Electronic Supplementary Information

Crystal structure, optical characterization, conduction and relaxation mechanisms in

the new hybrid compound (C₆H₉N₂)₂[Sb₂Cl₈]

I. Chaabane¹, W. Rekik², H. Ghalla³, M. Zaghrioui⁴, J. Lhoste⁵, A. Oueslati¹

¹Laboratory of spectroscopic characterization and optical materials, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia

²Laboratory Physical-Chemistry of Solid state, Chemistry department, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia

³Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia

⁴Université de Tours, Laboratoire GREMAN UMR-CNRS 7347, 15 rue de la Chocolaterie, IUT de Blois, 41029 Blois cedex, France

⁵Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

* Corresponding author. E-mail address: <u>oueslatiabderrazek@yahoo.fr</u>

Figure S1: EDS profile of $(C_6H_9N_2)_2[Sb_2Cl_8]$ crystals for different crystals.

Figure S2: The coordination sphere around antimony atom in $(C_6H_9N_2)_2[Sb_2Cl_8]$ (symmetry

code: ^I 1-x, -y, -z).

Figure S3: π - π interactions in the structure of $(C_6H_9N_2)_2[Sb_2Cl_8]$

Figure S4: Hydrogen bonds established by the protonated amines

Bond I	lengths (Å)	An	gle (°)
	[Sb ₂ Cl ₈] ²⁻	
Sb1-Cl1	2.8527(8)	Cl1-Sb1-Cl2	84.39(3)
Sb1-Cl2	2.3677(8)	Cl1-Sb1-Cl3	89.81(3)
Sb1-Cl3	2.4097(8)	Cl1-Sb1-Cl4	172.89(3)
Sb1-Cl4	2.4942(8)	Cl1-Sb1-Cl1 ^I	88.001(22)
Sb1-Cl1 ^I	3.0196(9)	Cl2-Sb1-Cl3	92.69(3)
		Cl2-Sb1-Cl4	88.93(3)
		Cl2-Sb1-Cl1 ^I	84.247(25)
		Cl3-Sb1-Cl4	92.95(3)
		Cl3-Sb1-Cl1 ^I	176.395(23)
		Cl4-Sb1-Cl1 ^I	88.913(25)
	[($C_{6}H_{9}N_{2}]^{+}$	
N1-C5	1.337(3)	C5-N1-C6	123.3(2)
N1-C6	1.354(4)	C1-C2-C3	122.2(3)
N2-C5	1.332(4)	C1-C2-C6	122.2(3)
C1-C2	1.501(4)	C3-C2-C6	116.1(3)
C2-C3	1.397(4)	C2-C3-C4	122.5(3)
C2-C6	1.352(4)	C3-C4-C5	119.5(3)
C3-C4	1.355(4)	N1-C5-N2	119.0(3)
C4-C5	1.399(4)	N1-C5-C4	117.1(3)
		N2-C5-C4	123.8(3)
		N1-C6-C2	121.5(3)
Symmetry c	code: ^I 1-x, -y, -z		

Table S1: Selected bond distances and angles (bond length in Å, bond angle in degrees).

D —H···A	<i>D</i> —Н	Н…А	D····A	D —Н…А	
N1-H1…Cl1	0.86	2.44	3.246(2)	156.3	
N2-H2A…Cl1	0.86	2.65	3.402(3)	146.9	
N2-H2B····Cl4 ^I	0.86	2.66	3.487(3)	162.6	
Symmetry code: ¹ x-1, y, z					

Table S2: Hydrogen bonding geometry (Å, °) in $(C_6H_9N_2)_2[Sb_2Cl_8]$.

Figure S5: Absorption spectrum predicted with TD-B3LYP-D3/LanL2DZ method in HCl solvent, superimposed to the experimental spectrum.

Figure S6: Variation of $(1/R)(dR/d\lambda)$ as a function of wavelength.

Figure S7: Tauc plot of $(C_6H_9N_2)_2[Sb_2Cl_8]$ compound.

No	E (cm ⁻¹)	λ(nm)	f (a.u)	Major contributions
1	3.38	356	0.0009	HOMO→LUMO (97%)
2	3.40	353	0.0001	HOMO→LUMO+1 (97%)
3	3.91	307	0.019	HOMO-1→LUMO (86%) ; HOMO-1→LUMO+1 (11%)
4	3.94	304	0.0227	HOMO-1→LUMO (10%) ; HOMO-1→LUMO+1 (87%)
5	4.15	289	0.0028	HOMO-2→LUMO (66%) ; HOMO-2→LUMO+1 (30%)
6	4.17	287	0.0059	HOMO-2→LUMO (27%) ; HOMO-2→LUMO+1 (63%)

Table S3: Absorption wavelength (λ) , excitation energy (E), and oscillator strength (f)along with the percentage of the major contribution of each electronic transitioncalculated by using the TD-B3LYP/LanL2DZ method in HCl solvent.

Parameters	Value
E _{HOMO} (eV)	-6.71
ELUMO (eV)	-2.67
$\Delta E_{ m HOMO-LUMO\ gap}\ (eV)$	4.04
Global Electrophilicity index ω (eV)	11.00
Electronegativity χ (eV)	4.69
Chemical potential (µ)	-4.69
Global hardness (η) (eV)	2.02
Global softness (ζ) (eV) ⁻¹	1.00

Table S4: TD–DFT calculations of HOMO-LUMO energy gap, chemical potential (μ), electronegativity (χ), global hardness (η), global softness (ζ), electrophilicity index (ω).