Supplementary information

Microwave-assisted impregnation of highly dispersed Mo over HZSM-5 using various Mo precursors for methane dehydroaromatization

Deepti Mishra^{1,2}, Sonit Balyan¹, K. K. Pant^{1*}, Xiu Song Zhao², Muxina Konarova²

¹Department of Chemical Engineering, IIT Delhi, New Delhi -110016, India

²School of Chemical Engineering, The University of Queensland, St Lucia Campus, QLD

4072, Australia

*Corresponding Author: kkpant@chemical.iitd.ac.in

Table of contents

Figure S1 XRD Pattern of Synthesized orthorhombic and hexagonal MoO3 oxide precursors

Figure S2 UV-Raman spectra of Synthesized orthorhombic and hexagonal MoO₃ oxide precursors

Figure S3 FESEM (a, b) and TEM images (c, d) of parent HZSM-5

Figure S4 XRD pattern of (a) parent HZSM-5 and synthesized Mo/HZSM-5 catalysts at $2\theta = 5-50^{\circ}$ and (b) extended XRD pattern of fresh catalysts from $2\theta = 24-28.8^{\circ}$

Figure S5 FTIR spectra of HZSM-5 and Mo modified Mo/HZSM-5 catalysts (a) 4000-390 cm⁻¹ wavenumber range (b) expanded hydroxylic region between the 3800-3200 cm⁻¹ range.

Figure S6 EDS graph of Figure 2(e)i Mo/HZSM-5(P) and 2(h)I MoH2-4M catalyst

Figure S7(a) X-ray photoelectron spectra of freshly prepared Mo-doped HZSM-5 catalysts, and (b) carburized Mo-doped HZSM-5 catalysts (in a mixture of $CH_4:H_2$ (3:1) for 5 h at 550 °C).

Table S1. Measured and nominal Mo content in synthesized Mo/HZSM-5 catalysts

 Table S2. Deconvolution results of ²⁹Si MAS NMR and relative population of Al in Al MAS

 NMR spectra

Figure S1 XRD Pattern of Synthesized orthorhombic and hexagonal MoO3 oxide precursors

Figure S2 UV-Raman spectra of Synthesized orthorhombic and hexagonal MoO₃ oxide precursors

Figure S3 FESEM (a, b) and TEM images (c, d) of parent HZSM-5

Figure S4 XRD pattern of (a) parent HZSM-5 and synthesized Mo/HZSM-5 catalysts at $2\theta = 5-50^{\circ}$ and (b) extended XRD pattern of fresh catalysts from $2\theta = 24-28.8^{\circ}$

Figure S5 FTIR spectra of HZSM-5 and Mo modified Mo/HZSM-5 catalysts (a) 4000-390 cm⁻¹ wavenumber range (b) expanded hydroxylic region between the 3800-3200 cm⁻¹ range.

Figure S6 EDS graph of Figure 2(e)i Mo/HZSM-5(P) and 2(h)I MoH2-4M catalyst

Table S1. Measured and nominal Mo content in synthesized Mo/HZSM-5 catalysts

Catalysts	NominalNominalcontent (wt.%)	Mo	Measured MP-AES (wt.%)	Measured EDX (wt.%)	SEM-
Mo/HZSM-5(P)	5		4.8	5.2	
MoC1	5		4.9	5.1	
МоН2	5		5.1	5.2	
MoH2-4M	5		4.6	4.7	

Table S2. Deconvolution results of ²⁹Si MAS NMR and relative population of Al in Al MASNMR spectra

catalyst	Si(nAl) site	²⁹ Si shift (ppm)	Area (rel. %)	Si/Al _{FR}	Chemical shift ppm (²⁷ Al MAS NMR)	Relative population (%)
HZSM-5	Si(0 Al)	-111.8 -116.6	36.8 49.2	15.6	57.6 -0.0	98.1 1.7
	Si (1Al)	-107.1 -104.3	7.3 6.8			
Mo/HZSM-5 (P)	Si(0 Al)	-113.7 -116.9	16.5 67.1	16.1	56.6 +5.04 +15.2	60.1 14.2 25.3
	Si (1Al)	-104.0 -102.8	10.1 6.2			
MoC1	Si(0 Al)	-110.6 -115.9	19.7 64.7	15.8	55.9 +5.03	85.6 14.4
	Si (1Al)	-106.7 -102.4	10.1 5.6			
MoH2	Si(0 Al)	-111.9 -116.3	16.6 31.8	15.3	55.1 +5.3	88.9 11.1
	Si (1Al)	-105.6 -103.3	15.4 35.5			

MoH2-4M	Si(0 Al)	-109.6 -115.8	16.8 43.6	15.9	55.3 +5.12	76.8 19.3
	Si (1Al)	-104.5 -102.3	23.4 15.7			

Figure S7(a) X-ray photoelectron spectra of freshly prepared Mo-doped HZSM-5 catalysts, and (b) carburized Mo-doped HZSM-5 catalysts (in a mixture of $CH_4:H_2$ (3:1) for 5 h at 550 °C).