol)	(%)	
1-1	-885.219441	0.00	10.1	
1-2	-885.220566	-0.71	33.2	
1-3	-885.218251	0.75	2.9	
1-4	-885.220522	-0.68	31.7	
1-5	-885.217545	1.19	1.4	
1-6	-885.219257	0.12	8.3	
1-7	-885.217878	0.98	1.9	
1-8	-885.217658	1.12	1.5	
1-9	-885.219021	0.26	6.5	
1-10	-885.215936	2.20	0.2	
1-11	-885.215727	2.33	0.2	
1-12	-885.217186	1.42	0.9	
1-13	-885.214478	3.11	0.1	
1-14	-885.217365	1.30	1.1	

Table S1. Calculated energy and Boltzmann distribution of compound 1 conformers

Table S2. Calculated energy and Boltzmann distribution of compound 2 conformers

	B3-LYP/6-3	GIG(d,p) Gibbs free energy	gy (298.15 K)
Conformers	Calculated Energy	Relative Energy	Boltzmann population
	(Hartree)	(kcal/mol)	(%)
2-1	-997.300119	0.00	41.2
2-2	-997.300454	-0.21	58.8

	B3-LYP/6	5-31G(d,p) Gibbs free ene	rgy (298.15 K)
Conformers	Calculated Energy	Relative Energy	Boltzmann population
	(Hartree)	(kcal/mol)	(%)
3-1	-811.191694	0.00	6.3
3-2	-811.192087	-0.25	9.6
3-3	-811.191096	0.38	3.4
3-4	-811.192485	-0.50	14.6
3-5	-811.192292	-0.38	11.9
3-6	-811.191537	0.10	5.4
3-7	-811.192803	-0.70	20.5
3-8	-811.193014	-0.83	25.6
3-9	-811.187355	2.72	0.1
3-10	-811.190739	0.60	2.3
3-11	-811.188199	2.19	0.2
3-12	-811.186854	3.04	0.00
3-13	-811.186101	3.51	0.00
3-14	-811.186448	3.29	0.00
3-15	-811.187265	2.78	0.01

Table S3. Calculated energy and Boltzmann distribution of compound 3 conformers

Table S4. Calculated energy and Boltzmann distribution of compound 4 conformers

B3-LYP/6-31G(d,p) Gibbs free energy (298.15 K)				
Calculated Energy				
(Hartree)	Relative Energy (kcal/mol)	Boltzmann population (%)		
-736.042562	0.00	56.4		
-736.042200	0.23	38.5		
-736.040131	1.53	4.3		
-736.038480	2.56	0.7		
-736.036437	3.84	0.1		
	B3-LY Calculated Energy (Hartree) -736.042562 -736.042200 -736.040131 -736.038480 -736.036437	B3-LYP/6-31G(d,p) Gibbs free energy Calculated Energy (Hartree) Relative Energy (kcal/mol) -736.042562 0.00 -736.042200 0.23 -736.040131 1.53 -736.038480 2.56 -736.036437 3.84		

	B3-LYP/6-3	G1G(d,p) Gibbs free energ	gy (298.15 K)
Conformers	Calculated Energy	Relative Energy	Boltzmann population
	(Hartree)	(kcal/mol)	(%)
5-1	-618.1680236	0.00	46.3
5-2	-618.1634657	2.86	0.4
5-3	-618.1639011	2.59	0.6
5-4	-618.1650828	1.85	2.1
5-5	-618.1631341	3.07	0.3
5-6	-618.1631648	3.05	0.3
5-7	-618.1680278	0.00	46.6
5-8	-618.1613847	4.17	0.0
5-9	-618.1603176	4.84	0.0
5-10	-618.1650594	1.86	2.0
5-11	-618.1632614	2.99	0.3
5-12	-618.1645279	2.19	1.1

Table S5. Calculated energy and Boltzmann distribution of compound 5 conformers

Table S6. Calculated energy and Boltzmann distribution of compound 6 conformers

	B3-LYP/6-31G(d,p) Gibbs free energy (298.15 K)				
Conformers	Calculated Energy	Relative Energy	Boltzmann population		
	(Hartree)	(kcal/mol)	(%)		
6-1	-578.896092	0.00	86.3		
6-2	-578.893187	1.82	4.0		
6-3	-578.893831	1.42	7.9		
6-4	-578.891596	2.82	0.7		
6-5	-578.889059	4.41	0.1		
6-6	-578.889994	3.83	0.1		
6-7	-578.891598	2.82	0.7		
6-8	-578.889727	3.99	0.1		
6-9	-578.889340	4.24	0.1		

Empirical formula	$C_{25}H_{34}O_5$
Formula weight	414.52
Temperature/K	99.8(7)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.0589(2)
b/Å	14.2921(3)
c/Å	15.1181(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2173.43(8)
Ζ	4
$\rho_{calc}g/cm^3$	1.267
μ/mm^{-1}	0.697
F(000)	896.0
Crystal size/mm ³	$0.15\times0.04\times0.02$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.514 to 153.356
Index ranges	$\text{-}12 \leq h \leq 12, \text{-}17 \leq k \leq 15, \text{-}19 \leq l \leq 19$
Reflections collected	21475
Independent reflections	4530 [$R_{int} = 0.0390, R_{sigma} = 0.0242$]
Data/restraints/parameters	4530/0/280
Goodness-of-fit on F ²	1.067
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0369, wR_2 = 0.0976$
Final R indexes [all data]	$R_1 = 0.0382, wR_2 = 0.0987$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.24
Flack parameter	-0.01(8)

 Table S7. Crystal data and structure refinement for 7