Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Organosilica-based deformable nanopesticides with enhanced insecticidal activity prepared by flash nanoprecipitation

Enguang Ma,^a Zhinan Fu,^{*b} Liang Sun,^a Kai Chen,^{*a} Zhiyong Liu,^a Zhong Wei,^a

Li Li,^b and Xuhong Guo^{* a, b}

^aSchool of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000

Xinjiang, P.R. China

^bState Key Laboratory of Chemical Engineering, East China University of Science

and Technology, 200237 Shanghai, P.R. China

*To whom correspondence should be addressed. E-mail: fuzhinan@ecust.edu.cn (Z. N. Fu), chenkai@shzu.edu.cn (K. Chen), guoxuhong@ecust.edu.cn (X. H. Guo)

Multilayer model is a commonly used but comprehensive approach for modeling the scattering intensity of silica nanoparticles.¹ The scattering intensity of a HMON can be split into two main contributions as follows.

$$I(q,r) = I_{CS}(q,r) + I_{in}(q)$$
(1)

Here, $I_{CS}(q,r)$ is the contribution of the entire cavity-shell structure of the nanoparticle. For spherical symmetric silica nanoparticles with radius R, $I_{CS}(q,r)$ equals to the square of scattering amplitude B(q) which can be calculated by Eq 2.

$$B(q) = 4\pi \int_{0}^{R} \left[\rho^{e}(r) - \rho_{s}^{e}\right] \frac{\sin(qr)}{qr} r^{2} dr$$
(2)

Here, $\rho^{e}(r)$ is the electron density of silica nanoparticle and ρ_{s}^{e} is the electron density of solvent. Thus, $\Delta \rho = \rho^{e}(r) - \rho_{s}^{e}$ denotes the excess radial electron density between silica particles and the solvent. The radius of thickness of silica shell is divided into five layers.²

The second term $I_{in}(q)$ is originated from the static inhomogeneities which are distributed at random in the silica shell. The calculation of $I_{in}(q)$ is expressed by Eq 3.

$$I_{in}(q) = I_{in}(0)exp^{(0)}(-r_g^2 q^2)$$
(3)

Where is $I_{in}(0)$ regarded as an adjustable parameter and r_g represents the radius of gyration of the static inhomogeneities.³

Fig. S1. FTIR spectra of the HMONs.

Fig. S2. (a) Nitrogen adsorption/desorption isotherms, (b) mesopore size distribution of the HMONs.

Fig. S3. Effect of CTAB concentration on the average particle size and PDI value_of the HMONs.

Fig. S4. Analysis of N, C, H, and S elements in four thioether-bridged organosilica nanoparticles.

Fig. S5. Drug loading efficiency of different Abm-loaded NPs formulations.

onaged organosmed nanoparticles				
Sample	N (%)	C (%)	H (%)	S (%)
NPs-1	0.03±0.03	13.89±1.34	3.99±0.26	5.74±0.03
NPs-2	0.13 ± 0.02	16.88 ± 0.46	4.37±0.08	$6.90{\pm}0.06$
NPs-3	0.12 ± 0.02	18.96±1.29	4.47±0.29	11.04±0.09
NPs-4	0.01±0.04	23.53±0.53	4.77±0.12	16.29±0.06
NPs-4	0.01±0.04	23.53±0.53	4.77±0.12	16.29±0

Table S1 Analysis of the elemental content of N, C, H, and S in four thioetherbridged organosilica nanoparticles

References

(1) Yang, Q.; Li, L.; Zhao, F.; Han, H.; Wang, W.; Tian, Y.; Wang, Y.; Ye, Z.;Guo, X. J. Mater. Sci. 2018, 54, 2552-2565.

(2) Han, H.; Li, L.; Wang, W.; Tian, Y.; Wang, Y.; Wang, J.; von Klitzing, R.;Guo, X., *Langmuir*, 2017, **33**, 9857-9865.

(3) Dingenouts, N.; Norhausen, C.; Ballauff, M., *Macromolecules*, 1998, **31**, 8912-8917.