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Section SI-1: Supplementary plots for maximum synergy at different Mn(0)/n 

 

 

Figure SI-1. Synergistic acceleration vs. dimensionless time at different values with (a) Mn(0)/n = 200; (b) 

Mn(0)/n = 1000.  

 

As we can see in Figure SI-1, for Mn(0)/n = 200 and Mn(0)/n = 1000, the maximum synergy appears at 

 = 0.995 and  = 0.999 respectively. Both of the  value appears to be 1 – n/Mn(0).  



Section SI-2: Analytical Solution for Population Balance Model

Here we provide an analytical solution to the differential equation obtained in our population balance model
using the technique employed by Ziff and McGrady, 1985:

∂ρ

∂τ
+

∂

∂N
[(1− α)ρ] = −αNρ+ 2α

∫ ∞

N
ρ(N ′, τ)dN ′ (SI-1)

First we guess a solution of the form: ρ(N, τ) = A(τ)eB(τ)·N . Inserting this expression in (SI-1) above
forces the expressions for A(τ) and B(τ) to be of the form:

A(τ) = exp
{
2 ln(1 + α

τ

s
) + (1− α)(α

τ2

2
+ sτ)

}
(SI-2)

B(τ) = −(ατ + s) (SI-3)

In the above, A(0) = 1 and B(0) = −s. Due to the linearity of the differential equation (SI-1), one could
write down any sum or integral of the guessed expression and still get another solution. Therefore, the
expression below is also a solution.

ρ(N, τ) =

∫ ∞

0
f(s) ·A(τ)eB(τ)Nds (SI-4)

This becomes,

ρ(N, τ) =

∫ ∞

0
f(s) ·

(
1 + α

τ

s

)2
· exp

{
(1− α)(α

τ2

2
+ sτ)

}
· exp {−(ατ + s)N} ds (SI-5)

With some rearrangement and introduction of a new variableM = N − (1− α)τ , we get

ρ(M + (1− α)τ, τ) = exp
{
−ατ

[
M + (1− α)

τ

2

]}∫ ∞

0
f(s) ·

(
1 + α

τ

s

)2
e−sM (SI-6)

We now define a new functional form: ρ̃(M, τ) = ρ(M + (1− α)τ, τ). This gives,

ρ̃(M, τ) = exp
{
−ατ

[
M + (1− α)

τ

2

]}∫ ∞

0
f(s) ·

(
1 + α

τ

s

)2
e−sM (SI-7)

Hence, setting τ to 0, we obtain,

ρ̃(M, 0) =

∫ ∞

0
f(s) · e−sMds (SI-8)

It is clear from the above expression that ρ̃(M, 0) is the Laplace transform of f(s). Hence, using the prop-
erties of the Laplace transform and the fact that the area under the initial distribution ρ̃(M, 0) should not
diverge: ∫ ∞

M
ρ̃(y, 0)dy =

∫ ∞

0

1

s
f(s) · e−sMds (SI-9)∫ ∞

M
(y −M)ρ̃(y, 0)dy =

∫ ∞

0

1

s2
f(s) · e−sMds (SI-10)

If we expand the expression,
(
1 + α τ

s

)2, while making use of the laplace properties, we get:



ρ̃(M, τ) = exp
{
−ατ

[
M + (1− α)

τ

2

]}{
ρ̃(M, 0) +

∫ ∞

M
ρ̃(y, 0){2ατ + (ατ)2(y −M)dy}

}
(SI-11)

Now we can revert back to our original variable N and functional form ρ(N, τ) using M = N − (1− α)τ
and ρ̃(M, τ) = ρ(M + (1 − α)τ, τ) to get a general solution. It should be noted that a change of variable
has been done on the integral: y = z − (1− α)τ .

ρ(N, τ) = ζ(N, τ) ·
{
ρ(N + [1− α]τ, 0) +

∫ ∞

N
ρ(z + [1− α]τ, 0) · {2ατ + (ατ)2(z −N)} dz

}
(SI-12)

where,

ζ(N, τ) = exp
{
−ατ

[
N − (1− α)

τ

2

]}
(SI-13)

If the initial distribution is a delta function, say, δ(N − L), we obtain the solution below.

ρ(N, τ) =


ζ(N, τ) if N = L− (1− α)τ

ζ(N, τ)
{
2ατ + (ατ)2(L− (1− α)τ −N)

}
if 0 < N < L− (1− α)τ

0 otherwise
(SI-14)

Also, starting with an initial Gaussian distribution N (µ, σ2) with mean µ and standard deviation σ, the
evolution of the distribution will be:

ρ(N, τ) =
ζ(N, τ)

σ
√
2π

·
{
(1 + (ατσ)2) exp{−N

2}+ (2ατσ − (ατσ)2N) ·
√

π

2
(1− erf{N})

}
(SI-15)

where,

N =
1√
2
· N − (µ− (1− α)τ

σ
(SI-16)

erfN =
2√
π

∫ N

0
e−u2

du (SI-17)

Plotting equation (SI-15) for different values of α, µ = 1 and σ = 0.075, we get Figure SI-2
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Figure SI-2: The graphs (a), (b), and (c) show the evolution of the distribution for different values of
α: 0, 0.95 and 1 respectively


