Kinetic and reactivity of gas-phase reaction of acyclic dienes with

hydroxyl radical in the 273-318 K temperature range

Chenyang Xue^{a,b}, Xinmiao Xu^{b,c}, Han Lyu^d, Yunfeng Li^e, Yangang Ren^{b,c*}, Jinhe Wang^d, Yujing Mu^{b,c}, Abdelwahid Mellouki^{f,g}, Zongzheng Yang^{a*}

^a College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China

^b Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences; Beijing 100085, China

^cCollege of Resources and Environment, University of Chinese Academy of Sciences; Beijing 100049, China

^d School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China

^e School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

^f Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco

^g Institut de Combustion Aérothermique Réactivité et Environnement/OSUC-CNRS, 45071 Orléans Cedex 2, France

* Corresponding to: yzz320@tust.edu.cn (Zongzheng Yang) (Zongzheng Yang); ygren@rcees.ac.cn (Yangang Ren)

Fig S1. Example of plots of reactant consumption versus reaction time in the case of photolysis of hydrogen peroxide, the error bar was estimated from the uncertainty of GC-PID as 5%.

Fig S2. Eyring plots showing temperature dependence behavior of the reaction of 3M13PD, 14HD and 12PD with •OH.

Fig S3. Plot of Potential energy surface (PES) for the addition reaction of 1,2pentadiene (a), 1,3-pentadiene (b) and 1,4-pentadiene (c) with •OH. The blue scheme represents the minimum energy path.

Diene			k _{diana}	$k_{diene_ref}{}^{\mathrm{b}}$	$k_{ m av}{}^{ m c}$
	T(K)	Reference <u>k</u>		10^{-11} cm^3	10^{-11} cm^3
			Rref a	molecule ⁻¹ s ⁻¹	molecule ⁻¹ s ⁻¹
3M-1,3-PD	273	propene	4.77±0.36	14.66±3.14	15.01+1.25
		1,3-butadiene	2.01 ± 0.08	15.35±3.13	15.01±1.25
	288	propene	5.87 ± 0.06	14.50±3.11	14.96+1.22
		1,3-butadiene	1.96 ± 0.01	14.34±3.17	14.80±1.22
	308	propene	6.33±0.06	15.77±3.16	
		1,3-butadiene	2.01 ± 0.02	12.77±2.56	13.96 ± 1.19
	318	propene	6.32±0.03	14.94 ± 3.00	
		1,3-butadiene	2.13 ± 0.01	12.92 ± 2.58	13.78 ± 1.18
1,4-HD	273	propene	4.09 ± 0.04	12.58±2.52	11 74 1 00
		1,3-butadiene	1.45 ± 0.02	11.09 ± 2.22	11./4±1.09
	283	propene	3.48 ± 0.04	10.02 ± 2.01	0.78+0.00
		1,3-butadiene	1.33 ± 0.01	9.56±1.92	9.78±0.99
	288	propene	3.70 ± 0.06	10.31 ± 2.07	0.67+0.00
		1,3-butadiene	1.31 ± 0.01	9.17±1.84	9.67±0.99
	308	propene	4.22 ± 0.04	10.52 ± 2.11	0.17+0.06
		1,3-butadiene	1.31 ± 0.01	8.32±1.67	9.1/±0.96
	318	propene	3.55 ± 0.03	$8.40{\pm}1.68$	7 72 + 0 99
		1,3-butadiene	1.20 ± 0.01	7.24±1.45	/./3±0.88
1,2-PD	273	propene	$1.74{\pm}0.12$	5.33±1.13	4.0(+0.72
		1,3-butadiene	0.61 ± 0.05	4.67±1.00	4.96±0.73
	283	propene	1.72 ± 0.03	4.94±1.00	4.91+0.70
		1,3-butadiene	0.65 ± 0.01	4.69 ± 0.94	4.81±0.70
	288	propene	1.63 ± 0.08	4.55±0.93	4.24+0.66
		1,3-butadiene	0.57 ± 0.03	4.00 ± 0.84	4.24±0.66
	308	propene	1.47 ± 0.02	3.65 ± 0.73	2 22 + 0 57
		1,3-butadiene	0.47 ± 0.01	2.96 ± 0.59	3.23±0.57
	318	propene	1.42 ± 0.02	3.56±0.71	2 12 10 50
		1,3-butadiene	$0.49{\pm}0.01$	3.06 ± 0.62	3.12±0.30

Table S1. Experimental conditions and reaction rate coefficients for 3M-1,3-PD, 1,4-HD and 1,2-PD with OH radicals at temperatures of 273-318 K.

^a k_{ref} extracted from Calvert, Jack G. et al. "The Mechanisms of Atmospheric Oxidation of the Alkenes." (2000)¹.

$$\sigma_{k} = \frac{k}{k_{ref}} k_{ref} \left(\frac{\sigma_{ref}}{k_{ref}} \right)^{2} + \left(\frac{\sigma_{k/k_{ref}}}{\frac{k}{k_{ref}}} \right)^{2}_{2}$$

^b The error was calculated as follows:

^c Weighted average³ $k_{av} = (w_{diene_refl} + w_{diene_ref2} + w_{diene_ref2} + \dots) / (w_{diene_ref1} + w_{diene_ref2} + \dots),$ where $w_{diene_ref1} = 1/\sigma_{diene_ref1}^2$, etc. The error, σ_{av} , was given by: $\sigma_{av} = (1/\sigma_{diene_ref1} + 1/\sigma_{diene_ref2} + \dots)^{-0.5}$.

Diene	T range (K)	Arrhenius parameters		Eyring parameters		
		E _a (kJ mol⁻¹)	ln A	$\Delta \mathrm{H}^{\ddagger}$ (kJ mol ⁻¹)	$\Delta \mathrm{S}^{\ddagger}$ (JK ⁻¹ mol ⁻¹)	
3M13PD	273-318	-1.44	-23.24	-3.91	-446.39	
14HD	273-318	-5.54	-25.35	-7.99	-463.88	
12PD	273-318	-8.63	-27.51	-11.09	-481.84	

Table S2. Summary of activation parameters obtained with the Arrhenius and Eyring equations

		$k_{exp}{}^{\mathrm{a}}$			k_{exp}^{a}	k_{cal} °	<i>k</i> _{pred}
Diene	Structure	10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻	Mono-alkene	Structure	10^{-11} cm^3	10^{-11} cm^3	10^{-11} cm^3
	Structure				molecule ⁻¹	molecule ⁻¹	molecule-
		1			s ⁻¹	s ⁻¹	¹ s ⁻¹
1.2 harts diana	C - C C - C	6.63±1.00	1-butene	C=CCC	3.10±0.63	(20	6 07d
1,5-butadiene	L-LL-L		1-butene	C=CCC	3.10±0.63	0.20	0.97
isopropa	C - C(C)C - C	10.00+1.49	3-methyl-1-butene	C=CC(C)C	3.18 ± 0.64	0.20	10.43 ^d
isopiene	0-0(0)0-0	10.00±1.48	2-methyl-1-butene	C=C(C)CC	6.10±1.83	9.20	
(7) 1.2 mentadiana	C/C-C/C-C	10.70±2.68	1-pentene	C=CCCC	3.22 ± 0.48	0.72	10.92 ^d
(Z)-1,5-pentaulene			2-pentene	CC=CCC	6.50 ± 2.00	9.12	
(2E) manta 12 diana	C/C-C/C-C	11.60±4.35	1-pentene	C=CCCC	3.22 ± 0.48	9.72	10.92 ^d
(SE)-penta-1,S-diene	U/U=U/U=U		2-pentene	CC=CCC	6.50 ± 2.00		
	CC=CC(=C)C	13.60±4.10	2-methyl-1-pentene	C=C(C)CCC	6.14±1.23	12.24	13.75 ^d
2-methyl-1,5-pentadiene			4-methyl-2-pentene	CC=CC(C)C	6.10±1.83		
		11.20±3.40	1-hexene	C=CCCCC	3.70±1.11	9.97	11.20 ^d
(SE)-nexa-1,S-diene	U/U-U/U-U		3-hexene	CCC=CCC	6.27±0.66		
$(7/E) 2 4 1 \dots 1$		13.40±4.02	2-hexene	CC=CCCC	6.08±1.22	12.16	13.66 ^d
(Z/E)-2,4-hexadiene			2-hexene	CC=CCCC	6.08±1.22		
1.4 4.1		5 41 + 1 00	1-pentene	C=CCCC	3.22 ± 0.48	6.45	5.81 ^e
1,4-pentadiene	C=CCC=C	5.41±1.08	1-pentene	C=CCCC	3.22 ± 0.48		
(E)-1,4-hexadiene		9.10±2.73	1-hexene	C=CCCCC	3.70±1.11	9.78	8.81°
	C = C C / C = C / C		2-hexene	CC=CCCC	6.08±1.22		
1,5-hexadiene		6.20±1.24	1-hexene	C=CCCCC	3.70 ± 1.11	7.4	6.67 ^e
	C=CCCC=C		1-hexene	C=CCCCC	3.70±1.11		

Table S3. The rate constants for the reaction of OH radicals with dienes and corresponding mono-alkenes are summarized based on a database at 298K and 1 atm and their structural formulae. The new SAR calculated values are listed at the end.

$(7/\Gamma)$ 1.4 have diagonal	C-CCC-CC	0.12+0.62	1-hexene	C=CCCCC	3.70 ± 1.11	0.70	0.01e
(Z/E)-1,4-nexadiene °		9.13±0.02	2-hexene	CC=CCCC	6.08±1.22	9.78	8.810

^a k_{exp} extracted from M. R. McGillen. et al. "Database for the kinetics of the gas-phase atmospheric reactions of organic compounds." (2020)⁴.

^b Rate constants from this work.

^c The rate coefficients of conjugated diene and isolated diene reaction wih OH radical by summing up the rate coefficients of corresponding mono-alkene that we derived by converting one C=C bond to a C-C bond, e.g.,1,4-hexadiene \rightarrow 1-hexene + 2-hexene. In this way, $k_{cal_{1,4-hexadiene}}=k_{1-hexene}+k_{2-hexene}$. ^d and ^e The k_{pred} is obtained by multiplying k_{cal} by the factors of 0.89 and 1.11, respectively, derived from Fig 5. for conjugated and isolated dienes.

Table S4. The number of carbon atoms and the rate coefficients for the reaction with OH of a series of straight-chain dienes including cumulated diene (C=C=C), conjugated diene (C=C-C=C), and isolated diene (C=C-(C)_n-C=C, $n \ge 1$).

Diana	Noushan of each on stores	Rate coefficients (cm ³ molecule ⁻¹ s ⁻¹) ^a	
Diene	Number of carbon atoms	10^{-11} cm ³ molecule ⁻¹ s ⁻¹	
C=C=C			
Propadiene	3	$0.98{\pm}0.20$	
1,2-butadiene	4	$2.60{\pm}0.80$	
1,2-pentadiene	5	3.60±1.10	
C=C-C=C			
1,3-butadiene	4	6.63±1.00	
(Z)-1,3-pentadiene	5	$10.70{\pm}2.68$	
(3E)-penta-1,3-diene	5	11.60±4.35	
(3E)-hexa-1,3-diene	6	11.20 ± 3.40	
(Z/E)-2,4-hexadiene	6	$13.40{\pm}4.02$	
$C=C-(C)_n-C=C$			
1,4-pentadiene	5	5.41±1.08	
(E)-1,4-hexadiene	6	9.10±2.73	
1,5-hexadiene	6	6.20±1.24	

^a The rate coefficients of dienes reacting with the OH extracted from M. R. McGillen. et al. "Database for the kinetics of the gas-phase atmospheric reactions of organic compounds." (2020)⁴

	s on me arener		
Diene	Structure	k_{exp}^{a} 10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻¹	alkyl groups on the base structures ^c
C=C=C			
Pronadiene	C = C = C	0 98+0 20	C=C=C
1.2 butadiana		2.60 ± 0.20	
		2.00±0.80	-СП3
3-methyl-1,2- butadiene	C=C=C(C)C	5.70±1.71	2*-CH ₃
1,2-pentadiene	CCC=C=C	3.34±0.40 ^b	-CH ₂ CH ₃
0000			
1,3-butadiene	C=CC=C	6.63±1.00	C=C-C=C
isoprene	C=C(C)C=C	10.00 ± 1.48	-CH ₃
(Z)-1,3-pentadiene	C/C=C\C=C	10.70±2.68	-CH ₃
(3E)-penta-1,3-		11 (0) 4 05	
diene	C/C=C/C=C	11.60±4.35	-CH ₃
4-methyl-1,3- pentadiene	C=CC=C(C)C	13.10±3.93	2*-CH ₃
2,3-dimethyl-1,3- butadiene	CC(=C)C(=C)C	12.20±3.70	2*-CH ₃
2-methyl-1,3- pentadiene	CC=CC(=C)C	13.60±4.10	2*-CH ₃
(3E)-hexa-1,3- diene	CC/C=C/C=C	11.20±3.40	-CH ₂ CH ₃
(Z/E)-2,4- hexadiene	CC=CC=CC	13.40±4.02	2*-CH ₃
3-methyl-1,3- pentadiene	C=CC(C)=CC	15.09±0.72 ^b	2*-CH ₃
2,5-dimethyl-2,4- hexadiene	CC(=CC=C(C)C) C	2.10±0.63	4*-CH ₃
C=C-(C) _n -C=C			
1,4-pentadiene	C=CCC=C	5.41±1.08	C=C-C-C=C
2-methyl-1,4- pentadiene	C=CCC(=C)C	7.90±2.40	-CH ₃
(E)-1,4-hexadiene	C=CC/C=C/C	9.10±2.73	-CH ₃
1,5-hexadiene	C=CCCC=C	6.20±1.24	C=C-C-C-C=C

Table S5. The relationship of rate coefficients of dienes reaction with OH radical vs the number of alkyl groups on the diene.

(Z/E)-1,4-	C - C C C - C C	0 12+0 62 b	СЦ
hexadiene		9.13±0.02	-C113
2,5-dimethyl-1,5-	CC(=C)CCC(=C	12 00+3 60	2* CU
hexadiene)C	12.00±3.00	2 -СП3

^a k_{exp} extracted from M. R. McGillen. et al. "Database for the kinetics of the gas-phase atmospheric reactions of organic compounds." (2020)⁴.

^b Rate constants from this work.