Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Aromatic hydroxylation of substituted benzenes by an unspecific peroxygenase from *Aspergillus brasiliensis*

Fabian Schmitz^a, Katja Koschorreck^a, Frank Hollmann^b and Vlada B. Urlacher *^a

^aInstitute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.

^bDepartment of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL Delft, Netherlands

*Corresponding author: vlada.urlacher@uni-duesseldorf.de

Table of contents

1	Mat	erial & Methods	2
	1.1	Fed-batch process	2
	1.2	LC/MS elution profile for detection of 23	2
2	Resu	ılts	3
	2.1	Recombinant expression and characterization of AbrUPO	3
	2.2	Catalytic activity of AbrUPO	6
3	GCN	1S chromatograms	11
4	Refe	erences	62

1 Material & Methods

1.1 Fed-batch process

P. pastoris X-33::pPICZA_AbrUPO was chosen for fed-batch fermentation in a 7.5 | bioreactor (Infors, Bottmingen, Switzerland). A total of 3 l basal salt medium (per 1 l: 0.47 g CaSO₄ x 2 H₂O, 8 ml H₃PO₄ (85 %), 9.1 g K₂SO₄, 4.2 g KOH, 3.66 g MgSO₄, 43.5 g glycerol (100 %), supplemented with 0.87 mg biotin, 4.35 ml Pichia trace metals (per 1 l of PTM₁ solution: 6 g CuSO₄ x 5 H2O, 0.08 g NaI, 3 g MnSO₄.x H₂O, 0.5 g CoCl₂, 20 g ZnCl₂,0.02 g H₃BO₃, 0.2 g Na₂Mo₄ x 2 H₂O, 65 g FeSO₄x 7 H₂O, 0.2 g biotin, 5 ml H_2SO_4)) was inoculated to an OD_{600} of 0.5 from a preculture. The preculture was grown overnight at 30 °C and 200 rpm in 200 ml BMGY containing 100 µg/ml Zeocin[™], and the cells were washed with sterile 0.9 % sodium chloride solution before inoculation of the fermenter. During the entire fermentation, the pH was kept at pH 5.0 by titrating 10 % phosphoric acid and 25 % ammonium hydroxide. The stirring rate was set at 800 rpm and the oxygen was supplied with 3 l/min. Until the primary carbon source glycerol was completely consumed, the temperature was set to 30 °C. Afterwards 0.5 % (v/v) MeOH with 12 g/l PTM₁ solution was added as carbon source and as inducer for the gene expression, and the temperature was reduced to 25 °C. Additionally, 10 µM hemin was added to allow efficient loading of AbrUPO. 0.5 % (v/v) MeOH was automatically added when MeOH in the fermentation broth was consumed as indicated by a spike in dissolved oxygen. After 9 days, the cells were harvested (11,325 x q, 4 °C, 20 min). The volumetric activity towards ABTS, OD₆₀₀ and protein concentration were determined at different time points throughout the whole fermentation.

1.2 LC/MS elution profile for detection of 23

Conversion of **23** was analysed by liquid chromatography coupled to mass spectrometry (LC/MS) on a Prominence/LCMS2020 device (Shimadzu) like described before.¹ A Chromolith® Performance RP-18e column (100×4.6 mm, Merck) was used. Solvent A was ddH2O with 0.1% formic acid, while solvent B was methanol. 1 μ l of each sample was injected and separated with a flow rate of 1 ml min⁻¹ at 30 °C. The substances were ionized by electron spray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in dual ionization mode. Mass fragments were detected in positive and negative scan mode in a range of 100-500 m/z.

22	Gradient from 10 % B to 75 % B for 10 min, hold 75 % B for 5 min,
25	equilibration at 10 % B for 5 min

Table S1: Temperature profiles of the GC/MS programmes

Compound	Temperature profile				
1-3, 5-6	Maintained at 80 °C for 5 min, ramped to 250 °C at 20 °C min ⁻¹ , held for 2 min				
4, 7, 8-10, 14	Maintained at 100 °C for 1 min, ramped to 150 °C at 5 °C min ⁻¹ , held for 1 min, ramped to 250 °C at 20 °C min ⁻¹ , held at 250 °C for 1 min				
11-13	Maintained at 70 °C for 2 min, ramped to 100 °C at 5 °C min ⁻¹ , ramped to 250 °C at 15 °C min ⁻¹ , held at 250 °C for 2 min				

15	Maintained at 130 °C for 2 min, ramped to 300 °C at 20 °C min ⁻¹ , held at 300 °C for 8 min
16	Maintained at 120 °C for 1.5 min, ramped to 180 °C at 5 °C min ⁻¹ , held for 1 min, ramped to 200 °C at 10 °C min ⁻¹ , held for 1 min, ramped to 300 °C at 20 °C min ⁻¹ , held at 300 °C for 1 min
17-18	Maintained at 40 °C, ramped to 300 °C at 5 °C min ⁻¹ , held at 300 °C for 2 min
19-20	Maintained at 90 °C for 5 min, ramped to 320 °C at 15 °C min ⁻¹ , held at 320 °C for 5 min
21	Maintained at 80 °C for 3 min, ramped to 300 °C at 15 °C min ⁻¹ , held at 300 °C for 2 min
22	Maintained at 200 °C for 4 min, ramped to 300 °C at 10 °C min ⁻¹ held for 4 min, ramped to 320 °C at 5 °C min ⁻¹ , held at 320 °C for 2 min
24	Maintained at 120°C for 1 min, ramped to 210°C at 10°C min-1, ramped to 300°C at 40°C min-1, held at 300°C for 1 min.
25-27	Maintained at 150°C for 1 min, ramped to 260°C at 10 °C min-1, ramped to 300°C at 40 °C min-1, held at 300°C for 3 min.

2 Results

2.1 Recombinant expression and characterization of AbrUPO

Table S2: Purification of recombinant AbrUPO

	Spec. activity [U/mg]	Total Units ^c [U]	Yield ^d [%]ª	Purification factor [x-fold]	Protein concentration [mg/ml] ^e	Volume [l]
Supernatant ^a	18.17 ± 1.5	93,970	(100)	1.0	1.29	4.6
Ultrafiltration ^b	20.30 ± 0.9	39,467	100	1.1	8.84	0.22
HIC	22.7 ± 3.0	191	11	1.2	7.02	0.0012
IEX	31.7 ± 1.4	170	9.7	1.7	5.36	0.001

^a Cell-free supernatant after fed-batch fermentation

^b Ultrafiltration retentate of supernatant using tangential flow filtration (TFF). Concentrated sample was collected in three steps (eluates) with different enzyme activities and protein concentrations.

 $^{\rm c}$ Enzyme activity was determined with ABTS

^d Yield based on the enzyme applied to HIC

^e Protein concentration was determined with Bradford assay

Figure S1: left - UV-VIS spectrum of 1 µM purified *Abr*UPO, right - SDS-PAGE analysis of purified and PNGase F treated *Abr*UPO using a 12.5 % resolving gel. Blue Arrow indicates PNGase F (36 kDa).

Name	Expression host	N-glycosylation [%]	Reference
<i>Abr</i> UPO	P. pastoris	~55	This work
rAaeUPO	P. pastoris	30	2
rAniUPO	P. pastoris	50	3
rCabUPO1	P. pastoris	~14	3
r <i>Cci</i> UPO	Aspergillus oryzae	14-44	4
<i>Cgl</i> UPO	Chaetomium globosum	19	5
CraUPO	Coprinus radians	37	6
HspUPO	P. pastoris	~50	7
MroUPO	Marasmius rotula	16	8

Table S3: N-glycosylation degree of different UPOs

Figure S2: Determination of T₅₀ (left upper), thermal stability after 240 min (left lower) and pH stability (right). Residual activity of *Abr*UPO dissolved in 50 mM sodium phosphate buffer pH 7.0, 2 mM MgCl₂ after 10 min (upper) or 240 min (lower) incubation at temperatures between 4 - 80 °C. For pH stability, residual activity of *Abr*UPO after 60 min incubation in 100 mM Britton-Robinson buffer in a pH range between 2 to12 was measured.

2.2 Catalytic activity of AbrUPO

Table S4: Further substrates of *Abr***UPO:** Reactions were conducted in 50 mM sodium phosphate pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbic acid at 25 °C and 600 rpm for 180 min.

	Compound	Structure	Substrate depletion [%]
17	Thioanisole	S_	>99
18	Butyl methyl sulfide	SS_	>99
19	α-Pinene		84
20	(1 <i>5</i>)-(-)- Verbenone	₹ F ⁰	14
21	(1 <i>R</i>)-(+)- Camphor	C C C C C C C C C C C C C C C C C C C	n. d.
22	Valencene		n. d.
23	Testosterone	OH H H	10

n. d. = not detected

Table S5: Product distribution for fatty acids: Reactions were conducted in 50 mM sodium phosphate pH 7.0 with 2 mM MgCl₂, 200 μ M substrate, 500 μ M hydrogen peroxide, 0.8 μ M *Abr*UPO at 25 °C and 600 rpm for 180 min.

HO	24 Cap 25 Und	ric acid (C lecanoic a	10) n = 6 cid (C11)	n = 7		26 Lauric acid (C12) n = 8 27 Tridecanoic acid (C13) n = 9					
	Produc	Product distribution [%]									
	ω	ω-1	ω-2	ω-3	ω-4	ω-5	ω-6	ω-7	ω-8	γ	other
24	-	32	3	13	1	17	19	3	-	-	12
25	-	46	7	16	16	4	3	3	5	-	-
26	-	34	6	16	11	19	3	3	2	6	-
27	-	19	6	16	11	11	7	19	-	8	3

Figure S3: Determination of the enantiomeric excess of 1a. Black: after reaction, pink: authentic standard (*R*)-1-phenylethanol **1a**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbic acid at 25 °C and 600 rpm for 180 min.

Figure S4: Determination of the enantiomeric excess of 2a. Black: after reaction, pink: authentic standard (*R*)-1-phenyl-1-propanol **2a**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbic acid at 25 °C and 600 rpm for 180 min.

Figure S5: Determination of the enantiomeric excess of 3a. Black: after reaction, pink: authentic standard (*R*)-1-phenyl-1butanol **3a**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbic acid at 25 °C and 600 rpm for 180 min.

Figure S6: Time course ρ -cymene 5 conversion. Blue: ρ -cymene-8-ol 5a; teal: thymohydroquinone 5b; grey: thymoquinone 5c; yellow; aromatic mono-hydroxylated 5d; purple: other unidentified products; light blue: substrate depletion. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbic acid at 25 °C and 600 rpm. Samples were taken after 15, 30, 60 and 180 minutes.

Figure S7: Influence of peroxide concentration on ρ **-cymene 5 conversion.** Blue: ρ -cymene-8-ol **5a**; teal: thymohydroquinone **5b**; grey: thymoquinone **5c**; yellow; aromatic mono-hydroxylated **5d**; purple: other unidentified products; orange: ρ -isopropyl benzaldehyde; light blue: substrate depletion. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, either 1 mM or 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbic acid at 25 °C and 600 rpm for 180 min.

Figure S8: GC/MS chromatogram of conversions of 2-ethylbenzene-1,4-diol 1c. Black: with 8 mM ascorbic acid, pink: without ascorbic acid, blue: without enzyme, with 8 mM ascorbic acid. 10.7 min: 2-ethyl-1,4-benzoquinone **1d**, 19.6 min: 2-ethylbenzene-1,4-diol **1c**, 20.5 min: IS. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, at 25 °C and 600 rpm for 180 min.

Figure S9: Determination of the enantiomeric excess of 11a. Black: after reaction, pink: authentic standard (*R*)-styrene oxide **11a**, blue: authentic standard (*S*)-styrene oxide. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbic acid at 25 °C and 600 rpm for 180 min

Compound	Substrate depletion [%]	Product distribution	[%]		
1	96	OH (<i>R</i>) 1a ^a , 56, <i>ee</i> = >99 %	0 1b ^a , 44		
2	72	OH (<i>R</i>) 2a ^a , 95, <i>ee</i> = >99 %	2b ^b , 2		
3	42	ОН 3f ^b , 7	OH 3g ^b , 84	O 3h ^a , 6	HO Ji ^b , 3**
4	84	OH 4a ^a , 98			
5	24	ОН 5а ^а , 41	он 5 b ^{b,} 38	HO (1 5 f ^b , 16**	
6	30	<mark>ОН</mark> 6е ^ь , 87	6f ^b , 5	H0 6 g ^b , 6	
7	81	ОН 7а°, 13	0 7e ^b , 67		

Table S6: Product distribution of PaDa-I-catalysed reactions. Reactions were conducted in 50 mM sodium phosphate pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M PaDa-I, 8 mM ascorbic acid at 25 °C and 600 rpm for 180 min.

^a verified by MS and reference substance

^b verified by MS

** Different retention time compared to AbrUPO. Hydroxylated either at meta or para position.

GCMS chromatograms

Figure S10: GC and MS chromatograms of conversion of **1**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **1** (3.896 min), **1a** (9.195 min), **1b** (9.420 min), **1c** (19.550 min), **1d** (10.691 min) and **1e** (11.532 min) in sorted order.

Figure S11: GC and MS chromatograms of conversion of 2. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 2 (5.783 min), 2a (8.831 min), 2b (8.992 min), 2c (11.842 min) and 2d (9.300 min), in sorted order.

Figure S12: GC and MS chromatograms of conversion of **3**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **3** (7.549 min), **3a** (9.820 min), **3b** (9.873 min), **3c** (12.506 min) and **3d** (10.260 min) in sorted order.

Figure S13: GC and MS chromatograms of conversion of **4**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **4** (3.207 min), **4a** (5.244 min), **4b** (13.527 min) and **4c** (6.542min) in sorted order.

Figure S14: GC and MS chromatograms of conversion of **5**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **5** (6.838 min), **5a** (9.151 min), **5b** (9.461 min), **5c** (12.200 min), **5d** (9.846 min) and **5e** (10.062 min) in sorted order.

Figure S15: GC and MS chromatograms of conversion of 6. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 6 (6.828 min), 6a (9.488 min), 6b (9.392 min), 6c (12.133 min) and 6d (10.190 min) in sorted order.

Figure S16: GC and MS chromatograms of conversion of **7**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **7** (4.306 min), **7a** (7.079 min), **7b** (14.549 min), **7c** (8.398min) and **7d** (9.440 min) in sorted order.

Figure S17: GC and MS chromatograms of conversion of 8. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 µM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 8 (7.193 min), 8a (6.522 min) and 8b (13.543 min) in sorted order.

Figure S18: GC and MS chromatograms of conversion of 9. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 9 (7.833 min), 9a (6.521 min) and 9b (13.540 min) in sorted order.

Figure S19: GC and MS chromatograms of conversion of **10**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 µM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **10** (9.247 min), **10a** (8.397 min) and **10b** (14.545 min) in sorted order.

Figure S20: GC and MS chromatograms of conversion of 11. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 11 (5.053 min), 11a (8.628 min) and 11b (9.078 min) in sorted order.

Figure S21: GC and MS chromatograms of conversion of 12. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 12 (6.986 min), 12a (9.553 min) and 12b (9.845 min) in sorted order.

Figure S22: GC and MS chromatograms of conversion of 13. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 13 (7.483 min), 13a (10.654 min) and 13b (11.095 min) in sorted order.

Figure S23: GC and MS chromatograms of conversion of **14**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **14** (9.738 min), **14a** (10.994 min), **14b** (9.033 min) and **14c** (8.619 min) in sorted order.

Figure S24: GC and MS chromatograms of conversion of 15. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 15 (7.709 min), 15a (7.771 min) and 15b (7.407 min) in sorted order.

Figure S25: GC and MS chromatograms of conversion of **16**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **16** (5.441 min), **16a** (9.950 min), **16b** (8.324 min) and **16c** (9.510min) in sorted order.

Figure S26: GC and MS chromatograms of conversion of 17. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 17 (6.850 min), 17a (9.942 min) and 17b (9.383 min) in sorted order.

Figure S27: GC and MS chromatograms of conversion of 18. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 18 (3.833 min), 18a (7.222 min) and 18b (7.887 min) in sorted order.

Figure S28: GC and MS chromatograms of conversion of **19**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **19** (4.178 min), **19a** (7.020min), **19b** (7.522 min), **19c** (7.722 min), **19d** (7.964 min) and **19e** (9.234 min) in sorted order.

Figure S29: GC and MS chromatograms of conversion of 20. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 20 (9.223 min) and 20a (9.783 min) in sorted order.

Figure S30: GC and MS chromatograms of conversion of 21 (7.632 min). Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min.

Figure S31: GC and MS chromatograms of conversion of 22 (8.365 min). Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min.

Figure S32: LC and MS chromatograms of conversion of 23. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 23 (12.100 min) and 23a (10.150 min) in sorted order.

Figure S33: GC and MS chromatograms of conversion of **24**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **24** (7.076 min), ω -1 (10.270 min), ω -2(10.115 min), ω -3 (9.816 min), ω -4 (9.653 min), ω -5 (9.551 min), ω -6 (9.463 min) and ω -7 (9.313 min) in sorted order.

Figure S34: GC and MS chromatograms of conversion of **25**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **25** (5.567 min), ω -1 (8.350 min), ω -2 (8.209 min), ω -3 (7.934min), ω -4 (7.761 min), ω -5 (7.685 min), ω -6 (7.621 min), ω -7 (7.554 min) and ω -8 (7.067 min) in sorted order.

Figure S35: GC and MS chromatograms of conversion of **26**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **26** (6.550 min), ω-1 (9.330 min), ω-2 (9.171 min), ω-3 (8.908 min), ω-4 (8.738 min), ω-5 (8.644 min), ω-6 (8.547 min), ω-7 (8.322 min), ω-8 (8.244 min) and γ (10.997 min) in sorted order.

Figure S36: GC and MS chromatograms of conversion of **27**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M *Abr*UPO, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of **27** (7.543 min), ω -1 (10.263 min), ω -2 (10.109 min), ω -3 (9.850 min), ω -4 (9.696 min), ω -5 (9.598 min), ω -6 (9.531 min), ω -7 (9.313 min) and γ (11.845 min) in sorted order.

Figure S37: GC and MS chromatograms of conversion of 1. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μ M PaDa-I, 8 mM ascorbate at 25 °C and 600 rpm for 180 min.

Figure S38: GC and MS chromatograms of conversion of 3. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM PaDa-I, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 3f (9.720 min), 3g (9.955 min), 3h (9.800 min) and 3i (10,761 min) in sorted order.

Figure S39: GC and MS chromatograms of conversion of 4. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM PaDa-I, 8 mM ascorbate at 25 °C and 600 rpm for 180 min.

Figure S40: GC and MS chromatograms of conversion of **5**. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM PaDa-I, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatogram of **5f** (10.383 min).

Figure S41: GC and MS chromatograms of conversion of 6. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM PaDa-I, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatograms of 6e (8.919 min), 6f (9.157 min) and 6g (10.367 min).

Figure S42: GC and MS chromatograms of conversion of 7. Reactions were conducted in 50 mM sodium phosphate buffer pH 7.0 with 2 mM MgCl₂, 1 mM substrate, 4 mM hydrogen peroxide, 1.3 μM PaDa-I, 8 mM ascorbate at 25 °C and 600 rpm for 180 min. MS chromatogram of 7e (8,358 min).

4 References

- 1. T. Hilberath, L. M. Windeln, D. Decembrino, P. Le-Huu, F. L. Bilsing and V. B. Urlacher, *ChemCatChem*, 2020, **12**, 1710-1719.
- 2. P. Molina-Espeja, S. Ma, D. M. Mate, R. Ludwig and M. Alcalde, *Enzyme Microb Technol*, 2015, **73-74**, 29-33.
- 3. S. Bormann, H. Kellner, J. Hermes, R. Herzog, R. Ullrich, C. Liers, R. Ulber, M. Hofrichter and D. Holtmann, *Antioxidants* 2022, **11**.
- 4. C. Dolge, A. Sass, G. Kayser, R. Ullrich and M. Hofrichter, *BIOspektrum, special issue of Proc VAAM (Association for General and Applied Microbiology) Annu. Confer., Karlsruhe*, 2011, 3-6.
- 5. J. Kiebist, K. U. Schmidtke, J. Zimmermann, H. Kellner, N. Jehmlich, R. Ullrich, D. Zander, M. Hofrichter and K. Scheibner, *ChemBioChem*, 2017, **18**, 563-569.
- 6. D. H. Anh, R. Ullrich, D. Benndorf, A. Svatos, A. Muck and M. Hofrichter, Appl. Environ. Microbiol., 2007, 73, 5477-5485.
- 7. L. Rotilio, A. Swoboda, K. Ebner, C. Rinnofner, A. Glieder, W. Kroutil and A. Mattevi, ACS Catal, 2021, 11, 11511-11525.
- 8. G. Grobe, R. Ullrich, M. J. Pecyna, D. Kapturska, S. Friedrich, M. Hofrichter and K. Scheibner, AMB Express, 2011, 1, 31.