
1

Supplementary Information

Equipping data-driven experiment planning for Self-driving Laboratories with
semantic memory: case studies of transfer learning in chemical reaction optimization

Riley J. Hickman,a Jurgis Ruz̆a,a Löıc M. Roch,a,⇤ Hermann Tribukait,a,† and Alberto Garćıa-Durán,a

aAtinary Technologies Inc, 1006 Lausanne, VD, Switzerland
⇤loic@atinary.com
†ht@atinary.com

S.1. NEURAL PROCESS MODEL DETAILS

Neural processes (NPs) [1] are a neural network based architecture which learn approximations of a stochastic
process. Like Gaussian processes (GPs), NPs learn to model distributions over functions and are able to estimate
uncertainty over their predictions conditioned on some set of context observations. Importantly, NPs can perform
inference in a computationally e�cient way. Given a trained NP, inference is essentially a forward pass of a neural
network, which is an O (n+m) operation compared to the O

�
(n+m)3

�
scaling of traditional GPs, with n context

and m target data points. Also, NPs inherently transcend functional design restrictions of GPs by inferring a kernel
implicitly from data. We are interested in learning implicit kernels which strongly resemble specific concepts in
chemistry and materials science, and apply them to related optimization problems.

The NP architecture consists of three models: a deterministic encoder, a latent encoder and a decoder. Each model
is a fully connected multi-layer perceptron (MLP). An MLP with n hidden layers is constructed as

�1 = act hidden(x · w0 + b0) , (5)

�2 = act hidden(�1 · w1 + b1) , (6)

...

�n = act hidden(�n�1 · wn�1 + bn�1) , (7)

�out = act out(�n · wout + bout). (8)

The computational graph of the latent variable NP is shown in Fig. S1. Context points {(xi, yi)}i2C are passed
through a deterministic and latent encoder. In the deterministic path, the encoder function produces the represen-
tation ri for each context point. These are then aggregated using a permutation invariant operation (mean) to form
the representation rC which is intended to summarize the encoded inputs.

The latent path produces a similar representation, sC , which is passed through an additional MLP to estimate
the parameters of the diagonal multivariate Gaussian distribution z ⇠ N (µ(MLP(r), I�(MLP(r))). Finally, rC , are
concatenated with samples from z, along with targeted input locations x⇤ and passed through the decoder which
parameterizes the Gaussian predictive posterior distribution p (y⇤|x⇤, rC , z)

During training, we use the Adam optimizer [2] to optimize the evidence lower bound (ELBO) to the log predictive
likelihood. At each iteration of the training process, we randomly select a training task and randomly select n of its m
input-output pairs as target points {(xi, yi)}ni=1, and select a subset of these points to be context points {(xi, yi)}ki=1,
where k < n  m. The loss function is

log p (yT |xT ,xC , yC) � Eq(z|sT) [log p (yT |xT , rC , z)]�KL (q(z|sT)||q(z|sC)) ,

� Eq(z|sT) [log p (yT |xT , rC , z)] + KL log
q(z|sC)

q(z|sT)
. (9)

xC and yC are used to abbreviate the context inputs and outputs for the training step (same for xT and yT for the
target points). sC (sT) is the latent path representation produced using the context (target) points.

A. Attentive neural processes

Although the mean-aggregation step reduces the runtime of the NP, it is well known that it acts as an information
bottleneck as taking the mean across all ri gives equal weight to each context point. This makes it di�cult for the

Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering.
This journal is © The Royal Society of Chemistry 2023

2

x1 y1

x2 y2

x3 y3

MLP�

MLP�

MLP�

MLP�

MLP�

MLP�

r1

r2

r3

s1

s2

s3

sC z

m rC

m �

MLPrC

z

x*

y*

x1 y1

x2 y2

x3 y3

MLP�

MLP�

MLP�

MLP�

MLP�

MLP�

r1

r2

r3

s1

s2

s3

sC z

r*

m �

MLPr*

z

x*

y*

Cross-
attention

x1 x2 x3

x*

m

�

Deterministic path

Latent path

Mean aggregation

Probabilistic sample

Neural Process (NP) Attentive Neural Process (ANP)

Encoder
Decoder

Encoder

Decoder

KeysValues

Query

FIG. S1: Schematic depiction of the neural process (left) and attentive neural process (right) model architectures. The key
di↵erence between the two models is that in the attentive model, the mean aggregation step is replaced by a cross-attention
mechanism which produces a query-specific representation code r⇤. In this work we do not use a self-attention mechanism in
the encoder of the attentive neural process. Instead, we use same vanilla MLP as in the neural process model.

decoder to learn which of the context points provides relevant information about a given target location x⇤. Attentive
neural processes (ANPs) address this bottleneck issue by replacing the mean-aggregation step with a cross-attention
mechanism. In this way, the target query location x⇤ attends to the key-value pairs of context points {(xi, yi)}i2C

and assigns weights wi to each context pair to give a query specific representation code, rC =
P

i
wiri. The best

performing attention mechanism reported in Ref. [3], multihead attention [4], is used. For each head, a learned linear
transformation is applied individually to the keys, values and queries, then dot-product attention is applied to give
head-specific values. These values are then concatenated and transformed linearly once more to give the final value.
For queries Q, keys K, and values V , multihead attention with H heads can be summarized as

Multihead (Q,K, V) = (head1, . . . , headH)W 2 Rm⇥dv , (10)

where (·, . . . , ·) denotes concatenation and

headi = DotProduct
⇣
QWQ

i
,KWK

i
, V WV

i

⌘
2 Rm⇥dv . (11)

DotProduct (Q,K, V) = softmax

✓
QKT

p
dk

◆
V 2 Rm⇥dv . (12)

Note that in Ref. [3], the authors also use a self-attention mechanism which replaces the vanilla MLP in the original
NP encoder. We choose not to use self-attention in this work since the problems we address are all in the low-data
regime.

B. Neural process hyperparameters

S.2. IMPLEMENTATION DETAILS OF RELATED META-LEARNING BAYESIAN OPTIMIZATION
STRATEGIES

In this section, details of our implementations of related Bayesian optimization strategies with access to historical
source data are given. All strategies are implemented in house using the BoTorch library [5],

3

Hyperparameter Encoder Decoder
hidden layers 3 2
hidden nodes 48 48

hidden activation ELU ELU
output activation linear linear

learning rate 5e4
batch size 100

batch norm momentum 0.98
batch norm epsilon 0.002

TABLE S3: Hyperparameters for the NP model used in this work. Hyperparameters were determined manually by assessing
the generalizability of hyperparameter settings to a wide range of tasks (i.e. with varying input and output dimensions, number
of data points, etc.).

A. Details of transfer acquisition function implementation (TAF)

Training on all of the source campaign data at once makes the assumption that each source task is equally important
for transfer to the target task. Also, for GP-based models, this may pose computational scaling issues given the O

�
n3
�

scaling of GPs with n training points. Transfer acquisition functions (TAFs) therefore propose to train an independent
GP model on each of the N source campaigns, including an N + 1th model which is iteratively trained on the target
campaign observations DT . TAFs then propose to transfer the information from the source campaigns to the target
campaign via the acquisition function,

↵(x) =
wN+1E [IN+1(x)] +

P
N

i=1 wiIi(x)P
N+1
i=1 wi

. (13)

The first term in the numerator corresponds to the N +1th GP model trained on DT , while the summation is over
the N source campaigns. Weights wi determine the influence each campaign has on the final acquisition function.
The critical step in TAF strategies is determining the values of each wi. The predicted improvement for the source
tasks is

Ii(x) = max
⇣
ymin
i

� Ŷi(x), 0
⌘
, (14)

where Ŷ (x) ⇠ N
�
µi(x),�2

i
(x)
�
is sampled from the predictive posterior distribution of the ith source campaign GP,

and ymin
i

is the best value achieved on that source campaign. The TAF is then a weighted average of the expected
improvement on the ground-truth target campaign observations DT and the predicted improvement on all source
campaigns {Dn}

N

n=1, where

E [IN+1(x)] = E
h
max

⇣
ymin
DT � Ŷ (x)

⌘
, 0 | DT

i
. (15)

We implement the TAF-ME strategy, which is a simple baseline strategy which assumes that all source tasks
contribute equally to the final acquisition, i.e. wi = 1/M + 1 8 i. All GP models use an isotropic Matern5/2 kernel
function.

B. Details of rank-weighted Gaussian process ensemble implementation (RGPE)

Feurer et al. proposed the rank-weighted Gaussian process ensemble (RGPE) approach to do meta-learning across
related optimization tasks [6, 7]. Similar to the TAF approaches, RGPE trains independent GPs on each of the
source tasks, and estimates the target task objective as a weighted sum of the target and source models. For M
source tasks and an additional target task, the GPs have posterior f i(x|D) with mean µi(x) and variance �2

i
(x). The

estimate of the target objective is

f̄(x|D) =
M+1X

i=1

wif
i(x|D) , (16)

4

which, importantly, is also a GP

f̄(x|D) ⇠ N

M+1X

i=1

wiµi(x),
M+1X

i=1

w2
i
�2
i
(x)

!
. (17)

The weights wi for model i are computed based on the ranking loss between draws from the posterior of model i
and the target task observations DM+1. Given |DM+1| = nM+1 > 1 target task measurements, the ranking loss is
formulated as the number of misranked pairs

L(f i,DM+1) =

nM+1X

k=1

nM+1X

l=1

1
�
(f(xM+1

k
) < f(xM+1

l
))� (yM+1

k
< tM+1

l
)
�
. (18)

1 is an indicator function, and � is the exclusive-or operation. The ranking-based loss assures that only the location
of the optimum is important, as opposed to the actual values of the predictions. The loss for the target model is
computed using leave-one-out cross validation, and is given by

L(fM+1,DM+1) =

nM+1X

k=1

nM+1X

l=1

1
�
(fM+1

�k
(xM+1

k
) <M+1

�k
(xM+1

l
))� (yM+1

k
< tM+1

l
)
�
, (19)

where fM+1
�k

denotes a model fit to all target task observations except for the kth point. Now, the weights are assigned
to each model according to the probability that it is the ensemble member with the lowest ranking loss. This probability
is estimated by boostrapping S samples from the model predictions on the validation set, i.e. `i,s ⇠ L(f i, Dboot

M+1,s).
wi is then computed as

wi =
1

S

SX

i=1

1(i 2 argmin

i0 , `i0,s)P
M+1
j=1 1(j 2 argmin

i0 , `i0,s))

!
. (20)

C. Details of Multi-task Gaussian process implementation (MTBO)

Multi-task Gaussian processes for Bayesian optimization (MTBO) were proposed by Swersky et al. [8]. This
approach defines a covariance function K((xk, i), (xl, j)) between parameter points x and the task, and uses a single
GP for all observations across all tasks, which are then learned jointly. Specifically, this approach is known as the
intrinsic model of coregionalization, which transfroms a latent function to produce each output. Formally, the kernel
function is

K((xk, i), (xl, j)) = Ki,j (i, j)⌦Kx (xk,xl) , (21)

where ⌦ is the Kronecker product, Ki,j measures the relationship between the tasks, and Kx measures the relationship
between the inputs. MTBO has a training complexity of O((M+1)3n3), where M is the number of total observations
and n is the number of tasks, and requires a expensive hyperparameter tuning routine.

D. Details of the deep kernel transfer implementation (DKT)

Deep kernels are models which combine neural networks with kernels to provide scalable and expressive closed-form
expressions for covariance [9, 10]. Given two input parameter instances x and x0 and a function f , the kernel k (x,x0)
is a covariance function which describes the joint variability of the outputs as a function of their parameter space
locations,

k (x,x0) = cov (f(x), f(x0)) . (22)

5

In our experiments, we use the Matérn kernel: a stationary kernel which generalizes the squared and absolute
exponential kernel. It is parameterized by ⌫, which we set to 2.5, giving twice di↵erentiable functions. In deep kernel
learning, input parameters x are mapped to an embedding vector h using a neural network with learnable weights �,
i.e. F�(x) 7! h. This embedding is then passed to a kernel

k (x,x0
|✓,�) = k0 (F�(x),F�(x

0)|✓) , (23)

where the neural network parameters � and kernel parameters ✓ are jointly learned using a single optimizer. Patacchi-
ola et al. introduced Deep kernel transfer (DKT), a Bayesian model for the meta-learning/few-shot setting which uses
deep kernels. More recently, Witsuba et al. extended the DKT method to a few-shot Bayesian optimization frame-
work [11]. Our DKT approach follows closely to that of Ref. [11]. The feature extractor network F� is constructed
using 3 densely connected layers. The initial 2 layers have 48 nodes, and the final has 40 nodes, i.e. |h| = 40. The
ReLU activation function is used for all hidden layers. The model is trained end-to-end using the Adam optimizer,
although we use a learning rate of 0.001 to adjust the neural network parameters, and a learning rate of 0.0001 to
adjust the parameters of the kernel.

S.3. TARGET CAMPAIGN ACQUISITION FUNCTIONS

Three target acquisition functions, (↵T in main text) are considered in this work. Gryffin is a general purpose BO
framework which is tailored to the needs of chemists and materials scientists [12]. Gryffin extends the ideas of the
Phoenics algorithm to categorical and mixed categorical-continuous parameter spaces. Phoenics is a linear-scaling
Bayesian optimization for continuous parameter spaces whose surrogate model relies on kernel density estimation [13].
For minimization problems, the acquisition function of Gryffin is defined as

↵T (x) =

P
n

k=1 fkpk(x) + �puniform(x)P
n

k=1 pk(x) + puniform(x)
, (24)

where pk(x) are the kernels of the kernel regression surrogate model, fk are the observed objective values, and � is
a user defined sampling parameter which biases the sampling behavior between exploitation and exploration. In all
our experiments, we alternate between � = 1 and � = �1 at each iteration. The acquisition function defined in Eq.
24 is to be minimized.

The expected improvement (EI) acquisition function is a commonly used function in the Bayesian optimization
literature. Given a black-box function f to be optimized, let f 0 be the best value of this function observed so far.
EI proposes to evaluate f at the parameter point at which we expect to improve on f 0 the most. The utility of a
parameter point x is then max (0, f 0

� f(x)), and the EI acquisition function is the expectation value of this utility,

↵T (x) = (µ(x)� f 0
� ⇠)� (Z) + �(x)� (Z) . (25)

Z =
µ(x)� f 0

� ⇠

�(x)
. (26)

where µ(x) and �(x) are respectively the surrogate model’s mean and standard deviation. � and � are the CDF
and PDF of the standard normal distribution. ⇠ is a tradeo↵ parameter which determines the amount of exploration
during optimization. We set ⇠ = 0.01 in all experiments.

Lastly, the upper confidence bound (UCB) acquisition function is

↵T (x) = µ(x) + ��(x) , (27)

where µ(x) and �(x) are respectively the surrogate model’s Gaussian mean and standard deviation. � > 0 is a tradeo↵
parameter that weights the importance of variance based sampling in the acquisition function. We set � = 0.01 in all
experiments.

S.4. ANALYTICAL BENCHMARKS

In all analytical benchmark optimization experiments, the goal of the target campaign is to minimize the reference

function. To generate source tasks for a continuous, d-dimensional reference function, we sample shift, t ⇠ [�0.1, 0.1]d

6

and scale, s ⇠ [0.9, 1.1] perturbations which are applied to the reference surface. For d-dimensional categorical

functions, we sample the parameters from t ⇠ [�0.3, 0.3]d and s ⇠ [0.8, 1.2]. A set of 30 source tasks for each
reference function are generated. For 2(3)-dimensional source campaigns we sample 50 (200) points using a Sobol
sequence, which are used to train the meta-learning strategies. A similar approach to generating analytical source
campaign datasets was employed previously by Volpp et al. [14]. Fig. S2 shows several samples for the source campaigns
generated for the 2-dimensional Goldstein-Price function.

FIG. S2: Contour plots showing examples of the source campaigns for the 2-dimensional Goldstein-Price target campaign.
The scale and shift parameters s and t are listed in subplot titles.

A. Continuous surfaces

We use three continuous-valued, d-dimensional analytical surfaces.

• Goldstein-Price (d = 2): This surface is evaluated in 2 dimensions on the square xi 2 [�2, 2] 8 i = 1, 2. The
global minimum of the surface is at f(x⇤) = 3 at x⇤ = (0,�1).

• AckleyPath (d = 3): This surface is characterized by a flat outer region with a large hole in the middle,

and has many local minima. The d-dimensional functional form is f(x) = �20 exp

✓
�0.2

q
1/d

P
d

i=1 x
2
i

◆
�

exp
⇣
1/d

P
d

i=1 cos(2⇡xi)
⌘
+ 20 + exp(1), evaluated on the hypercube xi 2 [�32.768, 32.768] 8 i = 1, . . . , d. The

global optima is located at x⇤ = (0, . . . , 0) with f(x⇤)

• Hartmann (d = 3): The 3-dimensional Hartmann function has 4 local optima and has the functional form

f(x) =
P4

i=1 ↵i exp
⇣
�
P3

j=1 Ai,j(xj , Pi,j)2
⌘
, where ↵ 2 R4,A 2 R3⇥3 and P 2 R4⇥3. The function is evaluated

on the hypercube xi 2 [0, 1] 8 i = 1, 2, 3, and features a global minimum at x⇤ = (0.114614, 0.555649, 0.85251)
with f(x⇤) = �3.86278.

The full results of the analytical tests on continuous surfaces are presented in Fig. S3 and S4. Fig. S3 compares
the performance of single-task strategies (dashed traces) with that of their SeMOpt extensions by first training on
the source campaign data and using the compound acquisition function of SeMOpt (solid traces of the same color).
Regret is used as the performance metric. In most instances, using SeMOpt improves optimization performance with

7

FIG. S3: Optimization traces for experiments on continuous surfaces comparing performance of single task strategies to their
meta-learning analogues using the SeMOpt formalism. Dotted traces depict single task strategies, and meta-learning strategies
are shown with solid traces of a matching color. Reported values represent the mean regret value over 40 independently seeded
runs.

respect to the single task strategies. In light of these tests, it appears that the benefit of using SeMOpt is greater
when the dimensionality of the parameter space is increased from 2 to 3.

Fig. S4 compares the optimization performance of techniques extended with SeMOpt (solid traces) to that of
meta-learning techniques for Bayesian optimization with access to historical campaign data, including TAF-ME,
RGPE, and DKT (alternating dotted and dashed traces). We also consider the ANP model, which both use the
expected improvement acquisition function. In most cases, SeMOpt outperforms TAF-ME and ANP. On the
2-dimensional Goldstein-Price function, RGPE outperforms all other techniques by a significant margin. On the
3-dimensional AckleyPath function, single task optimizers extended with SeMOpt outperform all other methods. On
the 3-dimensional Hartmann function, DKT, RGPE, and GPyOpt w/SeMOpt are the best performing methods.

FIG. S4: Optimization traces for experiments on continuous surfaces comparing performance of SeMOpt strategies to other
meta-learning optimization strategies. Solid traces depict SeMOpt strategies, while other meta-learning strategies are shown
with alternative dot-dash traces. Reported values represent the mean regret value over 40 independently seeded runs.

B. Categorical surfaces

We also use two categorical-valued, d-dimensional analytical surfaces, with n options per dimension.

• CatCamel (d = 2, n = 21): This surface features a degenerate and pseudo-disconnected global minimum. In
2-dimensions, it has global minima at (x0, x1) = (7, 11) and (x0, x1) = (14, 10).

• CatMichalewicz (d = 2, n = 21): This surface features a sharper well where the global optimum is located. The
number of psuedo-local minima scales factorially with the number of dimensions. It features a global minima
at (x0, x1) = (14, 10).

8

The results of the analytical tests on categorical functions are shown in Fig. S5 as overlayed box-and-whisker
and strip plots, which represent distributions of the percentage of total parameter space needed for each method to
identify the global optimum of the surface. A more e�cient optimization strategy should be able to identify the global
optimum with fewer evaluations. It should be noted that the CatCamel surface has two degenerate global optima,
thus we measure the number of evaluations taken to identify one of the two. The best performing methods for each
surface are indicated with an asterisk. For the CatCamel surface, DKT, along with all NP-based strategies have the
best performance, needing to explore roughly 1% of the space (4 � 5 evaluations). On the CatMichalewicz surface,
DKT and GPyOpt w/SeMOpt are the best performing methods, with much narrower distributions of explored
space needed to reach the global optimum than the NP-based strategies. Numerical results from this experiment are
summarized in Table S4. Median percentages of explored space are tabulated, along with the interquartile range in
parentheses.

FIG. S5: Results of the analytical tests on categorical surfaces. Overlayed box-and-whisker and swarm plots show the
distribution of the percent of total parameter space needed for each strategy to identify the (one of the) global optimum (optima)
of the function. For each method we conducted 40 independently seeded optimization runs. Best performing techniques are
indicated with an asterisk.

CatCamel CatMichalewicz
Random Search 26.24 (11.82, 48.13) 61.20 (33.03, 82.41)

Gryffin 12.67 (11.20, 19.57) 8.60 (4.98, 13.24)
GPyOpt 8.14 (5.49, 10.41) 4.64 (3.28, 6.11)
Falcon 32.47 (19.91, 59.28) 46.95 (19.85, 65.55)

Falcon-GPBO 9.50 (6.62, 10.18) 4.52 (3.68, 5.94)
TAF-ME 10.86 (5.03, 19.68) 5.20 (3.39, 7.47)
RGPE 12.44 (7.35, 44.63) 7.81 (3.56, 14.82)
DKT 1.24 (0.68, 2.15) 0.90 (0.57, 1.58)
NP 0.68 (0.62, 0.90) 8.82 (0.68, 9.28)
ANP 0.90 (0.62, 1.13) 0.90 (0.45, 6.11)

Gryffin w/SeMOpt 0.68 (0.68, 1.13) 0.45 (0.40, 8.48)
GPyOpt w/SeMOpt 0.90 (0.68, 1.19) 1.02 (0.40, 1.81)
Falcon w/SeMOpt 0.90 (0.45, 0.96) 10.18 (0.62, 49.32)

Falcon-GPBO w/SeMOpt 0.68 (0.45, 0.90) 0.79 (0.45, 8.82)

TABLE S4: Percentage of total parameter space needed for each optimization method to identify (one of) the global (optima)
optimum on analytical categorical functions. The median percentage of space explored is reported, along with the interquartile
range in parentheses. For each method we conducted 40 independently seeded optimization runs.

9

S.5. FULL RESULTS OF THE SIMULATED REACTION OPTIMIZATION EXPERIMENTS

In addition to the results presented in the main text, full results from our simulated reaction optimization ex-
periments are presented here. Additionally, we test the pure NP and ANP strategies, which both use the expected
improvement acquisition function. Optimization traces for the five reaction cases studied are shown in Fig. S6, and
numerical cumulative regret values are tabulated in Table S5. Values represent the mean cumulative regret after 20
yield evaluations, averaged over 20 independently seeded runs (± standard errors on the mean). The best performing
strategies are bolded, and statistical hypothesis testing was conducted using Welch’s t-test.

FIG. S6: Optimization traces for simulated reaction experiments. Traces show the best regret value (i.e. best yield value)
achieved for each strategy, averaged over 20 independently seeded executions. Dashed traces represent “näıve” strategies (no
access to source tasks), while solid traces represent meta-learning planners.

Case 1 Case 2 Case 3 Case 4 Case 5

Random Search 5.04± 0.38 5.70± 0.49 6.56± 0.40 6.79± 0.38 5.37± 0.42
Gryffin 4.72± 0.55 4.14± 0.53 5.74± 0.54 6.60± 0.42 4.34± 0.64
GPyOpt 4.22± 0.56 6.40± 0.78 5.83± 0.78 5.83± 0.52 5.51± 0.61
Falcon 4.44± 0.46 4.62± 0.47 5.99± 0.55 5.74± 0.36 3.80± 0.46

Falcon-GPBO 3.43± 0.39 2.99± 0.27 4.16± 0.31 5.33± 0.30 3.21± 0.34

TAF-ME 2.79± 0.15 2.88± 0.26 3.76± 0.18 4.57± 0.14 2.81± 0.12
RGPE 2.70± 0.20 2.77± 0.21 3.57± 0.17 4.53± 0.17 2.47± 0.23
DKT 2.31± 0.51 3.27± 0.59 2.99± 0.29 5.00± 0.60 3.69± 0.83
MTBO 1.73± 0.16 1.69± 0.16 2.91± 0.29 3.70± 0.15 1.64± 0.11
NP 1.09± 0.10 0.86± 0.10 1.87± 0.08 3.43± 0.08 0.95± 0.07
ANP 1.00± 0.08 0.92± 0.12 1.89± 0.09 3.36± 0.08 0.90± 0.08

Gryffin w/SeMOpt 0.84± 0.08 0.76± 0.09 1.90± 0.09 3.35± 0.07 0.96± 0.07
Falcon w/SeMOpt 0.90± 0.08 0.85± 0.10 1.87± 0.08 3.39± 0.07 1.02± 0.10

Falcon-GPBO w/SeMOpt 0.99± 0.06 0.95± 0.08 2.01± 0.07 3.46± 0.06 1.00± 0.06

TABLE S5: Cumulative regret values over 20 optimization iterations averaged over 20 independently seeded runs for each
simulated reaction case (reported with standard errors on the mean). The values for the best performing strategies in each
case are bolded. Hypothesis testing was conducted using Welch’s t-test.

10

S.6. FULL RESULTS AND DETAILS OF THE BUCHWALD-HARTWIG REACTION OPTIMIZATION
EXPERIMENTS

In this section, full results of the Buchwald-Hartwig reaction optimization experiments are given, along with some
additional details on the dataset. Fig. S7 shows the distributions of yield values reported by Ahneman et al. [15]
independently for each aryl halide. Fig. S9-S11 show overlayed box-and-whisker and strip plots of the distributions of
number of yield evaluations taken by each optimization strategy to identify a top-10, top-5 and top-2 yield, respectively.
The best performing strategies for each aryl halide are denoted with an asterisk. Table S6 organizes the mean number
of evaluations needed to reach a top-10, top-5 and top-2 yield for each strategy on each of the five aryl halide tasks
(with ± standard error on the mean). Numerical values are averages over 40 independently seeded runs. The best
performing strategies are bolded. Statistical hypothesis tests are conducted using a Wilcoxon signed-rank test.

FIG. S7: Histogram of yield values for each aryl halide reported in Ahneman et al. [15].

FIG. S8: Rank of the best performing candidate found by each of the studied optimization strategies averaged over 40
independently seeded optimization runs. Reaction conditions for each aryl halide are ranked with respect to their associated
yield measurement, i.e. rank 1 corresponds to the reaction conditions which produce the highest yield for that aryl halide.

11

FIG. S9: Overlayed box-and-whisker and strip plots show the distributions of the number of evaluations needed for optimization
strategies to evaluate reaction conditions leading to a top-10 yield measurement for each aryl halide. Each strategy is executed
independently 40 times. Best performing strategies for each case are indicated with an asterisk.

FIG. S10: Overlayed box-and-whisker and strip plots show the distributions of the number of evaluations needed for opti-
mization strategies to evaluate reaction conditions leading to a top-5 yield measurement for each aryl halide. Each strategy is
executed independently 40 times. Best performing strategies for each case are indicated with an asterisk.

[1] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W. Teh, “Neural Processes,”
arXiv:1807.01622 [cs, stat], July 2018. arXiv: 1807.01622.

[2] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980 [cs], Jan. 2017. arXiv:
1412.6980.

[3] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and Y. W. Teh, “Attentive Neural
Processes,” arXiv:1901.05761 [cs, stat], Jan. 2019. arXiv: 1901.05761.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin, “Attention is All you
Need,” in Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[5] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy, “Botorch: A framework for
e�cient monte-carlo bayesian optimization,” 2020.

[6] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, “E�cient and Robust Automated Machine
Learning,” p. 9.

[7] M. Feurer, J. T. Springenberg, and F. Hutter, “Using Meta-Learning to Initialize Bayesian Optimization of Hyperparam-
eters,” p. 8.

[8] K. Swersky, J. Snoek, and R. P. Adams, “Multi-Task Bayesian Optimization,” in Advances in Neural Information Processing
Systems 26 (C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, eds.), pp. 2004–2012, Curran
Associates, Inc., 2013.

[9] G. E. Hinton and R. R. Salakhutdinov, “Using deep belief nets to learn covariance kernels for gaussian processes,” in
Advances in Neural Information Processing Systems (J. Platt, D. Koller, Y. Singer, and S. Roweis, eds.), vol. 20, Curran
Associates, Inc., 2007.

[10] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel learning,” in Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (A. Gretton and C. C. Robert, eds.), vol. 51 of Proceedings of Machine
Learning Research, (Cadiz, Spain), pp. 370–378, PMLR, 09–11 May 2016.

[11] M. Wistuba and J. Grabocka, “Few-Shot Bayesian Optimization with Deep Kernel Surrogates,” arXiv:2101.07667 [cs],
Jan. 2021. arXiv: 2101.07667.

12

FIG. S11: Overlayed box-and-whisker and strip plots show the distributions of the number of evaluations needed for opti-
mization strategies to evaluate reaction conditions leading to a top-2 yield measurement for each aryl halide. Each strategy is
executed independently 40 times. Best performing strategies for each case are indicated with an asterisk.

[12] F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, and A. Aspuru-Guzik, “Gry�n: An algorithm for Bayesian optimization
of categorical variables informed by expert knowledge,” Applied Physics Reviews, vol. 8, p. 031406, Sept. 2021. Publisher:
American Institute of Physics.

[13] F. Häse, L. M. Roch, C. Kreisbeck, and A. Aspuru-Guzik, “Phoenics: A Bayesian Optimizer for Chemistry,” ACS Central
Science, vol. 4, pp. 1134–1145, Sept. 2018.

[14] M. Volpp, L. P. Fröhlich, K. Fischer, A. Doerr, S. Falkner, F. Hutter, and C. Daniel, “Meta-Learning Acquisition Functions
for Transfer Learning in Bayesian Optimization,” arXiv:1904.02642 [cs, stat], Feb. 2020. arXiv: 1904.02642.

[15] D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher, and A. G. Doyle, “Predicting reaction performance in C–N cross-
coupling using machine learning,” Science, vol. 360, pp. 186–190, Apr. 2018. Publisher: American Association for the
Advancement of Science Section: Report.

13

top-m Aryl halide 1 Aryl halide 5 Aryl halide 8 Aryl halide 9 Aryl halide 15

Random Search

10 26.35 ± 3.67 24.55 ± 2.70 28.18 ± 3.77 25.30 ± 3.41 28.27 ± 3.60
5 40.10 ± 4.94 50.30 ± 6.80 57.73 ± 5.87 52.60 ± 7.35 54.05 ± 6.78
2 79.47 ± 10.14 91.53 ± 9.70 99.92 ± 10.20 91.25 ± 9.03 104.95 ± 10.12

Gryffin

10 18.85 ± 2.64 12.80 ± 1.36 24.43 ± 3.17 18.20 ± 2.21 18.07 ± 2.20
5 29.80 ± 3.67 17.60 ± 1.69 37.42 ± 4.69 29.27 ± 3.71 27.68 ± 3.09
2 47.08 ± 4.75 34.58 ± 3.71 70.97 ± 7.92 63.90 ± 6.89 55.70 ± 6.13

GPyOpt

10 10.93 ± 1.45 20.70 ± 1.86 15.75 ± 1.86 13.00 ± 1.24 14.15 ± 1.70
5 12.65 ± 1.42 23.45 ± 2.11 23.05 ± 2.24 17.30 ± 1.37 17.67 ± 1.76
2 17.07 ± 1.54 25.73 ± 2.12 28.15 ± 2.43 26.57 ± 1.64 25.08 ± 1.78

Falcon

10 28.48 ± 3.43 19.77 ± 2.76 29.25 ± 4.15 24.18 ± 3.10 48.17 ± 7.29
5 49.58 ± 4.70 79.00 ± 8.70 86.33 ± 8.63 40.83 ± 4.71 62.15 ± 7.66
2 113.55 ± 8.93 105.33 ± 7.43 109.35 ± 9.30 81.65 ± 7.54 96.20 ± 8.46

Falcon-GPBO

10 9.80 ± 1.17 14.28 ± 1.20 15.38 ± 1.78 14.47 ± 1.50 13.43 ± 1.68
5 13.70 ± 1.28 19.60 ± 1.45 23.35 ± 2.19 17.73 ± 1.74 18.52 ± 1.69
2 16.27 ± 1.40 25.15 ± 1.58 29.90 ± 2.63 24.50 ± 1.92 27.80 ± 1.88

TAF-ME

10 8.55 ± 0.89 18.73 ± 1.67 16.32 ± 2.17 12.97 ± 1.62 14.90 ± 2.63
5 11.47 ± 0.93 23.40 ± 2.20 22.20 ± 2.98 20.62 ± 2.14 19.07 ± 2.54
2 16.35 ± 1.31 33.52 ± 2.99 29.60 ± 3.32 34.23 ± 2.94 28.05 ± 3.12

RGPE

10 11.93 ± 1.85 22.38 ± 1.79 17.95 ± 2.50 12.05 ± 1.79 18.98 ± 3.05
5 14.53 ± 1.72 29.43 ± 2.73 23.40 ± 3.06 19.15 ± 2.90 21.32 ± 2.95
2 18.48 ± 2.32 42.65 ± 3.83 28.50 ± 3.16 35.05 ± 4.21 38.60 ± 3.49

DKT

10 12.38 ± 1.92 27.77 ± 3.44 6.83 ± 0.57 7.25 ± 0.65 9.57 ± 0.89
5 15.32 ± 2.17 53.38 ± 3.62 7.45 ± 0.80 11.85 ± 1.40 17.27 ± 3.52
2 16.68 ± 2.23 234.75 ± 9.65 13.55 ± 2.19 17.05 ± 2.75 32.52 ± 6.95

NP

10 3.17 ± 0.37 4.20 ± 0.66 2.50± 0.13 2.75± 0.19 2.62± 0.16
5 3.27 ± 0.39 4.28 ± 0.66 3.60± 0.69 3.98± 0.71 2.95± 0.22
2 14.62± 2.17 18.00 ± 1.86 4.95± 0.93 4.00± 0.71 3.90± 0.65

ANP

10 2.23± 0.12 2.08± 0.04 3.17 ± 0.18 6.22 ± 0.84 2.83± 0.11
5 2.27± 0.11 2.33± 0.23 4.95± 0.98 6.97± 0.99 4.70 ± 0.29
2 14.10± 1.82 8.25± 1.52 11.40 ± 1.55 7.17 ± 0.98 6.83± 1.09

Gryffin w/SeMOpt

10 2.33± 0.17 2.10± 0.05 3.95 ± 0.22 6.78 ± 1.40 2.88± 0.14
5 2.38± 0.17 2.17± 0.09 4.92± 0.65 8.20± 1.54 4.80 ± 0.30
2 11.65± 2.19 6.70± 1.80 12.10 ± 1.82 14.62 ± 4.06 11.43± 3.74

Falcon w/SeMOpt

10 2.15± 0.11 2.15± 0.13 3.62 ± 0.22 7.88 ± 1.67 3.23 ± 0.22
5 3.15± 0.78 2.23± 0.13 19.90 ± 6.75 11.43± 3.63 4.95 ± 0.30
2 52.42 ± 9.93 15.57± 5.63 54.75 ± 10.95 25.52 ± 7.42 12.60± 5.13

Falcon-GPBO w/SeMOpt

10 2.02± 0.07 2.02± 0.02 3.67 ± 0.17 6.17 ± 0.83 2.95± 0.15
5 2.08± 0.05 2.77± 0.59 4.47± 0.63 7.33± 1.10 4.78 ± 0.29
2 11.00± 1.54 6.60± 1.24 9.88 ± 1.18 9.18 ± 1.56 9.72± 1.67

TABLE S6: Number of evaluations needed for strategies to identify the additive, catalyst and base setting corresponding to one
of the top-m (m = {10, 5, 2}) yields for the respective aryl halide in Ahneman et al. [15]. We report the number of evaluations
needed to identify a top-10, top-5 and top-2 yield value. Numerical values are averages over 40 independently seeded runs and
are reported with standard errors on the mean. The best performing strategy for each of the target aryl halides and each of
the top-m metrics are bolded. Statistical hypothesis tests are conducted using a Wilcoxon signed-rank test.

	Introduction
	Problem Setup
	General optimization framework

	Related work
	Methods
	Analytical benchmarks
	Continuous and categorical analytical tests with correlated source campaigns
	Effect of varying source campaign informativeness on optimization performance

	Optimization of simulated cross-coupling reactions
	Optimization of palladium-catalyzed Buchwald-Hartwig cross-coupling of aryl halides
	Discussion and Concluding Remarks
	Limitations and future development
	Conclusion

	Conflicts of Interest
	Acknowledgments
	Author Contributions
	Code and Data Availability
	References
	Supplementary Information6pt Equipping data-driven experiment planning for Self-driving Laboratories with semantic memory: case studies of transfer learning in chemical reaction optimization 6pt Riley J. Hickman,a Jurgis Ruz̆a,a Loïc M. Roch,a,* Hermann Tribukait,a, and Alberto García-Durán,a 6pt aAtinary Technologies Inc, 1006 Lausanne, VD, Switzerland *loic@atinary.com ht@atinary.com

	Neural process model details
	Attentive neural processes
	Neural process hyperparameters

	Implementation details of related meta-learning Bayesian optimization strategies
	Details of transfer acquisition function implementation (TAF)
	Details of rank-weighted Gaussian process ensemble implementation (RGPE)
	Details of Multi-task Gaussian process implementation (MTBO)
	Details of the deep kernel transfer implementation (DKT)

	Target campaign acquisition functions
	Analytical benchmarks
	Continuous surfaces
	Categorical surfaces

	Full results of the simulated reaction optimization experiments
	Full results and details of the Buchwald-Hartwig reaction optimization experiments
	References

