Supporting Information

Electrocatalytic conversion of waste polyethylene furanoate(PEF) for the production of formic acid and hydrogen energy

Liwen Ren¹, Sen Yang², Jianying Wang², Ting Zhang², Xin Li², Tianfu Wang^{2,3*}, and Yixin Zhao^{2,3*}

- 1. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

*Corresponding Author.

E-mail: tfwang@sjtu.edu.cn (Tianfu Wang)

yixin.zhao@sjtu.edu.cn (Yixin Zhao)

Figures

Figure. S1. Low- and high-magnification SEM images of the $MnCo_2O_4$, $ZnCo_2O_4$, $CoCo_2O_4$, $FeCo_2O_4$, and $CuCo_2O_4$ nanoplate or nanowire arrays directly grown on NF.

Figure. S2. Cyclic voltammetry curves in 1 M KOH solution with (red) and without (black) the presence of 0.1 M PEF hydrolysate for MCo_2O_4 .

Figure. S3. Capacitative charging currents of MCo_2O_4 electrode, as indicated in the figures, in the non-Faradaic potential region between -0.05 V - 0.05 V vs. SSCE at scan rates from 2 to 10 mV/s at an interval of 5 mV in 1 M KOH.

Figure. S4. EG conversion, Faradaic efficiency and formate yield of the electrolysis at 1.40 V using NiCo₂O₄ electrode in 1 M KOH solution with 0.1 M EG for 3h.

Figure. S5.Controlled-potential electrolysis at 1.40 V of NiCo_2O_4 electrode in 1 M KOH solution with and without 0.1 M PEF hydrolysate.

Figure. S6. HPLC spectrum of the mixed solution with concentration of KOH and H_2SO_4 . The results data indicates that the peak at 6.0 and 6.5 min can be considered as background peak.

Figure. S7. Standard HPLC spectrum of various potential products derived from the EG oxidation, including (A) formic acid (B) oxalic acid (C) glycolic acid (D) glyoxylic acid.

Figure. S8. LSV curves of NiCo₂O₄ in 1 M KOH solution with and without adding 0.1 M formic acid.

Figure. S9. HPLC spectrum of the glycollic acid oxidation products at the constant potential of 1.40 V with different amounts of charge passed.