Synergetic and advanced isotherm investigation for the enhancement influence of zeolitization and β -cyclodextrin hybridization on the retention efficiency of U (VI) ions by diatomite

Ashour M. Ahmed^{a,b*}, Islam Saad ^c, M. Abdel Rafea^a, Mostafa R. Abukhadra^{*d,e}

Corresponding author*.Tel: +2001288447189. E-mail: Abukhadra89@Science.bsu.edu.eg (M.R.A)

Table.S1. Nonlinear equations of kinetic, classic isotherm, and advanced isotherm models

Kinetic models		
Model	Equation	Parameters
Pseudo-first-order	$Q_t = Q_e \left(1 - e^{-k_1 \cdot t}\right)$	$Q_t \ (mg/g)$ is the adsorbed ions at time (t), and K_1 is the rate constant of the first-order adsorption (1/min)
Pseudo-second-order	$Q_t = \frac{Q_e^2 k_2 t}{1 + Q_e k_2 t}$	Qe is the quantity of adsorbed ions after equilibration (mg/g), and K_2 is the model rate constant (g/mg min).
	Classic Isotherm mo	dels
Model	Equation	Parameters
Langmuir	$Q_e = \frac{Q_{max} bC_e}{(1 + bC_e)}$	C_e is the rest ions concentrations (mg/L), Q_{max} is the theoritical maximum adsorption capacity (mg/g), and <i>b</i> is the Langmuir constant (L/mg)
Freundlich	$Q_e = K_f C_e^{1/n}$	K_{F} (mg/g) is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities
Dubinin–Radushkevich	$Q_e = Q_m e^{-\beta \varepsilon^2}$	β (mol²/KJ²) is the D-R constant, ϵ (KJ²/mol²) is the polanyil potential, and Q_m is the adsorption capacity (mg/g)
	Advanced isotherm m	odels
Model	Equation	Parameters
Monolayer model with one	$Q = nN_{o} = \frac{nN_{M}}{2} = \frac{Q_{o}}{2}$	Q is the adsorbed quantities in mg/g
energy site (Model 1)	$Q = nN_o = \frac{nN_M}{1 + (\frac{C1/2}{C})^n} = \frac{Q_o}{1 + (\frac{C1/2}{C})^n}$	n is the number of adsorbed ion per site
		Nm is the density of the effective receptor sites (mg/g)
Monolayer model with two energy sites (Model 2)	$Q = \frac{n_1 N_{1M}}{1 + \left(\frac{C_1}{C}\right)^{n_1}} + \frac{n_2 N_{2M}}{1 + \left(\frac{C_2}{C}\right)^{n_2}}$	$Q_{\scriptscriptstyle 0}$ is the adsorption capacity at the saturation state in mg/g
Double layer model with one energy site (Model 3)		C1/2 is the concentration of the ions at half saturation stage in $\mbox{mg/L}$
	$Q = Q_o \frac{\left(\frac{L}{C1/2}\right)^n + 2\left(\frac{L}{C1/2}\right)^{2n}}{1 + \left(\frac{C}{C1/2}\right)^n + \left(\frac{C}{C1/2}\right)^{2n}}$	C1 and C2 are the concentrations of the ions at the half saturation stage for the first active sites and the second active sites, respectively
Double layer model with two energy sites (Model 3)	$Q = Q_0 \frac{(\frac{C}{C1})^n + 2(\frac{C}{C2})^{2n}}{1 + (\frac{C}{C1})^n + (\frac{C}{C2})^{2n}}$	n1 and n2 are the adsorbed ions per site for the first active sites and the second active sites, respectively
	$Q = Q_0 \frac{1}{1 + (\frac{C}{C1})^n + (\frac{C}{C2})^{2n}}$	

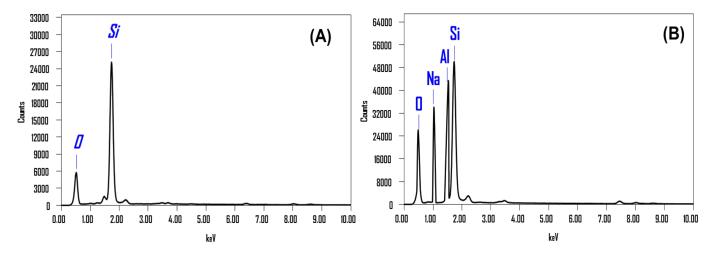


Fig.S1. EDX spectra of diatomite (A) and zeolitized diatomite (B)