## The Microstructure and Protective Properties of Electroplating Zinc Films on NdFeB Magnet from a Chloride-free Nonaqueous Solution

Li Xiaoya, Ma Yongcun, Peng Shusen\*, Tian lixi

School of Materials Science and Engineering, Jiangxi Provincial Engineering Research Center for Surface Technology of Aeronautical Materials, Nanchang Hangkong University, Nanchang 330063, China

Corresponding Author\*: E-mail <a href="mailto:pengshs@nchu.edu.cn">pengshs@nchu.edu.cn</a>



**Figure S1** SEM surface morphology of Zn film at different distances from the proximal cathode electroplating from the 0.1M-EG bath: (a) 7-8 cm, (b) 6-7 cm, (c) 5-6 cm and (c) 4-5 cm.



**Figure S2** SEM surface morphology of Zn film at different distances from the proximal cathode electroplating from the 0.3M-EG bath: (a) 7-8 cm, (b) 6-7 cm, (c) 5-6 cm and (c) 4-5 cm.



**Figure S3** SEM surface morphology of Zn film at different distances from the proximal cathode electroplating from the 0.5M-EG bath: (a) 7-8 cm, (b) 6-7 cm, (c) 5-6 cm and (c) 4-5 cm.



**Figure S4** SEM surface morphology of Zn film at different distances from the proximal cathode electroplating from the 0.7M-EG bath: (a) 7-8 cm, (b) 6-7 cm, (c) 5-6 cm and (c) 4-5 cm.



Figure S5 The (002) reflection of  $Zn_{0.5M-3}$  and  $Zn_{0.7M-7}$  film on brass with corresponding FWHM.



Figure S6 The full-scale XPS spectra of  $Zn_{0.5M-3}$  and  $Zn_{0.7M-6}$  film.



**Figure S6** 

**Figure S7** The variation of current density with deposition time at different deposition potentials (a) in the 0.1M-EG bath and (b) in the 0.3M-EG bath (60 °C, vs Ag/AgCl). The fitting results of  $(I/I_{max})^2$  vs.  $t/t_{max}$  (c) the 0.1M-EG bath and (d) the 0.3M-EG bath.



**Figure S8** The cross-section morphology of the deposited Zn film on NdFeB from an aqueous alkaline zinc plating bath



Figure S9 XRD of the deposited  $Zn_{0.7M-6}$  film after immersing in 3.5 wt.% NaCl at different times.

From Figure S9, it can be observed that there are some  $Zn(OH)_2 \cdot 0.5H_2O$  and  $Zn(OH)_2$  in the initial stage of corrosion, and most of the Zn coating still exists

without losing its crystal structure and characteristics. Over time, a large amount of  $Zn_5(OH)_8Cl_2\cdot H_2O$  and  $Zn(OH)_2$ , as well as some  $Zn(OH)_2\cdot 0.5H_2O$ , began to appear in the film. In the end, only  $Zn_5(OH)_8Cl_2\cdot H_2O$  remained the corrosion product. It is speculated that the following reaction occurred:

$$Zn \rightarrow Zn^{2+} + 2e^{-} \tag{1}$$

$$Zn^{2+}+2H_2O \rightarrow Zn(OH)_2+2H^+$$
<sup>(2)</sup>

$$O_2 + 4e^- + 2H_2O \rightarrow 4OH^-$$

As the immersing time prolongs, the concentration of  $OH^-$  in the solution increases, resulting in the continuous generation of  $Zn (OH)_2$  and  $Zn(OH) \cdot 0.5H_2O$ . Due to the continuous consumption of  $OH^-$  by  $Zn^{2+}$ , the reaction (2) continues to proceed. This is also why  $Zn_5(OH)_8Cl_2 \cdot H_2O$  constantly increases.

(3)