Supporting Information

Synthesis of [⁶⁸Ga]Ga-PSMA-11 using amide[™] microfluidic platform

Olga Ovdiichuk, *^a Quentin Béen, ^a Laurent Tanguy, ^b Charlotte Collet ^{a,c}

- ^a Nancyclotep, Molecular Imaging platform, 54500 Vandoeuvre-les-Nancy, FRANCE
- ^b PMB-Alcen, France
- ^c Université de Lorraine, Inserm, IADI, F-54000 Nancy, France
 - * Correspondence: o.ovdiichuk@nancyclotep.com (OO)

Table of contents:

 Table 1 - Schematic representation of the steps used for the production of [⁶⁸Ga]Ga-PSMA-11 on the

 iMiDEV cassette

 S1-S5

 Table 2. Details on manufacturing changes in beads filling of different batches of cassettes iMiDEV S6

Figure 1. Distribution of cassettes batches as function of their bead's density and trapping flowrate in R1 chamber: top image – cassettes with R1 filled with PS-H+ resin; bottom image – cassettes with R1 filled with MCX beads S6-S7

Table 3. Results of pH measurements for mixtures of sodium acetate solution 0.8M and acidifiedsodium chloride solution 3M/5M prepared and measured off-cassetteS7

Figure 2. Variation of the mixture pH as a function of the eluent compositionS8

Figure 3. Cerenkov and white light images obtained after the [⁶⁸Ga]Ga-PSMA-11 production using the cassette with formulation in R4 (a, b) and in R3 (c, d) chambers **S8**

Figure 4. Overlayed radiochromatograms of [⁶⁸Ga]Ga-PSMA-11, demonstrating its stability within 4 h from the final product delivery **S9**

Table 1. : Schematic representation of the steps used for the production of [⁶⁸Ga]Ga-PSMA-11 on the iMiDEV cassette

- Vial A (4 mL): 5 M NaCl (130 μ L) + 0.1 M HCl (220 μ L) for MCX
- Vial C (0.3 mL): 0.8 M AcONa (140 μL) + PSMA-11 (10 μL)
- Vial E (4 mL): empty
- Vial F (4 mL): EtOH (0.8 mL)
- Vial G (15 mL): H₂O (4 mL)
- Vial H (15 mL): NaCl 0,9% (8 mL)
- External Vial with isotope (10 mL): ⁶⁸GaCl₃ (1.5 mL)
- Collection vial (15 mL): empty

Open MFVs and EVs represented in green.

Details on manufacturing changes	Beads filling*	
Batch < 33	Manual filling of the beads, some voids are observable. Lack of stability and repetability	
Batch 33 to 48	Automated filling of the chamber with vibrations, filling cycles and no control	
Batch > 49*	Automated filling of the chamber with vibrations, filling cycles and control on the flowrate through the chamber	

Table 2. Details on manufacturing changes in beads filling of different batches of cassettes iMiDEV

*The beads are filled during cassette manufacturing by gravity, then pushed with compressed air, and helped to settle with ultrasonic vibration before final testing, packaging, and gamma irradiation.

Figure 1. Distribution of cassettes batches as function of their bead's density and trapping flowrate in R1 chamber: top image – cassettes with R1 filled with PS-H+ resin; bottom image – cassettes with R1 filled with MCX beads.

Table 3. Results of pH measurements for mixtures of sodium acetate solution 0.8M and acidified sodium chloride solution 3M/5M prepared and measured off-cassette; the A+B combinations providing the good pH for complexation yields are highlighted in green and blue.

Volume A (NaCl+HCl)	Volume B (0,8M AcONa)	pH A+B (A : 3M NaCl + 2.5% HCl _{30%})	pH A+B (A : 5M NaCl+0,1M HCl)
0%	100%	7,7	7,87
10%	90%	5,99	6,67
20%	80%	5,51	6,27
25%	75%	5,36	6,12
30%	70%	5,24	6
40%	60%	4,95	5,76
45%	55%	4,82	5,61
50%	50%	4,65	5,5
55%	45%	4,55	5,39
60%	40%	4,38	5,25
70%	30%	3,9	4,99
80%	20%	1,15	4,65
90%	10%	0,39	3,71
100%	0%	0,14	0,92

Figure 2. Variation of the mixture pH as a function of the eluent composition

Figure 3. Cerenkov and white light images obtained after the [⁶⁸Ga]Ga-PSMA-11 production using the cassette with formulation in R4 (a, b) and in R3 (c, d) chambers.

Figure 4. Overlayed radiochromatograms of [⁶⁸Ga]Ga-PSMA-11, demonstrating its stability within 4 h from the final product delivery.