Supporting Information (SI)

Iodine-PEG as Unique Combination for the Mild and Efficient Metal-Free Synthesis of Flavonoids Through Iodonium-Triiodide Ion-Pair Complexation

Naveen Kumar¹, Navneet Sharma², Vijay Kumar¹, Vinay Kumar¹, Kailash Jangid^{1,3}, Bharti Devi¹, Ashish Ranjan Dwivedi^{1,4}, Kousik Giri², Rakesh Kumar¹ and Vinod Kumar^{1*}

¹Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India-151401.

²Department of computational sciences, Central University of Punjab, Bathinda, Punjab, India-151401.

³Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401.

⁴Gitam School of Pharmacy, Hyderabad, Telangana, 502329, India.

Corresponding Author:

*Dr. Vinod Kumar

Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India-151401.

E-mail: vpathania18@gmail.com; vinod.kumar@cup.edu.in

Phone No. +911642864214

Experimental

General Information

All the chemicals were purchased from Sigma Aldrich and were used as received. The compounds synthesized by the general procedure described below and were characterised by mass spectrometry and ¹H and ¹³C NMR spectra recorded on 600 MHz JEOL NMR spectrometer in either CDCl₃ or DMSO-d₆ with TMS as an internal reference at Central University of Punjab, Bathinda (¹H NMR: TMS at 0.00 ppm, CDCl₃ at 7.26 ppm, DMSO-d₆ at 2.5 ppm; ¹³C NMR: CDCl₃ at 77.16 ppm, DMSO-d₆ at 39.52 ppm). The spectroscopic data of all the synthesized compounds are consistent with the reported datas¹.

General Synthetic Procedure for (3a-3v)

A mixture of 2-Hydroxyacetophenone (1 equiv.), respective benzaldehyde (1 equiv.) and iodine (1 equiv.) was taken in a sealed tube in PEG-400 as solvent and heated at 140 °C for 4 to 7 hours. The completion of the reaction was checked by thin-layer chromatography. On completion of the reaction, it was cooled to room temperature, iodine was quenched by 10 % sodium thiosulphate solution and extracted with ethyl acetate. The crude product was purified on silica gel by column chromatography using pet. ether/ethyl acetate (3:1 to 6:1) as eluent to give the desired product (70-84 % yield).

Characteristic Data of the Products

2-phenyl-4H-chromon-4-one (3a).

Off-white solid, 76 % yield. M.pt.: 96-98 °C. ¹H NMR (600 MHz, CDCl₃) δ 6.84 (s, 1H), 7.41-7.44 (m, 1H), 7.51-7.55 (m, 3H), 7.58 (dd, J= 8.4, 1.2 Hz, 1H), 7.69-7.72 (m, 1H), 7.94 (dd, J= 7.8, 1.8 Hz, 2H), 8.24 (dd, J= 12.0, 6.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 107.6, 118.1, 124.0, 125.2, 125.7, 126.3, 129.0, 131.6, 131.8, 133.7, 156.3, 163.43, 178.4. MS (EI, m/z): 222.

2-(4-methoxyphenyl)-4H-chromen-4-one (3b).

A white solid, 74 % yield. M.pt.: 156-158 °C. ¹H NMR (600 MHz, CDCl₃) δ 3.89 (s, 3H), 6.75 (s, 1H), 7.03 (dd, J= 6.6, 1.8 Hz, 2H), 7.40-7-42 (m, 1H), 7.55 (dd, J= 8.4, 1.2 Hz, 1H), 7.67-7.70 (m, 1H), 7.89 (dd, J= 6.6, 1.8 Hz, 2H), 8.23 (dd, J= 8.4, 1.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.5, 106.2, 114.4, 117.9, 123.9, 124.0, 125.0, 125.6, 128.0, 133.5, 156.2, 162.4, 163.4, 178.4. MS (EI, m/z): 252.

2-(3,4-dimethoxyphenyl)-4H-chrome-4-one (3c).

A yellowish solid, 78 % yield. M.pt.: 150-152 °C. ¹H NMR (600 MHz, CDCl₃) δ 3.97 (s, 3H), 3.99 (s, 3H), 6.77 (s,1H), 7.00 (d, J= 8.4, 1H), 7.42 (dd, J= 15.0, 7.2 Hz, 2H), 7.57 (d, J= 8.4 Hz, 2H), 7.68-7.71 (m, 1H), 8.23 (dd, J= 7.8, 0.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 56.0, 56.1, 106.5, 108.8, 111.1, 118.0, 120.0, 123.9, 124.2, 125.1, 125.6, 133.6, 149.3, 152.0, 156.2, 163.3, 178.3. MS (EI, m/z): 282.

2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (3d).

A yellowish solid, 81 % yield. M.pt.: 174-176 °C. ¹H NMR (600 MHz, CDCl₃) δ 3.94 (s, 3H), 3.97 (s, 6H), 6.78 (s, 1H), 7.14 (s, 2H), 7.42-7.45 (m, 1H), 7.60 (dd, J= 8.4, 0.6 Hz, 1H), 7.72 (m, 1H),

8.24 (dd, J= 7.8, 1.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 56.3, 61.0, 103.6, 107.4, 118.0, 123.9, 125.3, 125.7, 127.0, 133.7, 141.2, 153.6, 156.2, 163.2, 178.4. MS (EI, m/z): 312.

2-(4-bromophenyl)-4H-chromen-4-one (3e)

Off-white solid, 71 % yield. M.pt.: 178-180 °C. ¹H NMR (600 MHz, CDCl₃) δ 6.81 (s, 1H), 7.44 (m, 1H), 7.57 (dd, J= 8.4, 0.6 Hz, 1H), 7.67 (dd, J= 6.6, 1.8 Hz, 2H), 7.70-7.73 (m, 1H), 7.80 (dd, J= 6.6, 1.8 Hz, 2H), 8.23 (dd, J= 7.8, 1.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 107.7, 118.0, 123.9, 125.4, 125.7, 126.3, 127.7, 130.7, 132.3, 133.9, 156.1, 162.3, 187.3. MS (EI, m/z): 300.

2-(3,4-dichlorophenyl)-4H-chromen-4-one (3f)

A yellowish solid, 76 % yield. M.pt.: 196-198 °C. ¹H NMR (600 MHz, CDCl₃) δ 6.59 (s, 1H), 7.36 (t, J= 7.8 Hz, 1H), 7.44-7.46 (m, 1H), 7.50-7.52 (m, 2H), 7.64 (dd, J= 7.8, 1.2 Hz, 1H), 7.70-7.73 (m, 1H), 8.26 (dd, J= 7.8, 1.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 113.1, 118.2, 123.8, 125.5, 125.8, 127.6, 128.9, 131.5, 132.5, 134.0, 134.1, 134.5, 156.5, 162.3, 178.0. MS (EI, m/z): 290.

2-(3-bromophenyl)-4H-chromen-4-one (3g).

A brownish solid, 78 % yield. M.pt.: 114-116 °C. ¹H NMR (600 MHz, CDCl₃) δ 6.79 (s, 1H), 7.40 (t, J= 7.8 Hz, 1H), 7.42-7.45 (m, 1H), 7.59 (dd, J=8.4, 1.2 Hz, 1H), 7.67 (ddd, J= 6.6, 1.2 Hz, 1H), 7.70-7.73 (m, 1H), 7.83 (ddd, J= 6.6, 1.2 Hz, 1H), 8.08 (t, J= 1.8 Hz, 1H), 8.23 (dd, J= 7.8, 1.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 108.2, 118.1, 123.2, 123.9, 124.8, 125.4, 125.7, 129.2, 130.5, 133.8, 134.0, 134.4, 156.2, 161.7, 178.2. MS (EI, m/z): 300.

4-(4-oxo-4H-chromen-2-yl)benzonitrile (3h).

Off white solid, 82 % yield. M.pt.: 218-220 °C. ¹H NMR (600 MHz, CDCl₃) δ 6.87 (s, 1H), 7.45-7.48 (m, 1H), 7.59 (d, J= 8.4 Hz, 1H), 7.73-7.76 (m, 1H), 7.84 (dd, J= 6.6, 1.8 Hz, 2H), 8.05 (dd, J= 6.6, 1.8 Hz, 2H), 8.25 (dd, J= 8.4, 1.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 109.2, 115.0, 117.9, 118.1, 123.9, 125.7, 125.9, 126.8, 132.8, 134.3, 135.9, 156.1, 160.9, 178.0. MS (EI, m/z): 247.

2-(4-isopropylphenyl)-4H-chromen-4-one (3i).

A brownish liquid, 81 % yield. ¹H NMR (600 MHz, CDCl₃) δ 1.30 (d, J= 7.2, 6H), 2.99 (h, J= 6.6 Hz, 1H), 6.80 (s, 1H), 7.38 (d, J= 8.4 Hz, 2H), 7.39-7.42 (m, 1H), 7.56 (d, J= 7.8 Hz, 1H), 7.67-7.70 (m, 1H), 7.86 (dd, J= 6.6, 1.8 Hz, 2H), 8.23 (dd, J= 7.8, 1.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 23.7, 34.1, 107.0, 118.0, 124.0, 125.1, 125.7, 126.4, 127.2, 129.3, 133.6, 153.0, 156.2, 163.6, 178.5. MS (EI, m/z): 264.

2-(4-hydroxyphenyl)-4H-chromen-4-one (3j).

A yellowish solid, 84 % yield. M.pt.: 268-270 °C. ¹H NMR (600 MHz, DMSO) δ 6.87 (s, 1H), 6.95 (d, J= 9.0 Hz, 2H), 7.49 (t, J= 7.2 Hz, 1H), 7.76 (d, J= 7.8 Hz, 1H), 7.80-7.83 (m, 1H), 7.98 (d, J= 8.4 Hz, 2H), 8.04 (dd, J= 8.4, 2.4 Hz, 1H), 10.31 (s, 1H); ¹³C NMR (150 MHz, DMSO) δ 104.7, 115.8, 118.2, 121.4, 123.2, 124.6, 125.2, 128.2, 133.9, 155.4, 160.8, 162.9, 176.7. MS (EI, m/z): 238.

2-(3-hydroxyphenyl)-4H-chromen-4-one (3k)

Off white solid, 79 % yield. M.pt.: 206-208 °C. ¹H NMR (600 MHz, DMSO) δ 6.94 (s, 1H), 7.03 (dd, J= 8.4, 2.4 Hz, 1H), 7.39 (t, J= 7.8 Hz, 1H), 7.46 (t, J= 1.8 Hz, 1H), 7.53 (dd, J= 15.6, 7.2 Hz, 2H), 7.78 (d, J= 8.4, 1H), 7.83-7.86 (m, 1H), 8.07 (dd, J= 7.8, 1.2 Hz, 1H), 9.91 (s, 1H); ¹³C NMR (150 MHz, DMSO) δ 106.8, 112.7, 117.1, 118.4, 118.7, 123.2, 124.7, 125.4, 130.1, 132.3, 134.2, 155.5, 157.8, 162.6, 176.9. MS (EI, m/z): 238.

2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one (3l).

A brownish solid, 82 % yield. M.pt.: 190-192 °C. ¹H NMR (600 MHz, DMSO) δ 3.98 (s, 3H), 6.73 (s, 1H), 7.03 (d, J= 8.4 Hz, 1H), 7.41 (s, 1H), 7.43 (dd, J= 7.8, 0.6 Hz, 1H), 7.48 (dd, J= 8.4, 2.4 Hz, 1H), 7.60 (d, J= 7.8 Hz, 1H), 7.69-7.72 (m, 1H), 8.17 (dd, J= 7.8, 1.2 Hz, 1H), 9.11 (s, 1H); ¹³C NMR (150 MHz, DMSO) δ 56.0, 105.6, 109.3, 115.8, 118.0, 120.3, 122.7, 123.7, 125.0, 125.2, 133.5, 147.9, 150.4, 156.0, 163.7, 178.0. MS (EI, m/z): 268.

2-(3-hydroxy-4-methoxyphenyl)-4H-chromen-4-one (3m).

A yellowish solid, 77 % yield. M.pt.: 148-150 °C. ¹H NMR (600 MHz, DMSO) δ 3.96 (s, 3H), 6.70 (s, 1H), 6.99 (dd, J= 6.0, 3.0 Hz, 1H), 7.42 (t, J= 7.2 Hz, 1H), 7.47-7.48 (m, 1H), 7.49 (s, 1H), 7.57 (d, J= 8.4 Hz, 1H), 7.70-7.72 (m, 1H), 8.18 (dd, J= 7.8, 1.2 Hz, 1H), 8.58 (s, 1H); ¹³C NMR (150 MHz, DMSO) δ 55.9, 106.0, 11.3, 113.0, 118.0, 118.5, 123.8, 124.2, 125.0, 125.3, 133.6, 146.8, 150.7, 156.1, 163.5, 178.1. MS (EI, m/z): 268.

2-(3-ethoxy-4-hydroxyphenyl)-4H-chromen-4-one (3n).

A yellow solid, 84 % yield. M.pt.: 150-152 °C. ¹H NMR (600 MHz, DMSO) δ 1.39 (t, J= 6.6 Hz, 3H), 4.18 (q, J= 7.2 Hz, 2H), 6.98 (t, 4.5 Hz, 2H), 7.47-7.50 (m, 1H), 7.59-7.61 (m, 2H), 7.77 (dd, J= 8.4, 0.6 Hz, 1H), 7.80-7.82 (m, 1H), 8.04 (dd, J= 7.8, 1.8 Hz, 1H), 9.84 (s, 1H); ¹³C NMR (150 MHz, DMSO) δ 14.6, 64.1, 105.0, 111.3, 115.7, 118.3, 120.1, 121.8, 123.2, 124.6, 125.1, 133.8, 147.1, 150.6, 155.5, 162.9, 176.8. MS (EI, m/z): 282.

2-(3,4-dihydroxyphenyl)-4H-chromen-4-one (3o).

A brown solid, 81 % yield. M.pt.: 242-244 °C. ¹H NMR (600 MHz, DMSO) δ 6.77 (s, 1H), 6.93 (d, J= 9.0 Hz, 1H), 7.47 (dt, J= 6.6, 1.8 Hz, 2H), 7.5 (d, J= 6.6 Hz, 1H), 7.73 (d, J= 7.8 Hz, 1H), 7.80-7.83 (m, 1H), 8.05 (dd, J= 7.8, 1.2 Hz, 1H), 9.44 (s, 1H), 9.86 (s, 1H); ¹³C NMR (150 MHz,

DMSO) δ 104.7, 113.3, 115.9, 118.1, 118.7, 121.8, 123.2, 124.6, 125.2, 133.9, 145.6, 149.3, 155.4, 136.1, 176.6. MS (EI, m/z): 254.

2-(thiophen-2-yl)-4H-chromen-4-one (3t).

A yellowish solid, 71% yield. M.pt.: 98-100 °C. ¹H NMR (600 MHz, CDCl₃) δ 6.70 (s, 1H), 7.18 (dd, J= 4.2, 1.2 Hz, 1H), 7.41 (t, J= 8.4 Hz, 1H), 7.52 (d, J= 9.0 Hz, 1H), 7.57 (dd, J= 4.2, 1.2 Hz, 1H), 7.67-7.69 (m, 1H), 7.72 (dd, J= 3.0, 1.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 106.2, 117.9, 124.0, 125.2, 125.7, 128.4, 128.5, 130.2, 133.74, 135.2, 155.9, 159.0, 177.8. MS (EI, m/z): 228.

2-(4-nitrophenyl)-4H-chromen-4-one (3u)

A yellowish solid, 74% yield. M.pt.: 244-246 °C. ¹H NMR (600 MHz, CDCl₃) δ 6.91 (s, 1H), 7.47 (t, J= 7.8 Hz, 1H), 7.61 (d, J= 8.4 Hz, 1H), 7.76 (t, J= 7.8 Hz, 1H), 8.12 (d, J= 8.4 Hz, 2H), 8.25 (d, J= 7.8 Hz, 1H), 8.39 (d, J= 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 109.6, 118.1, 123.9, 124.2, 125.7, 125.9, 127.2, 134.3, 137.6, 149.4, 156.2, 160.5, 177.9. MS (EI, m/z): 267.

2-(3,4-dihydroxyphenyl)-6-hydroxy-4H-chromen-4-one (3v)

A off white solid, 72% yield. ¹H NMR (600 MHz, CDCl₃) δ 6.67 (s, 1H), 6.90 (d, J= 9.0 Hz, 1H), 7.23 (dd, J= 6.0 Hz, 3.0 Hz, 1H), 7.31 (d, J= 3.0 Hz, 1H), 7.41-7.43 (m, 2H), 7.58 (d, J= 9.0 Hz,

1H), 9.39-9.96 (s, 3H, OH); ¹³C NMR (150 MHz, CDCl₃) δ 104.4, 108.1, 113.7, 116.5, 119.1, 120.0, 122.7, 123.2, 124.7, 146.2, 149.7, 155.2, 163.3, 177.2. MS (EI, m/z): 270.

Spectroscopic data of some isolated intermediates/side products

2-(4-nitrophenyl)-chroman-4-one

A yellowish solid, ¹H NMR (600 MHz, CDCl₃) δ 2.95 (dd, J= 13.2, 3.6 Hz, 1H), 3.02 (dd, J= 13.2, 3.6 Hz, 1H), 5.61 (dd, J= 9.6, 3.0 Hz, 1H), 7.09-7.11 (m, 2H), 7.55 (td, J= 7.2, 1.2 Hz, 1H), 7.68 (d, J= 9.0, 2H), 7.94 (dd, J= 6.0, 1.8 Hz, 1H), 8.30 (d, J= 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 44.6, 78.3, 118.0, 120.9, 122.2, 124.1, 126.8, 127.2, 136.5, 145.8, 148.0, 160.9, 190.6.

(E)-1-(2-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one

A yellowish solid, ¹H NMR (600 MHz, DMSO) δ 7.02 (dd, J= 6.0, 2.4 Hz, 2H), 7.58 (t, J= 7.2 Hz, 1H), 7.88 (d, J= 15.6 Hz, 1H), 8.17 (t, J= 13.8 Hz, 3H), 8.22 (d, J= 7.8 Hz, 1H), 8.28 (d, J= 8.4 Hz, 2H), 12.21 (s, 1H, OH); ¹³C NMR (150 MHz, DMSO) δ 118.2, 119.8, 121.5, 124.4, 126.8, 130.5, 131.5, 137.0, 141.4, 141.9, 148.7, 162.1, 193.7.

(E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one

A white solid, ¹H NMR (600 MHz, CDCl₃) δ 3.87 (s, 3H), 6.93 (dd, J= 6.0, 1.2 Hz, 1H), 6.95 (dd, J= 4.8, 1.8 Hz, 2H), 7.02 (dd, J= 7.2, 1.2 Hz, 1H), 7.49 (td, J= 6.6, 1.8 Hz, 1H), 7.54 (d, J= 15.6 Hz, 1H), 7.63 (d, J= 9.0 Hz, 2H), 7.90 (d, J= 12.0 Hz, 1H), 7.92 (dd, J= 4.8, 1.8 Hz, 1H), 12.93 (s,

1H, OH); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 114.5, 117.6, 118.6, 118.7, 120.1, 127.3, 129.5, 130.5, 136.1, 145.3, 162.0, 163.5, 193.7.

(Z)-3-(4-methoxybenzylidene)-2-(4-methoxyphenyl)chroman-4-one

A white solid, ¹H NMR (600 MHz, CDCl₃) δ 3.73 (s, 3H), 3.80 (s, 3H), 6.61 (s, 1H), 6.83 (dd, J= 4.8, 1.8 Hz, 2H), 6.87 (dd, J= 4.8, 1.8 Hz, 2H), 6.89 (dd, J= 7.2, 1.2 Hz, 1H), 6.93-6.95 (m, 1H), 7.24 (dd, J= 4.8, 1.8 Hz, 2H), 7.36-7.38 (m, 1H), 7.39 (dd, J= 8.4, 0.6 Hz, 2H), 7.92 (dd, J= 6.0, 1.8 Hz, 1H), 8.04 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.2, 55.4, 77.7, 114.2, 114.4, 118.6, 121.6, 122.3, 126.8, 127.6, 129.1, 130.2, 130.5, 132.2, 135.9, 139.1, 158.8, 159.8, 161.0, 182.7.

3-(4-methoxybenzyl)-2-(4-methoxyphenyl)-4H-chromen-4-one

A white solid, ¹H NMR (600 MHz, CDCl₃) δ 3.75 (s, 3H), 3.87 (s, 3H), 3.92 (s, 2H), 6.77 (dt, J= 4.8, 1.8 Hz, 2H), 6.97 (dt, J= 4.8, 1.8 Hz, 2H), 7.07 (d, J= 9.0 Hz, 2H), 7.38-7.40 (m, 1H), 7.46 (d, J= 8.4 Hz, 1H), 7.53 (dt, J= 4.8, 1.8 Hz, 2H), 7.64-7.66 (m, 1H), 8.24 (dd, J= 6.6, 1.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 30.5, 55.2, 55.4, 113.8, 113.9, 117.8, 120.3, 123.0, 124.7, 125.6, 126.1, 129.0, 130.2, 132.4, 133.4, 156.1, 157.8, 161.2, 162.7, 178.3.

(E)-1-(2-hydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

A white solid, ¹H NMR (600 MHz, CDCl₃) δ 6.89 (d, J= 9.0 Hz, 2H), 6.94 (m, 1H), 7.02 (dd, J= 7.2, 1.2 Hz, 1H), 7.48-7.50 (m, 1H), 7.54 (d, J= 15.6 Hz, 1H), 7.59 (d, J= 8.4 Hz, 2H), 7.89 (d, J= 15.6 Hz, 1H), 7.92 (dd, J= 6.6, 1.8 Hz, 1H), 12.92 (s, 1H, OH); ¹³C NMR (150 MHz, CDCl₃) δ 116.1, 117.8, 118.6, 118.8, 120.20, 127.6, 129.6, 130.8, 136.2, 145.3, 158.3, 136.6, 193.8.

2-phenylchroman-4-one

A white solid, ¹H NMR (600 MHz, CDCl₃) δ 2.90 (dd, J= 13.8, 3.0 Hz, 1H), 3.09 (dd, J= 13.2, 3.6 Hz, 1H), 5.49 (dd, J= 10.2, 3.0 Hz, 1H), 7.06 (m, 2H), 7.39 (tt, J= 3.6, 1.2 Hz, 1H), 7.44 (m, 2H), 7.49 (dd, J= 7.2, 1.2 Hz, 2H), 7.51 (dt, J= 5.4, 1.8 Hz, 1H), 7.94 (dd, J= 6.6, 1.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 44.7, 79.6, 118.1, 120.9, 121.6, 126.1, 127.0, 128.8, 128.8, 136.2, 138.7, 161.5, 191.9.

DFT calculations

All the DFT calculations were performed using the ORCA 5.0.3 software.² Density functional theory was employed with PBE0 functional³, dispersion corrections based on tight binding partial charges (D4)⁴ along with Ahlrichs and co-workers balanced polarised double zeta basis set (def2-svp).⁵ RIJCOSX⁶ approximation was used throughout to speed up the calculations. Transition states were calculated by implementing Nudged-Elastic-Band method of Asgeirsson *et al.*⁷ All minima on the potential energy surface were verified by calculating the vibrational frequencies using the same level of theory. Furthermore, for refinement in results, a higher valance polarised triple zeta basis set (def2-tzvp) was employed with PBE0 functional to calculate the single point-energy of the whole system. The solute-solvent interaction is described by the conductor-like polarizable continuum model (CPCM)⁸. The dielectric constant & refractive index of PEG-400 is taken as 11.6 and 54 respectively.

Fig. S1 Interaction diagrams of acetophenone and tautomer with PEG-400, and the interaction of PEG-400 in transition states 1 and 2.

Table: S1 Energies of the various species including starting materials, intermediates, and transition states. ($E_{elec} = Electronic energy in gas phase, G^S = Gibbs free energy in solvent, H^S = Enthalpy in solvent)$

Species	Eelec	G ^s	H ^s
А	-459.787145932339	-459.69504252	-459.62810581
В	-933.109691205920	-932.94527555	-932.84716421
С	-931.928190775293	-931.78145045	-931.68880309
D	-933.132746285290	-932.96457866	-932.86981981
PEG	-1229.39191956	-1229.39191956	-1229.39191956
PEGI	-1527.311172488971	-1526.90311373	-1526.76751762
Ι ₃	-893.393896594535	-893.43782180	-893.38404157
TS_1	-1230.174097750667	-1230.02694086	-1229.92264379
TS_2	-3353.862490186070	-3353.28177433	-3353.04872527
II	-1306.559198882304	-1306.42286120	-1306.27986039
III	-1009.513839334502	-1009.32305888	-1009.22064602
IV	-1230.258995954341	-1230.10501402	-1230.00402559
TOT	-933.110141544027	-932.94205030	-932.84707574
I ₂	-595.464519981321	-595.50146074	-595.45857235
H ₂ O	-76.387365438931	-76.39236652	-76.36092331
HI	-298.320747908430	-298.34492113	-298.31093735

¹H NMR Spectra (CDCl₃) of 3a

Mass Spectra of 3a

¹H NMR Spectra (CDCl₃) of 3b

Mass Spectra of 3b

¹H NMR Spectra (CDCl₃) of 3c

¹³C NMR Spectra (CDCl₃) of 3c

Mass Spectra of 3c

Line#:1 R.Time:6.6300(Scan#:1027) MassPeaks:568

MS Spectrum

¹H NMR Spectra (CDCl₃) of 3d

Mass Spectra of 3d

MS Spectrum

¹H NMR Spectra (CDCl₃) of 3e

¹³C NMR Spectra (CDCl₃) of 3e

Mass Spectra of 3e

Line#:1 R.Time:5.6050(Scan#:822) MassPeaks:605 RawMode:Averaged 5.6000-5.6100(821-823) BasePeak:120.1000(114197) BG Mode:Calc. from Peak Group 1 - Event 1 ¹H NMR Spectra (CDCl₃) of 3f

¹³C NMR Spectra (CDCl₃) of 3f

Mass Spectra of 3f

Line#:1 R.Time:5.0100(Scan#:703) MassPeaks:470 RawMode:Averaged 5.0050-5.0150(702-704) BasePeak:290.0000(3702) BG Mode:Calc. from Peak Group 1 - Event 1

¹H NMR Spectra (CDCl₃) of 3g

¹³C NMR Spectra (CDCl₃) of 3g

Mass Spectra of 3g

Line#:1 R.Time:5.3750(Scan#:776) MassPeaks:577 RawMode:Averaged 5.3700-5.3800(775-777) BasePeak:120.0500(526009) BG Mode:Calc. from Peak Group 1 - Event 1

¹H NMR Spectra (CDCl₃) of 3h

¹³C NMR Spectra (CDCl₃) of 3h

Mass Spectra of 3h

Line#:1 R.Time:3.8750(Scan#:476) MassPeaks:511 RawMode:Averaged 3.8700-3.8800(475-477) BasePeak:120.0500(4116) BG Mode:Calc. from Peak Group 1 - Event 1

¹H NMR Spectra (CDCl₃) of 3i

¹³C NMR Spectra (CDCl₃) of 3i

Mass Spectra of 3i

Line#:1 R.Time:5.5700(Scan#:815) MassPeaks:590 RawMode:Averaged 5.5650-5.5750(814-816) BasePeak:249.0500(2079753) BG Mode:Calc. from Peak Group 1 - Event 1

MS Spectrum

¹³C NMR Spectra (DMSO)of 3j

Mass Spectra of 3j

Line#:2 R.Time:8.4100(Scan#:1383) MassPeaks:542 RawMode:Averaged 8.4050-8.4150(1382-1384) BasePeak:238.1000(175416) BG Mode:Calc. from Peak Group 1 - Event 1

MS Spectrum

¹³C NMR Spectra (DMSO) of 3k

Mass Spectra of 3k

Line#:1 R.Time:6.8700(Scan#:1075) MassPeaks:627 RawMode:Averaged 6.8650-6.8750(1074-1076) BasePeak:238.1000(452376) BG Mode:Calc. from Peak Group 1 - Event 1

MS Spectrum

¹H NMR Spectra (DMSO) of 31

Mass Spectra of 31

MS Spectrum

¹³C NMR Spectra (DMSO) of 3m

Mass Spectra of 3m

Line#:2 R.Time:6.8550(Scan#:1072) MassPeaks:501 RawMode:Averaged 6.8500-6.8600(1071-1073) BasePeak:268.0500(188016) BG Mode:Calc. from Peak Group 1 - Event 1

Mass Spectra of 3n

Line#:1 R.Time:7.3800(Scan#:1177) MassPeaks:621 RawMode:Averaged 7.3750-7.3850(1176-1178) BasePeak:282.1500(1742560) BG Mode:Calc. from Peak Group 1 - Event 1

¹³C NMR Spectra (DMSO) of 30

Mass Spectra of 30

Line#:1 R.Time:7.2600(Scan#:1153) MassPeaks:444 RawMode:Averaged 7.2550-7.2650(1152-1154) BasePeak:254.1000(3728) BG Mode:Calc. from Peak Group 1 - Event 1

¹H NMR Spectra (CDCl₃) of 3t

¹³C NMR Spectra (CDCl₃) of 3t

Mass Spectra of 3t

Line#:1 R.Time:2.6850(Scan#:238) MassPeaks:572 RawMode:Averaged 2.6800-2.6900(237-239) BasePeak:228.0000(882295) BG Mode:Calc. from Peak Group 1 - Event 1

MS Spectrum

¹³C NMR Spectra (CDCl₃) of 3u

Mass Spectra of 3u

Line#:1 R.Time:6.3650(Scan#:974) MassPeaks:529 RawMode:Averaged 6.3600-6.3700(973-975) BasePeak:267.1000(139936) BG Mode:Calc. from Peak Group 1 - Event 1

MS Spectrum

¹H NMR Spectra (DMSO) of (3v) (6,3'4'-HOFL)

¹³C NMR Spectra (DMSO) of 3v (6,3'4'-HOFL)

Mass spectra of 3v (6,3'4'-HOFL)

Line#:1 R.Time:8.9800(Scan#:1497) MassPeaks:580 RawMode:Averaged 8.9750-8.9850(1496-1498) BasePeak:270.1000(14642) BG Mode:Calc. from Peak Group 1 - Event 1

NMR spectra of the identified intermediates.

¹H NMR Spectra (CDCl₃) of 2-(4-nitrophenyl)-chroman-4-one

¹³C NMR Spectra (CDCl₃) of 2-(4-nitrophenyl)-chroman-4-one

¹H NMR Spectra (DMSO) of (E)-1-(2-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one

¹³C NMR Spectra (DMSO) of (E)-1-(2-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one

¹H NMR Spectra (CDCl₃) of (E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one

¹³C NMR Spectra (CDCl₃) of (E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one

¹H NMR Spectra (CDCl₃) of (Z)-3-(4-methoxybenzylidene)-2-(4-methoxyphenyl)chroman-4-one

¹³C NMR Spectra (CDCl₃) of (Z)-3-(4-methoxybenzylidene)-2-(4-methoxyphenyl)chroman-4-one

¹H NMR Spectra (CDCl₃) of 3-(4-methoxybenzyl)-2-(4-methoxyphenyl)-4H-chromen-4-one

¹³C NMR Spectra (CDCl₃) of 3-(4-methoxybenzyl)-2-(4-methoxyphenyl)-4H-chromen-4-one

¹H NMR Spectra (CDCl₃) of (E)-1-(2-hydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

¹³C NMR Spectra (CDCl₃) of (E)-1-(2-hydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

Mass Spectra

Line#:1 R.Time:6.0850(Scan#:918) MassPeaks:515 RawMode:Averaged 6.0800-6.0900(917-919) BasePeak:121.1000(6106) BG Mode:Calc. from Peak Group 1 - Event 1

¹H NMR Spectra (CDCl₃) of 2-phenylchroman-4-one

¹³C NMR Spectra (CDCl₃) of 2-phenylchroman-4-one

DFT COORDINATES

Α

С	-4.30185805459068	0.8801056037	75512	0.00345140087050
С	-2.89868205202019	0.8109342729	93555	0.01777809197676
С	-2.14388509213014	2.0083926004	48134	0.02063478193337
С	-2.84389372809650	3.2314950637	78688	0.00898103262741
С	-4.22528088906757	3.2950289777	74839	-0.00511451589248
С	-4.95679526190535	2.100317082	16880	-0.00783233152589
Н	-4.85603500616805	-0.060982860	14886	0.00158393084261
Н	-2.23966009766857	4.1408345334	44251	0.01154834414450
Н	-4.73581384214040	4.260176199	17412	-0.01404828611279
Н	-6.04964223783558	2.123062086.	37623	-0.01891333298276
0	-2.39213781199115	-0.431855943	30257	0.02765568342369
Н	-1.42770479977968	-0.426668345	48758	0.03856671171502
С	-0.65479872276133	2.1142844614	47442	0.03464922455412
0	-0.11987058149602	3.2085066499	96881	0.03511495202056
С	0.20063243385189	0.8727935700)8053	0.04800861515332
Н	0.00775615102108	0.2649116369	99025	0.94842511038766
Н	0.02544680565078	0.2583718049	97193	-0.85157556146572
Н	1.25667047712751	1.1692981255	58412	0.05746595833012
B				
С	-4.33002920	2.01371018	1.1007	0043
С	-3.40045787	1.16952160	0.4770	7154
С	-2.55628868	1.68858273	-0.5296	51928
С	-2.71909289	3.03036571	-0.9188	86439
С	-3.63980255	3.86132389	-0.3021	6648
С	-4.44297206	3.34330712	0.7211	2255
Н	-4.97042470	1.58852085	1.8764	9274

Η	-2.07458947	3.40235541	-1.7183	36463
Η	-3.73429534	4.90543485	-0.6074	46506
Н	-5.17477608	3.98282557	1.2213	39235
0	-3.40294804	-0.11340844	0.8818	83586
Η	-2.86134436	-0.66935994	0.3049	93944
С	-1.50069931	0.90955059	-1.2307	78849
0	-1.15210863	1.21294589	-2.3619	93238
С	-0.84027792	-0.20380247	-0.5039	97124
Н	-0.94854216	-0.25496188	0.5833	31289
С	0.69860801	-2.50373249	0.7539	95430
С	0.65528737	-2.22128762	-0.6246	64754
С	1.36494679	-3.05173424	-1.5100)1466
С	2.09961753	-4.13400334	-1.0443	37182
С	2.11981019	-4.37987029	0.3245	2762
С	1.42815543	-3.57969453	1.2331	2491
Н	0.15748644	-1.87508042	1.4632	27937
Н	2.65340832	-4.78302843	-1.7224	48225
Н	1.47148875	-3.80864752	2.2977	9558
Н	1.33724409	-2.83893318	-2.5812	1399
С	-0.09035273	-1.09714533	-1.1792	25219
N	2.89353721	-5.51457055	0.8288	86858
0	2.90776846	-5.70169416	2.0270	08869
0	3.47891442	-6.20465798	0.0216	55400
Н	-0.02812452	-0.96792204	-2.2654	2908
С				
С	-1.33624194787250	-0.624281212	11621	-1.43472832429856
С	-0.97084826059995	-0.252542121	76786	-0.13847990519974
С	-1.75510875078878	0.625393547	83517	0.61897892226572

С	-2.92990930544012	1.14014079161650	0.05033938466521
С	-3.30390983853479	0.78144799811877	-1.23377464557954
С	-2.50233850174925	-0.10252824526366	-1.97406392454634
Η	-0.69974795922812	-1.31334835484016	-1.99307607515222
Η	-3.53007137146832	1.82466934384241	0.65360765406621
Η	-4.21927029307918	1.18361000396065	-1.67327563818390
Η	-2.79723872605134	-0.38619329662226	-2.98720750367274
0	0.17471777146105	-0.78384045315865	0.35414801984364
С	-1.33495318610693	0.98875748251622	1.98392875188327
0	-1.98008972789759	1.74819388184102	2.69826695659541
С	-0.08931913828972	0.36895512479218	2.40092321984016
С	3.56638791813865	-1.76289396917690	3.53990962206781
С	2.36452889732597	-1.14001119513162	3.23811914256533
С	1.87064134134516	-1.14135861714218	1.92387787203079
С	2.60153601143514	-1.78767522913541	0.91456745344634
С	3.80569936038267	-2.41401116515097	1.20557278977983
С	4.27054672093162	-2.39051278531765	2.51581435655111
Η	3.95992834243396	-1.77312260757938	4.55612010942390
Η	1.80439387246302	-0.66061200857688	4.04165062899548
Η	2.22438343901505	-1.79382912320304	-0.10799854345963
Η	4.38562544331513	-2.91622890350345	0.43149190532705
N	5.53940059156996	-3.04990530398303	2.82896727295309
0	6.12265628214478	-3.61058547786763	1.92605292426462
0	5.93634654491262	-2.99824619981264	3.97327130589915
С	0.60024562426212	-0.47604607064976	1.58999988077802
Η	0.28778347596968	0.61300133547643	3.39346816685052
D			

C -0.03445695576253 2.19284112377498 0.25890509424447

С	-0.25473237946132	0.82716983367258	0.46931330416260
С	-1.39852178241211	0.20679278749368	-0.06830640173540
С	-2.32375119909888	0.97837588460125	-0.78835905166627
С	-2.11494453364010	2.33324909788308	-0.98751820045878
С	-0.95953596508254	2.93286395822408	-0.46560387258178
Η	0.86049956651048	2.65303145829832	0.68236699247180
Η	-3.20135226435555	0.47034216840055	-1.19509643899913
Η	-2.83730791183896	2.92864771029494	-1.54970292194336
Η	-0.78351766871725	4.00038248116539	-0.62110731679473
0	0.66238623101544	0.15206535063779	1.18839268426131
С	-1.57234216895515	-1.25313726889397	0.05472059571624
0	-2.53777799586449	-1.84617416979582	-0.38506442407011
С	-0.41934951320133	-1.96525762627925	0.71894331846234
С	2.32570939462577	-3.22403737295948	4.08883995223032
С	1.24700971132596	-2.56391028278931	3.51441662133329
С	1.42979890497108	-1.73762542120209	2.40010599177130
С	2.71024395964951	-1.57303935914072	1.86082162168584
С	3.79947840738189	-2.22569798864866	2.42532606849599
С	3.58874252756838	-3.04285677828685	3.53211484282387
Η	2.20300053576414	-3.86670808310361	4.96045869098179
Η	0.24895535225643	-2.68711631290962	3.94237730077984
Н	2.85402326955765	-0.92119850718290	0.99778971712817
Η	4.80522405016964	-2.10887017810598	2.02168480648252
N	4.73185658077312	-3.72741715671599	4.13475473827460
0	5.81642643615588	-3.59108716725393	3.60901771365920
0	4.53404625571676	-4.39552199391683	5.12763005678422
С	0.23859620428481	-1.07621891109699	1.76584313472194
Н	-0.77131482957618	-2.90610672824846	1.16325878943555

Н -0.50490444468760 -0.84317763397126 2.55118552871272

Н 0.31836376492699 -2.21756919394488 -0.06424274637043 II

С	-4.062662	1.193143	-1.382542	
С	-2.659132	1.188766	-1.381737	
С	-1.912832	2.358333	-1.157014	
С	-2.662428	3.531812	-0.882899	
С	-4.062559	3.554018	-0.876321	
С	-4.759635	2.377595	-1.131801	
Η	-4.614267	0.250237	-1.555235	
Η	-2.118247	4.446024	-0.695671	
Η	-4.592946	4.494437	-0.679249	
Η	-5.860167	2.376438	-1.147219	
0	-2.018000	0.027573	-1.626972	
Η	-2.535621	-0.570025	-2.180334	
С	-0.473716	2.470515	-1.241798	
0	-0.042039	3.690861	-0.850187	
Ι	1.877709	4.202208	-0.852173	
С	0.401392	1.434023	-1.701428	
Η	1.426467	1.641006	-1.723580	
Η	-0.019867	0.510777	-1.951509	
С	1.559891	-3.556752	1.611927	
С	1.033814	-2.309759	1.279361	
С	1.894726	-1.225410	1.065531	
С	3.280211	-1.402347	1.089972	
С	3.820115	-2.642790	1.397493	
С	2.940163	-3.685687	1.689268	
Н	0.917959	-4.408193	1.832235	

Η	-0.047165	-2.166532	1.222590
Η	3.928492	-0.545336	0.885362
Η	4.893709	-2.808028	1.441967
N	3.500757	-4.964827	2.141561
0	4.707085	-5.061330	2.210421
0	2.724249	-5.847356	2.439268
С	1.300175	0.107454	0.924982
Η	0.226101	0.175244	0.769394
0	2.008271	1.163907	1.016337

III

С	-4.55691804127012	1.73506583867818	0.38518132689747
С	-3.36764817528287	1.06472637277843	0.05580288486317
С	-2.24731274545628	1.81417701889784	-0.37961746114741
С	-2.38468879296260	3.21428456800312	-0.48712578532216
С	-3.55800806799288	3.86752024398423	-0.16045960728486
С	-4.65219998035141	3.11260867757012	0.28281242715406
Η	-5.40369704900359	1.13097069101590	0.71760901867074
Η	-1.51206481857037	3.77116160505467	-0.83349086968186
Η	-3.62917736302751	4.95371119465027	-0.24485473933556
Η	-5.59067305548169	3.60640454688861	0.54776247989299
0	-3.41580447982538	-0.26965664418799	0.18173377239432
Η	-2.60985395643013	-0.69748588613718	-0.12994503027189
С	-0.91444557948576	1.26732538978908	-0.73437826809658
0	-0.07350359554187	1.98835649703390	-1.25569443033022
С	-0.56293599635176	-0.17311739054118	-0.43019724867380
Η	-0.92289655624989	-0.43960278663014	0.57673675706037
С	1.08211376473844	-2.29557712870451	1.17198942056143
С	1.24084395537375	-1.87486045615300	-0.15550030421496

С	1.66024819740024	-2.79372349338322	-1.12204278479054
С	1.91420663043030	-4.11697013601423	-0.77665639335071
С	1.73940986321174	-4.50794547605597	0.54699078638965
С	1.32576651081250	-3.61322167594666	1.53203658609094
Η	0.76945251033980	-1.58072858111913	1.93794295249086
Η	2.24273682094140	-4.84551157877120	-1.51800463106258
Н	1.20740327181272	-3.95529264853547	2.56003721010008
Н	1.79190237806049	-2.45798064154492	-2.15091732972443
С	0.94442752565832	-0.44481106200069	-0.53182395786928
0	1.42035536439294	-0.18447060457659	-1.81917081484020
N	2.00039251195446	-5.89633349095301	0.91871552530809
0	1.80974485623209	-6.22076405059368	2.07257511785076
0	2.39304699876798	-6.65329943298423	0.05548806829850
Н	1.18975181819139	0.74644409023030	-1.97807317938343
Н	-1.07582523786359	-0.82299547593881	-1.16618007561530
Η	1.44502184282913	0.20671992619720	0.21279104697230
IV			
С	-0.74217100153346	0.44649780021111	-1.63039838658322
С	-0.68631478550329	0.16262772746121	-0.26288142951472
С	-1.77786057891087	0.47337502663918	0.56936395654504
С	-2.90825928010879	1.09577269204617	0.01580950220033
С	-2.96336105548226	1.38607791752323	-1.33683456704448
С	-1.87557528509004	1.05136695609906	-2.15676410763604
Н	0.11609826272667	0.19578020255527	-2.25662257967807
Н	-3.74177606256483	1.32627200685412	0.68315591154139
Η	-3.84633641051562	1.86553232686750	-1.76415893374744
Н	-1.91188450717916	1.27516686927873	-3.22595822077394
0	0.43702727296826	-0.41810789907367	0.20547855113350

С	-1.75881482840528	0.09332457735048	1.99051555863619
0	-2.62715887087151	0.38538671791309	2.78584974512474
Ι	-1.09106359743009	-2.81753337759690	2.05478175612429
С	-0.55690859587299	-0.73644182476405	2.39297121189371
С	3.59914085661607	-1.69469571795361	3.56805540241040
С	2.47906335221766	-0.95935478348607	3.20571148859481
С	1.90834125928935	-1.11451214535309	1.93686946517855
С	2.47713566390535	-2.00389552056629	1.02136254330224
С	3.60173546902882	-2.74383703705023	1.37005654339096
С	4.14263747095938	-2.57970326732674	2.64043849006956
Н	4.05683645267736	-1.58917190805292	4.55139864237550
Н	2.04633219826670	-0.25507979863414	3.92087268267177
Н	2.03690708226091	-2.11553039391722	0.03049918068671
Н	4.05950772898074	-3.44407620879727	0.67139682438232
N	5.32463816215308	-3.35722258390549	3.01347324479215
0	5.77743644893030	-4.12861077338870	2.19457605321512
0	5.78729574454441	-3.18869372419196	4.12194913557856
С	0.67115692915116	-0.33174215964495	1.59331347460609
Н	-0.38725091685668	-0.65463932037031	3.47312884522182
Н	0.84682160164855	0.73396782327451	1.85084998530206
TC	ОТ		
С	-0.00485807034976	2.20020202845217	0.17936838854001
С	-0.22334194684740	0.85784262247783	0.48301982184816
С	-1.34370323519036	0.18102667826289	-0.03669507501545
С	-2.25891809786719	0.89173947592309	-0.82060669656835
С	-2.05521791156427	2.23891466719957	-1.10995851912980
С	-0.92092698301814	2.88589975252955	-0.61669771616217
Н	0.88292207549961	2.69258749661166	0.58158011313904

Η	-3.14893178208458	0.38688771313611	-1.20719033825333
Н	-2.77997328390037	2.78242067240068	-1.71965796217683
Н	-0.75020477873220	3.94113718959203	-0.84365342822414
0	0.68977745672959	0.21454235085283	1.24242346235921
С	-1.43971231433733	-1.25559193798961	0.23398699146753
0	-2.30167813090270	-2.01022588698071	-0.47278770946471
С	-0.65759398423426	-1.79662781989242	1.18558978132192
С	2.42381362874959	-3.14025042188218	4.13909264754284
С	1.34182775781355	-2.39812383064339	3.68260034265313
С	1.44028480914152	-1.64672610278682	2.50656675987658
С	2.64006285056420	-1.63580424229909	1.78885277790278
С	3.73381719508018	-2.36741630923841	2.23605682692313
С	3.60683632115176	-3.11213127621022	3.40511642176849
Н	2.36622969073853	-3.72995303550782	5.05390943414916
Н	0.40794431378098	-2.40016829378095	4.25050688636513
Н	2.71498399637367	-1.04349629712466	0.87590955272958
Н	4.67849161370288	-2.37028023793819	1.69230242729116
N	4.75306974830621	-3.88455262959800	3.88046518339161
0	5.77258792494977	-3.85137689769412	3.22358551441169
0	4.62418813419735	-4.51884793890480	4.90659100615452
С	0.23117773129694	-0.89983062417394	2.00247506576497
Η	-0.68771209827139	-2.86649200554103	1.39899392567616
Н	-0.31779071864445	-0.50211354969465	2.88221463948822
Η	-2.56056440213195	-1.55142524955736	-1.28307867577025
PE	ŻG		
0	-2.68647350333171	4.36923512293768	-1.33477718430564
С	-3.83455615584758	1.82009199546450	-2.02951051285072
С	-3.10849477557329	-0.79645427261594	-0.86074779736152

0	0.19711568362578	4.94715100170908	-1.06937520456811
0	2.41888925179019	3.04748546648311	-1.04900998496365
0	-0.87511931013023	-1.47012310662298	0.89464781435795
0	1.88812664760834	-1.41573310633007	1.35567645107858
0	3.42563132259141	0.63309068667006	-0.04896120042433
С	3.56319742256113	2.43992188709097	-1.58121631030460
С	3.49520493291858	0.94553209351800	-1.41340139412069
С	3.86152128117012	-0.65742543280287	0.28823710640562
С	3.22304951136958	-1.05047966619578	1.59473844024740
С	0.97040879587540	-1.04874833981942	2.34761690303756
С	-0.31150754483872	-1.80732388289314	2.13239723690604
С	-1.91337924264816	-2.33281038729567	0.52376638818480
С	-2.40655795288957	-2.00870832532996	-0.85937375773243
С	-4.63539161233743	0.67273653162551	-1.95277512552746
С	-3.79502852545808	-0.56950971209287	-2.06062351756228
С	-3.75608866117494	4.20325518065252	-2.22326587693136
С	-4.57365704879575	2.99667577217511	-1.85310753764109
С	-0.86629804269773	5.70716199404506	-0.56469122145190
С	-2.05511524014423	5.61149425665536	-1.48029699632408
С	1.35291524092884	5.04824604944672	-0.28449614276048
С	2.53149033050187	4.44211403869573	-0.99504074082565
Η	2.60531892747278	4.87380422283077	-2.01408856297971
Η	3.45193209281144	4.73398774950134	-0.45029593517607
Η	1.58806803504843	6.11157842443406	-0.07690784492308
Η	1.21211980372778	4.54730019394305	0.69465370449547
Η	-0.57132107090707	6.77241956296927	-0.47748588407646
Η	-1.15674539157697	5.36494830818382	0.44905844386137
Н	-1.71722325704877	5.76511812751614	-2.52475688452954

Η	-2.75934456910044	6.43345880873186	-1.23966049354316
Η	-3.38906630727500	4.09942403218315	-3.26451544262781
Н	-4.42504805556174	5.08705403819564	-2.19962403520093
Н	-5.47810189459534	2.98954969074990	-2.49414186150692
Н	-4.91901729843198	3.08848870417208	-0.80329156936010
Н	-5.19480715825617	0.64298819461487	-0.99620089852863
Н	-5.38475073291133	0.66991784309133	-2.77009632848493
Н	-3.09176092700707	-0.46680627152180	-2.91155552487487
Н	-4.46183711926698	-1.42509639263851	-2.29001091539967
Н	-3.06520381380575	-2.83623127231379	-1.19145808758255
Н	-1.54779273355955	-1.97221174444788	-1.55981334491069
Н	-2.75951302554520	-2.26788035210069	1.23798369060323
Н	-1.56199994726444	-3.38436093044423	0.52976153523595
Н	-0.09117874943916	-2.89328245213995	2.16818541913768
Н	-1.00999907318167	-1.58666125715632	2.96483310960349
Н	0.78062988954258	0.04292552162037	2.31766747228783
Н	1.34326682041328	-1.29362480868531	3.36102171494679
Н	3.78067440606647	-1.88941136160109	2.05432447370051
Н	3.28695653859375	-0.18964719719115	2.28529126809477
Н	3.56770773369471	-1.39515646696399	-0.48228728315814
Н	4.96585568816646	-0.68982836993894	0.37635844845928
Н	2.61737057197737	0.53458041415103	-1.95105218906075
Н	4.40090600827262	0.51514725116172	-1.88173682601009
Н	3.67889061096777	2.67823918177116	-2.65813911365221
Н	4.46918642290541	2.81521227215128	-1.06361718940199
PE	GI		
0	-2.61507496343198	3.61335687771077	-1.41519407790985
0	-3.05756758616534	1.15401962280479	-2.99706789463400

0	-1.56086201246254	0.07075219128978	-0.83604193333605
0	-0.06576867856338	4.87779923957941	-0.82400916747822
0	2.05545644452495	3.10329500305541	-0.51398770362135
0	-0.67271017958634	0.47971943024341	1.87144189151664
0	0.81633002770554	-1.71605072680266	0.68691971466033
0	2.80810324625246	0.06734507333702	-0.62932411060853
С	3.27531283478747	2.41620426640139	-0.87611618183931
С	3.01262338850467	1.09775815430425	-1.55659887666204
С	2.22279847705231	-1.07607428837030	-1.20003917552640
С	1.88959101965797	-2.10217749468872	-0.14347544198456
С	1.18398255806735	-1.15969363385068	1.91601535690451
С	-0.02496729268520	-0.58736008806335	2.60649876144021
С	-2.03883632499610	0.27311250583737	1.45182540992935
С	-2.16303703074294	-0.59719146415236	0.23194420572852
С	-2.92545297760134	-0.23525918810620	-2.82436552492786
С	-1.63977545914907	-0.55909443722721	-2.08948113883133
С	-3.76443496153459	3.26397576544821	-2.14123700046519
С	-3.96347012963517	1.77342763783897	-2.12061530731371
С	-1.32117988893369	5.35198956543730	-0.40710685742193
С	-2.38221111072044	4.99491637911299	-1.41062679834543
С	0.94981416949827	5.17664889370401	0.08585017643329
С	2.22655327044132	4.52584149031788	-0.35654750404650
Н	2.53387303293912	4.90531447295989	-1.34376815730134
Н	3.02386455433961	4.72229847036111	0.37785385652604
Η	1.14263491587818	6.26628278102942	0.15229035051214
Η	0.67864215813022	4.84027413225730	1.10685055609053
Η	-1.30000138312128	6.45326285614221	-0.29290228106136
Н	-1.58545366384265	4.91992046548794	0.57848734218691

Η	-2.07969169444738	5.34853659034335	-2.41688808196257
Н	-3.30451793716529	5.54467771519721	-1.13588812493638
Н	-3.68937667397855	3.60823497706512	-3.19208250762628
Н	-4.65876854318622	3.74923429927133	-1.70123604297437
Η	-5.00755346377591	1.55255871140615	-2.41895806599765
Η	-3.83117156092069	1.41608663138300	-1.08386488993319
Η	-3.80270720363832	-0.65339991124244	-2.29802294624189
Η	-2.88980835372956	-0.71504330937181	-3.81786271685166
Η	-0.79413481899281	-0.17118705598018	-2.67947698027172
Η	-1.51314866489270	-1.65494448859390	-1.99881878575105
Н	-3.24517910960711	-0.76955967211822	0.06814863336721
Н	-1.68545346032525	-1.57973716281285	0.40193555858479
Н	-2.43517338177083	1.27866526070777	1.25308191861076
Н	-2.57803073183548	-0.15983155133019	2.30674115595820
Н	-0.78485584135453	-1.36607369798390	2.76341460074168
Н	0.26944623108211	-0.17407323416804	3.58236052100797
Н	1.95959969988376	-0.38477381576485	1.78996766124233
Н	1.59930727042505	-1.92433115079596	2.60340960183078
Η	1.58809540263275	-3.02729880679634	-0.66035490056315
Н	2.78696210422088	-2.33650741254959	0.45673040700690
Н	1.29536808955367	-0.79742772001517	-1.73582625617020
Н	2.90622860564592	-1.53844997751717	-1.94027641436089
Н	2.14068309049085	1.21002487619728	-2.23061613514257
Н	3.88792271605866	0.87511714789395	-2.19756139641643
Н	3.79502339401899	3.08171553901236	-1.58042289056857
Η	3.89949171021448	2.28727644780230	0.02344452538015
Ι	0.59917954078631	1.90552083736075	0.72433043342455

TS_1

С	-0.96543160769079	2.32254385485428	-2.16328422548764
С	-1.25260883904881	1.57968646014680	-0.99670636839388
С	-2.60120413426594	1.24651558141327	-0.72467377900162
С	-3.64442533424865	1.66328118075240	-1.56377105820262
С	-3.34930121120658	2.41072132360071	-2.69195630814395
С	-2.00888550846589	2.73355698667121	-2.97919300869129
Η	0.07213918212398	2.57690781621753	-2.38931995957069
Η	-4.67129674354944	1.38544016644832	-1.31332148705866
Η	-4.14611715188223	2.74537121385736	-3.35926520477875
Η	-1.78223383043286	3.32307743972075	-3.87208292032844
0	-0.34013489498364	1.19455998250455	-0.14822114434894
С	-2.80420485686147	0.42194151583369	0.45861886776611
0	-3.87880026444139	0.10523208080345	0.92077900292814
Ι	-1.97955123732109	-2.28421250368979	2.04259485245257
С	-1.47359580863678	-0.01762086441998	1.08963308606074
С	2.75832684771661	-0.78885887995127	2.18795902811329
С	1.42884514426074	-0.53174835048828	1.89591280591369
С	0.82869005975818	-1.11883791207006	0.76919785527975
С	1.57889878921131	-1.96686258813450	-0.06050564747110
С	2.90953533046838	-2.23594148149785	0.22676422954390
С	3.47507978993400	-1.63957591590050	1.34833399464086
Η	3.24698663340308	-0.34254360783737	3.05375884541081
Η	0.86164913711103	0.13113543813297	2.55073812938504
Η	1.10975457477593	-2.42047685465504	-0.93644337802879
Η	3.50891103896410	-2.89346446883677	-0.40242244752521
N	4.88213858795643	-1.91553593902293	1.65896951144868
0	5.46996066669588	-2.70456164757251	0.95227611493426
0	5.37393418594461	-1.33799650051243	2.60348328093811

С	-0.55112729946915	-0.85299375822401	0.39230324252834	
Η	-1.16486199343749	0.48584871832901	2.01012810604136	
Η	-0.89106925238204	-1.27458848647302	-0.56028401635405	
TS	_2			
С	14.78112822206718	-4.69250470405802	5.38161061938033	
С	15.94184289101528	-4.04962118712774	5.83332939061738	
С	15.84733555452911	-2.75584741954926	6.39168657870577	
С	14.59721245487036	-2.11371560911424	6.38848474960368	
С	13.45379349810466	-2.74315937480619	5.91970201542264	
С	13.54951050487778	-4.05239343101249	5.43601749859475	
Η	14.87900667710484	-5.69796739478712	4.96587526468118	
Η	14.55135519564903	-1.10366210750878	6.80050728786171	
Η	12.48999672180078	-2.23048915005384	5.94659410208517	
Η	12.65626134954715	-4.57356581501699	5.08221856617862	
0	17.09996306500355	-4.71924014459558	5.67880681316511	
Н	17.84324235560488	-4.10004388660934	5.54556016413440	
С	16.96682458349867	-2.02283879887043	7.05267533748502	
0	16.95433697044139	-0.80041612777492	7.10093046584531	
С	18.01875675874381	-2.80782986314918	7.73706224669194	
Η	17.93626197016927	-3.89629457927094	7.74303534947382	
С	20.29473754300788	-4.16958950163192	9.20984453273508	
С	20.13671947805299	-2.77663666494131	9.08450108040723	
С	21.09890142775985	-1.93019190510111	9.66166889615355	
С	22.19628631805147	-2.44787239530523	10.33476769914119	
С	22.32344526626859	-3.82929726524215	10.42995694426336	
С	21.38471196049643	-4.70062183935764	9.87875854248769	
Н	19.56294333750097	-4.84789380489403	8.76809078242725	
Н	22.95483212141614	-1.80074915613438	10.77406842183377	

Η	21.52578801152813	-5.77707451441040	9.97271572104262
Н	20.98436272946760	-0.84811362547566	9.56611354778704
С	19.02996176029593	-2.16970736429534	8.35722871068326
Ν	23.49188568742209	-4.38536492422710	11.10506728322912
0	23.57305148851268	-5.59259321257170	11.19938170047467
0	24.32253991915773	-3.61093917476676	11.53265965855828
Η	19.03171650086703	-1.07596386207174	8.30068718284496
0	8.85727870010989	-1.39028643998151	0.07499323733426
0	8.42696652146706	-4.01885656918041	-0.90206436803886
0	9.90432381198446	-5.55311185555095	0.88058556083810
0	11.38703987752816	0.07261855431129	0.71718934988387
0	14.19165176305144	-0.50106798145268	0.39390324568736
0	12.30393735006335	-4.08811428130596	1.22009466980435
0	14.81777699296462	-4.16486836779234	2.12272995683269
0	16.21957006498191	-2.33901371650767	0.83282237797295
С	15.37003564931139	-0.49325483565871	-0.36749828005525
С	15.91736380479223	-1.88828719924034	-0.46936228589843
С	16.76888186928939	-3.61831698580523	0.93650573747394
С	16.25970188557741	-4.18326709583964	2.24150423802023
С	14.20767367190900	-3.08006635288655	2.28881850326612
С	12.80670596504368	-2.98039976753748	1.86034948936889
С	11.90827298655691	-5.16217409467480	2.05562133984888
С	11.12654574425912	-6.13811641405398	1.22183311258081
С	8.03529815426981	-5.31097713283910	-0.52927830913177
С	9.26272389293836	-6.12630579822075	-0.22391977905663
С	7.97117224609068	-1.68251219401707	-0.97429218306784
C	7.40660271984533	-3.06734145817487	-0.80663410677385
С	10.11379132579574	0.25646604058922	1.28326093779799
С	9.03905308040988	-0.01392703634344	0.26398295237382
---	-------------------	-------------------	-------------------
С	12.41348116092792	0.71812092224016	1.42114733265853
С	13.65257533843484	0.78179959278829	0.57179983067193
Н	13.39989157008631	1.23530410021333	-0.40665895930319
Н	14.38977363856074	1.44774299250041	1.06250931303713
Н	12.11730555803745	1.75549738905241	1.67061523108814
Н	12.63339656156678	0.20297819993983	2.37868771975149
Н	10.00245464707747	1.30325688914831	1.62523226908040
Н	9.96820250722988	-0.39677226173106	2.16632931110726
Н	9.32280471924358	0.48613366435088	-0.68318140525537
Η	8.09567864854190	0.45366397984640	0.61167488645642
Н	8.48306074293144	-1.59263178584586	-1.95332326013897
Н	7.12166728757447	-0.97219210890782	-0.98232507503947
Н	6.62581114836939	-3.23019790294600	-1.57740696769069
Н	6.90994709599921	-3.13446874990429	0.18201610211701
Н	7.39615681094105	-5.27371264200630	0.37482052205203
Н	7.44810805839044	-5.80622439061073	-1.32830474576132
Н	9.93744251769667	-6.13427825767556	-1.10326603406018
Н	8.96383761566765	-7.17508868044361	-0.02601035530060
Н	10.98628005381393	-7.07763724684757	1.79262223061887
Н	11.71322063067862	-6.38698577771004	0.31604467982414
Н	11.27479100235995	-4.78533925098755	2.87983625293189
Н	12.78393373260375	-5.66836597631327	2.49778442614069
Н	12.21877162572332	-2.64732519232705	2.74457513397193
Н	12.79565398955226	-2.10761448737768	1.17288926952882
Η	17.13587237900782	-0.34432805752723	4.55255938820050
Η	14.70448033719292	-2.22582530910097	2.77401231079187
Н	16.45788932864481	-4.26488656077950	0.09728130010796

Η	17.87301202162151	-3.59411156741358	0.97233975858502
Η	15.18077210928410	-2.56402237913988	-0.94330957195872
Н	16.82534751859848	-1.87215072344507	-1.09798498291715
Н	15.18231167721953	-0.10777785200686	-1.38825544550052
Н	16.12501052471770	0.16495620106564	0.10474214457136
Ι	15.97285888006031	0.44766483117322	3.73132382084722
Ι	21.78351176428666	-2.83102827856720	5.62782954775541
Ι	19.19557670352271	-2.35226667134523	4.14804987678652
Ι	24.25883544191604	-3.27594844380104	7.02351277183013
Н	16.54657421033755	-5.22636518148418	2.40875222067531
Н	16.55272736039576	-3.55387930015795	3.09245008065473

References

- (a) M.-L. Ma, M. Li, J.-J. Gou, T.Y. Ruan, H.-S. Jin, L.-H. Zhang, L.C. Wu, X.Y. Li, Y.H. Hu and K. Wen, *Bio. & Med. Chem*, 2014, **22(21)**, 6117-6123. (b) J.Y. An, H.-H. Lee, J.S. Shin, H.S. Yoo, J. S. Park, S. H. Son, S. W. Kim, J. Yu, J. Lee and K.T. Lee, *Bio & Med Chem Lett*, 2017, **27**, 2613-2616. (c) V. N. Badavath, S. Ciftci-Yabanoglu, S. Bhakat, A. K. Timiri, B. N. Sinha, G. Ucar, M. E. Soliman and V. Jayaprakash, *Bio. chem*, 2015, **58**, 72-80. (d) Z. Du, H. Ng, K. Zhang, H. Zeng and J. Wang, *Org & Bio Chem*, 2011, **9**, 6930-6933. (e) X. Zhao, R. Fang, F. Wang, X. Kong and Y. Li, *JACS Au*, 2023.
- 2 (a) F. Neese, *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 2012, **2** (1), 73-78. (b) F. Neese, *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 2018, **8** (1), e1327.
- 3 C. Adamo and V. Barone, J. Chem. Phys, 1999, **110**, 6158-6170.
- 4 (a) E. Caldeweyher, C. Bannwarth and S. Grimme, *J. Chem. Phys*, 2017, **147**, 034112. (b) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, *Chem. Phys.*, 2019, **150**, 154122.
- 5 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 6 F. Neese, F. Wennmohs, A. Hansen, U. Becker, *Chem. Phys.*, 2009, **356 (1-3)**, 98-109.
- 7 V. Ásgeirsson, B. O. Birgisson, R. Bjornsson, U. Becker, F. Neese, C. Riplinger and H. Jónsson, J. Chem. Theory Comput., 2021, **17**, 4929-4945.
- 8 Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. *Chem. Rev.*, 2005, **105 (8)**, 2999-3094.