Electronic Supplementary Information (ESI)

Controllable fabrication of CoNi bimetallic alloy for high-performance electromagnetic wave absorption[†]

Hai Xie,^{abc} Jinmei Li,^{ac} Rui Yang,^{ac} Juan Yang,^d Tingmei Wang*^{abc} and Qihua

Wang*abc

^a Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
^c State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
^d Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China

*Corresponding author, E-mail address: tmwang@licp.cas.cn (T. Wang), wangqh@licp.cas.cn

(Q.

Wang).

Fig. S1. SEM images of (a) Co_3Ni/C and (b) $CoNi_3/C$.

Fig. S2. XRD pattern of CoNi-MOF.

Fig. S3. XRD patterns of CoNi/C-500 and CoNi/C-700.

Fig. S4. XPS survey spectra of (a) CoNi/C-500 and (b) CoNi/C-700.

Fig. S5. (a) Nitrogen adsorption-desorption isotherms of CoNi/C. (b) The corresponding BJH pore size distribution curve.

Fig. S6. Calculated RL curves at different thicknesses of (a) CoNi/C-500 and (c) CoNi/C-700.

The corresponding three-dimensional (3D) and contour RL representations of (c,e) CoNi/C-500

and (d,f) CoNi/C-700.

Fig. S7. Calculated RL curves at different thicknesses of (a) CoNi/C-40 and (c) CoNi/C-60. The corresponding three-dimensional (3D) and contour RL representations of (c,e) CoNi/C-40 and (d,f) CoNi/C-60.

Composites	С	0	Со	Ni
	at%	at%	at%	at%
CoNi/C-500	41.46	34.79	12.34	11.41
CoNi/C	44.69	33.23	10.93	11.15
CoNi/C-700	46.27	35.47	8.41	9.85

Table S1. Surface elemental contents of C, O, Co, and Ni in the composites from XPS spectra.

Composites	RL _{min} (dB)	Matching EAB	References	
		(GHz)		
Co/Co ₃ O ₄ @HCNs	-50.6	6.6	[1]	
CoZn/C@MoS2@PPy	-49.18	4.56	[2]	
Ni-MOF@N-C-500	-69.6	6.8	[3]	
Ni@C@ZnO	-55.8	4.1	[4]	
DM-700	-65.2	4.8	[5]	
CNT/FeCoNi@C	-51.7	6.0	[6]	
DM-700-3	-67.5	2.0 (5.0-7.0)	[7]	
Co-C composite	-48.5	6.1 (14.6-8.5)	[8]	
Cu-S-MOF	-52.8	6.72 (9.68-16.4)	[9]	
CoFe@C	-61.8	9.2 (8.8-18.0)	[10]	
Co ₁ Fe ₃ @C/RC	-20.2	10.0 (8.0-18.0)	[11]	
CoNi/C	-50.8	4.77 (12.99-17.76)	This work	

Table S2. Comparison for the electromagnetic wave absorption performance of CoNi/C with other MOF-based absorbers.

References

- 1. H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang, Y. Zhao, Y. Huang and P. Liu, *Nano-Micro Lett.*, 2022, **14**, 102.
- Y. Bi, M. Ma, Y. Liu, Z. Tong, R. Wang, K. L. Chung, A. Ma, G. Wu, Y. Ma, C. He, P. Liu and L. Hu, *J. Colloid Interface Sci.*, 2021, 600, 209 218.
- R. Jiang, Y. Wang, J. Wang, Q. He and G. Wu, J. Colloid Interface Sci., 2023, 648, 25– 36.
- L. Wang, X. Yu, X. Li, J. Zhang, M. Wang and R. Che, *Chem. Eng. J.*, 2020, 383, 123099.
- F. Wu, Q. Li, Z. Liu, T. Shah, M. Ahmad, Q. Zhang and B. Zhang, *Carbon*, 2021, 182, 484–496.
- Q. Hu, R. Yang, S. Yang, W. Huang, Z. Zeng and X. Gui, ACS Appl. Mater. Interfaces, 2022, 14, 10577–10587.
- F. Wu, L. Wan, Q. Li, Q. Zhang and B. Zhang, Compos. Part B: Eng., 2022, 236, 109839.
- 8. Q. Ma, R. Qiang, Y. Shao, X. Yang, R. Xue, B. Chen, Y. Chen and S. Feng, J. Colloid Interface Sci., 2023, 651, 106–116.
- P. Miao, N. Qu, W. Chen, T. Wang, W. Zhao and J. Kong, *Chem. Eng. J.*, 2023, 454, 140445.
- L. Wang, B. Wen, H. Yang, Y. Qiu and N. He, *Compos. Part A: Appl. Sci. Manuf.*, 2020, 135, 105958.
- 11. Y. Zhang, S. Gao, J. He, F. Wei and X. Zhang, Diamond Relat. Mater., 2024, 141,

110666.