Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Supporting Information

A Cyanide-Free Synthesis of Nitriles in Exploiting Flow Chemistry

Niamh Disney,^a Megan Smyth,^b Scott Wharry,^b Thomas S. Moody,^{b,c} and Marcus Baumann^{a,*}

^aSchool of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Dublin, Ireland. E-mail: marcus.baumann@ucd.ie ^bAlmac Sciences, Technology Department, Craigavon BT63 5QD, UK. ^cArran Chemical Company, Roscommon N37 DN24, Ireland.

 General Experimental Procedures Reaction Optimisation Spectroscopic Data References Copies of NMR spectra 	1.	Materials and Methods	2
 Reaction Optimisation Spectroscopic Data References Copies of NMR spectra 	2.	General Experimental Procedures	3
 Spectroscopic Data References Copies of NMR spectra 	3.	Reaction Optimisation	7
 References Copies of NMR spectra 	4.	Spectroscopic Data	12
6. Copies of NMR spectra	5.	References	20
	6.	Copies of NMR spectra	21

Materials and Methods

Unless otherwise stated, all solvents were purchased from Fisher Scientific and used without further purification. Substrates and reagents were purchased from Fluorochem or Sigma Aldrich and used as received.

¹H-NMR spectra were recorded on 400 MHz and 500 MHz instruments and are reported relative to residual solvent: CDCl₃ (δ 7.26 ppm). ¹³C-NMR spectra were recorded on the same instruments (100 and 125 MHz) and are reported relative to CHCl₃ (δ 77.16 ppm).

Data for ¹H-NMR are reported as follows: chemical shift (δ / ppm) (integration, multiplicity, coupling constant (Hz)). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, sext = sextet, sept = septet, m = multiplet. Data for ¹³C-NMR are reported in terms of chemical shift (δ / ppm) and multiplicity (C, CH, CH₂ or CH₃). COSY, HSQC, and HMBC experiments were used in the structural assignment. IR spectra were obtained by use of a Bruker Platinum spectrometer (neat, ATR sampling) with the intensities of the characteristic signals being reported as weak (w, <20% of tallest signal), medium (m, 21-70% of tallest signal) or strong (s, >71% of tallest signal).

High-resolution mass spectrometry was performed using the indicated techniques on a micromass LCT orthogonal time-of-flight mass spectrometer with leucine-enkephalin (Tyr-Gly-Phe-Leu) as an internal lock mass.

Continuous flow experiments were performed using Chemyx Inc Fusion 100 syringe pumps. The flow reactor consisted of a Teflon T-piece, 1/8" PFA tubing, or 1/16" PFA tubing with a Teflon helical static mixer. The reaction scale-up was performed on a Vapourtec E-series system equipped with a peristaltic pump.

General Experimental Procedures

2.1 Synthesis of 2,2-diphenylacetonitrile (2a)

Chemical Formula: C₁₄H₁₁N Exact Mass: 193.0891

General batch procedure A:

To an ice-cooled solution of TosMIC (215 mg, 1.1 mmol) in DMSO (7 mL) was added KO⁴Bu (392 mg, 3.5 mmol). After stirring for 5 min in a nitrogen-enriched environment, MeOH (0.7 mL) was added, then benzophenone (182 mg, 1.0 mmol). The reaction mixture was stirred at room temperature. At 1 h, a second portion of TosMIC (195 mg, 1.0 mmol) and KO⁴Bu (224 mg, 2.0 mmol) was added and a nitrogen-enriched environment was established again in the flask using a nitrogen balloon. The reaction mixture was extracted with aqueous NH₄Cl and EtOAc. The EtOAc layer was then washed twice with brine. The recovered EtOAc layer was evaporated *in vacuo* to give a colourless solid. Silica was used for all chromatography columns.

General continuous flow procedure B:

1. Reaction with KO^tBu

Line A: Benzophenone (182 mg, 1 mmol) was added to a vial along with TosMIC (234 mg, 1.2 mmol), MeOH (0.5 mL) and DMSO (2.5 mL). The solution was taken up into a 5 mL syringe which was then loaded onto a syringe pump.

Line B: KO^tBu (280 mg, 2.5 mmol) and DMSO (3 mL) were added to a separate vial. The viscous solution was taken up into a 5 mL syringe, which was then loaded onto a separate syringe pump.

A static mixer coil (22.4 mL)(Image 1) was used and an overall flow rate of 1.12 mL/min was set. After both solutions had been dispensed, a 25 mL syringe containing MeOH replaced the T-piece and was set to the same flow rate of 1.12 mL/min. Aqueous NH_4CI (0.3 mL, 2.5 mmol) was kept in the collection flask to quench the reaction. The reaction was extracted in the same way as detailed in the batch procedure above.

SI Image 1. The static mixer coil used in the continuous flow setup for the reactions with KO^tBu and NaOMe (left). A schematic of the internal helical structure of the reactor coil which increases reaction mixing (right).

2. <u>Reaction with NaOMe</u>

Line A: Benzophenone (182 mg, 1 mmol) was added to a vial along with TosMIC (292.5 mg, 1.5 mmol), and THF (1.0 mL). The solution was taken up into a 5 mL syringe which was then loaded onto a syringe pump.

Line B: NaOMe (25% in MeOH)(0.43 mL, 2 mmol) was taken up into a 5 mL syringe, which was then loaded onto a separate syringe pump.

A static mixer coil (11.2 mL)(Image 1) was used and an overall flow rate of 11.2 mL/min was set. After both solutions had been dispensed, a 20 mL syringe containing MeOH (15 mL) replaced the T-piece and was set to the same flow rate of 1.12 mL/min. Citric acid (384 mg, 2 mmol) was kept in the collection flask to quench the reaction. The reaction was extracted in the same way as the batch procedure.

3. <u>Reaction with NaO^tBu</u>

Line A: Benzophenone (546 mg, 3 mmol) was added to a vial along with TosMIC (1.46 g, 7.5 mmol), and 2:1 DMSO:MeOH (4.5 mL). The solution was taken up into a 15 mL syringe which was then loaded onto a syringe pump.

Line B: NaO^tBu (2 M in THF)(7.5 mL, 15 mmol) was taken up into a 15 mL syringe. Additional THF (6 mL) was taken up into the syringe to prevent NaO^tBu crashing out of solution and causing clogging of the inlet connectors. The syringe was then loaded onto a separate syringe pump.

A standard PFA coil (10 mL)(Image 2) was used and an overall flow rate of 6.67 mL/min was set. After both solutions had been dispensed, a 10 mL syringe filled with MeOH replaced the T-piece and was set to the same flow rate of 6.67 mL/min.

The reaction output was collected in test tubes containing citric acid (960 mg, 8.57 mmol). The output tubing was transferred to a new test tube every 1 min. The output collected between 3 - 5 min was combined and extracted in the same way as in the batch procedure.

4. Scaled-up reaction with NaO^tBu

If the setup shown in Image 2 were to be scaled up, several syringe swaps would be required over the course of the 30 min run. To avoid this disruption and therefore obtain a smoother steady state graph, a Vapourtec E-series flow reactor equipped with a peristaltic pump was used to carry out the reaction scale-up.

The reaction output was collected in test tubes at 1-minute intervals and quenched with citric acid (960 mg, 8.57 mmol). The contents of each test tube were extracted with EtOAc /water and washed twice with brine. A sample was taken for GC analysis and the results are plotted below (Graph 1); where x = 1 min, this represents the reaction output collected between 0 - 1 min. The material collected between x = 4 min and x = 29 min was combined and the concentrated crude material was purified by column chromatography. 2,2-diphenylacetonitrile (**2a**) (3.81 g, 19.7 mmol) was isolated. This corresponds to a throughput of 8.8 g/h.

Reaction Optimisation

3.1 Batch setup

SI Table 1. Full optimisation study for the batch setup								
			TosMIC, KO ^t Bu			CN		
	1a			N ₂ , r.t.		2a		
Entry	TosMIC	(equiv.)	KO [‡] Bu (equiv.)		Time (h)	Conversion to 2a (%) ^[e]		
	[a]	[c]	[b]	[d]				
1	1.3	-	3.0	-	1	58		
2	1.3	-	3.0	-	2	63		
3	1.3	-	3.0	-	19	11		
4	1.3	1.0	3.5	-	2	73		
5	1.3	1.0	3.5	-	3	69		
6	1.3	1.0	3.5	2.0	4	91		
7	1.4	1.0	3.5	2.0	3	76		
8	1.3	1.0	3.5	3.5	4	93		
9	1.1	1.0	3.5	2.0	4	93		
10	1.1	3.5	3.5	4.0	4	95		
11	1.3	1.0	3.5	2.0	1	70		
12 ^[f]	1.3	1.0	3.5	2.0	2	71		
13 ^[f]	1.3	1.0	3.5	2.0	3	63		
^{[a][b]} Addition made at start of reaction. ^{[c][d]} Addition made 1 h after start of reaction.								
^[e] Determined by ¹ H-NMR. ^[f] gradient used: r.t. for 1 h, then 30°C for 30 min, then								
50°C for 30 min, then 70°C for 30 min, then 90°C for 30 min								

3.2 Continuous Flow Setup

3.3 Unsuccessful substrate scopes

1. Reaction with NaOMe

Although NaOMe precipitated in the presence of excess THF (reaction solvent), the wider tubing diameter of the static mixer coil prevented any clogging issues by allowing the reaction mixture and the precipitate to progress as a suspension through the coil. This may still present issues upon scaleup, however, as the projected throughput of the reaction was excellent efforts to broaden the substrate scope were made. Despite these further experiments with NaOMe this was ultimately unsuccessful as poor product yields were obtained along with several unidentified side products.

2. Reaction with NaO^tBu

Spectroscopic Data

2,2-Diphenylacetonitrile (2a)

Following the general continuous flow procedure B (4. Scaled-up reaction with NaO^tBu), compound **2a** was obtained in 83% yield (3.81 g, 19.74 mmol).

Appearance: colourless solid Rf: 0.44 (DCM/cyclohexane = 1/1)

Chemical Formula: C₁₄H₁₁N Exact Mass: 193.0891

¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 7.41 – 7.30 (m, 10 H), 5.14 (s, 1H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 136.0 (2x C), 129.3 (4x CH), 128.4 (2x CH), 127.9 (4x CH), 119.8 (CN), 42.8 (CH). **IR** (neat) v/cm⁻¹: 3063 (w), 3032 (w), 2248 (w), 1599 (w), 1493 (m), 1454 (m), 1080 (w), 1031 (w), 756 (m), 735 (m), 696 (s), 649 (w), 628 (w), 534 (w), 460 (w). **HR-MS** (TOF ES): calculated for C₁₄H₁₂N 194.0969, found 194.0960 (M+H⁺). Data is in agreement with reported data. ^[1]

2-Phenylpropanenitrile (2b)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2b** was obtained in 58% yield (206 mg, 1.57 mmol).

Appearance: colourless oil

Rf: 0.33 (DCM/cyclohexane = 1/1)

Chemical Formula: C₉H₉N Exact Mass: 131.0735

¹**H-NMR** (500 MHz, CDCl₃) δ/ppm 7.42 – 7.30 (m, 5H), 3.90 (q, *J* = 7.3 Hz, 1H), 1.65 (d, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (125 MHz, CDCl₃) δ/ppm 137.2 (C), 129.2 (2x CH), 128.2 (CH), 126.8 (2x CH), 121.7 (CN), 31.4 (CH), 21.6 (CH₃). **IR** (neat) v/cm⁻¹: 3031 (w), 2986 (w), 2938 (w), 2241 (w), 1494 (m), 1452 (s), 1078 (w), 758 (s), 698 (s), 510 (m). Data is in agreement with reported data. ^[2]

2-(3,4-Dimethylphenyl)propanenitrile (2c)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2c** was obtained in 65% yield (280.6 mg, 1.77 mmol).

Appearance: colourless oil

Rf: 0.30 (DCM/cyclohexane = 1/1)

Chemical Formula: C₁₁H₁₃N Exact Mass: 159.1048 ¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 7.16 (d, J = 8.1 Hz, 2H), 7.09 (m, 1H), 3.85 (q, J = 7.3 Hz, 1H), 2.30 (s, 3H), 2.28 (s, 3H), 1.64 (d, J = 7.3 Hz, 3H).¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 137.5 (C), 136.5 (C), 134.6 (C), 130.3 (CH), 128.0 (CH), 124.1 (CH), 122.0 (CN), 30.9 (CH), 21.6 (CH₃), 19.8 (CH₃), 19.4 (CH₃). **IR** (neat) v/cm⁻¹: 2982 (m), 2938 (m), 2240 (m), 1505 (s), 1451 (s), 1385 (m), 1063 (w), 1022 (m), 987 (m), 921 (m), 820 (s), 597 (m). **HR-MS** (TOF ES): calculated for C₁₁H₁₄N, found 160.1120 (M+H)⁺.

2-(o-Tolyl)propanenitrile (2d)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2d** was obtained in 58% yield (153.2 mg, 1.06 mmol).

Appearance: colourless oil **Rf**: 0.22 (DCM/cyclohexane = 2/3)

Chemical Formula: C₁₀H₁₁N Exact Mass: 145.0891

¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 7.47 – 7.43 (m, 1H), 7.28 – 7.18 (m, 3H), 4.05 (q, *J* = 7.2 Hz, 1H), 2.37 (s, 3H), 1.62 (d, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 135.4 (C), 134.9 (C), 131.1 (CH), 128.3 (CH), 127.1 (CH), 126.9 (CH), 121.9 (CN), 28.3 (CH), 20.2 (CH₃), 19.1 (CH₃). **IR** (neat) v/cm⁻¹: 2984 (w), 2938 (w), 2240 (m), 1491 (s), 1455 (s), 1082 (m), 762 (s), 724 (m). **HR-MS** (TOF ES): calculated for C₁₀H₁₂N, found 146.0965 (M+H)⁺. Data is in agreement with reported data.^[2]

2-(p-Tolyl)propanenitrile (2e)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2e** was obtained in 96% yield (252.5 mg, 1.74 mmol).

Appearance: colourless oil **Rf**: 0.30 (DCM/cyclohexane = 1/1)

Chemical Formula: C₁₀H₁₁N Exact Mass: 145.0891

¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 7.30 – 7.24 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 3.89 (q, J = 7.3 Hz, 1H), 2.38 (s, 3H), 1.65 (d, J = 7.2 Hz, 3H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 138.0 (C), 134.2 (C), 129.9 (2x CH), 126.7 (2x CH), 121.9 (CN), 30.9 (CH), 21.6 (CH₃), 21.2 (CH₃). **IR** (neat) v/cm⁻¹: 2984 (w), 2924 (w), 2240 (w), 1514 (s), 1453 (m), 1084 (w), 816 (s), 570 (m), 514 (m). **HR-MS** (TOF ES): calculated for C₁₀H₁₂N, found 146.0964 (M+H)⁺. Data is in agreement with reported data.^[2]

2-(2-Fluorophenyl)propanenitrile (2f)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2f** was obtained in 60% yield (81 mg, 0.54 mmol).

Appearance: colourless oil **Rf**: 0.25 (DCM/cyclohexane = 3/2)

Chemical Formula: C₉H₈FN Exact Mass: 149.0641

¹**H-NMR** (400 MHz, CDCl₃) δ /ppm 7.48 (m, 1H), 7.36 – 7.28 (m, 1H), 7.19 (m, 1H), 7.09 (m, 1H), 4.19 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H). ¹³**C-NMR** (100 MHz, CDCl₃) δ /ppm 159.8 (d, J = 248.0 Hz, CF), 130.1 (d, J = 8.1 Hz, CH), 128.4 (d, J = 3.4 Hz, CH), 125.0 (d, J = 3.5 Hz, CH), 124.4 (d, J = 14.0 Hz, C), 120.8 (CN), 116.0 (d, J = 21.3 Hz, CH), 25.5 (d, J = 4.0 Hz, CH), 20.2 (d, J = 1.1 Hz, CH₃). ¹⁹**F-NMR** (375 MHz, CDCl₃) δ /ppm -118.6. **IR** (neat) v/cm⁻¹: 2990 (w), 2942 (w), 2244 (w), 1589 (w), 1493 (s), 1454 (s), 1235 (s), 1109 (m), 815 (m), 762 (s). Data is in agreement with reported data.^[2]

2-(2,5-Difluorophenyl)propanenitrile (2g)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2g** was obtained in 70% yield (104.7 mg, 0.63 mmol)

Appearance: colourless oil **Rf**: 0.22 (DCM/cyclohexane = 1/1)

Chemical Formula: C₉H₇F₂N Exact Mass: 167.0547 ¹**H-NMR** (500 MHz, CDCl₃) δ/ppm 7.23 – 7.16 (m, 1H), 7.10 – 6.96 (m, 2H),

4.16 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 158.9 (dd, J = 244.3, 2.4 Hz, CF), 155.8 (dd, J = 242, 2.6 Hz, CF), 126.0 (dd, J = 16.65, 7.61 Hz, C), 120.2 (CN), 117.2 (dd, J = 24.2, 8.6 Hz, CH), 116.6 (dd, J = 23.9, 8.6 Hz, CH), 115.2 (dd, J = 25.5, 3.6 Hz, CH), 25.5 (d, J = 3.5 Hz, CH), 20.0 (CH₃). ¹⁹**F-NMR** (375 MHz, CDCl₃) δ /ppm -116.7, -125.0 **IR** (neat) v/cm⁻¹: 2993 (w), 2944 (w), 2246 (w), 1499 (s), 1427 (w), 1247 (w), 1187 (s), 873 (m), 820 (m), 474 (w).

2-(4-Fluorophenyl)propanenitrile (2h)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2h** was obtained in 81% yield (90 mg, 0.6 mmol).

Appearance: colourless oil **Rf**: 0.21 (DCM/cyclohexane = 1/1)

Chemical Formula: C₉H₈FN Exact Mass: 149.0641

¹**H-NMR** (00 MHz, CDCl₃) δ /ppm 7.36 – 7.29 (m, 2H), 7.11 – 7.03 (m, 2H), 3.89 (q, *J* = 7.3 Hz, 1H), 1.63 (d, *J* = 7.3 Hz, 3H). ¹³**C-NMR** (100 MHz, CDCl₃) δ /ppm 162.7 (d, *J* = 247.3 Hz, CF), 133.2 (d, *J* = 3.4 Hz, C), 128.8 (d, *J* = 8.3 Hz, 2x CH), 121.8 (CN), 116.4 (d, *J* = 21.9 Hz, 2x CH), 30.9 (CH), 21.8 (CH₃). ¹⁹**F-NMR** (375 MHz, CDCl₃) δ /ppm -114.0. **IR** (neat) v/cm⁻¹: 2988 (w), 2940 (w), 2242 (w), 1604 (m), 1509 (s), 1455 (w), 1228 (s), 1162 (m), 836 (s), 523 (m). Data is in agreement with reported data.^[2]

2-(Thiophen-2-yl)propanenitrile (2i)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2i** was obtained in 45% yield (120 mg, 0.88 mmol).

Chemical Formula: C₇H₇NS

Exact Mass: 137 0299

Appearance: colourless oil **Rf**: 0.28 (DCM/cyclohexane = 1/1)

¹**H-NMR** (500 MHz, CDCl₃) δ/ppm 7.25 (m, 1H), 7.06 (m, 1H), 6.96 (m, 1H), 4.16 (q, *J* = 7.2 Hz, 1H), 1.72 (d, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (125 MHz, CDCl₃) δ/ppm 139.7 (C), 127.5 (CH), 126.0 (CH), 125.8 (CH), 121.1 (CN), 27.0 (CH), 21.9 (CH₃). **IR** (neat) v/cm⁻¹: 3107 (w), 2987 (w), 2938 (w), 2241 (w), 2102 (w), 1453 (m), 1379 (w), 1237 (m), 830 (m), 705 (s). Data is in agreement with reported data. ^[3]

2-(Furan-2-yl)propanenitrile (2j)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2j** was synthesised in 78% yield. This was determined by ¹H-NMR only, using 1,3,5-trimethoxybenzene as an internal standard. An isolated yield value for compound **2j** was not obtained due to its high volatility. The following chemical shift and peak integration values of compound **2j** were identified in the crude reaction ¹H-NMR. These values align with those reported for the same compound in the literature,^[4] and are detailed below.

Chemical Formula: C₇H₇NO Exact Mass: 121.0528

Rf: 0.15 (DCM/cyclohexane = 15/100)

¹**H-NMR** (500 MHz, CDCl₃) δ/ppm 7.29 (m, 2H), 7.18 (m, 1H), 3.99 (q, J = 6.9 Hz, 1H), 1.67 (d, J = 7.2 Hz, 3H).

2-Cyclohexyl-2-phenylacetonitrile (2k)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2k** was obtained in 20% yield (39 mg, 0.2 mmol).

Appearance: colourless oil **Rf**: 0.26 (Et₂O/pentane = 1/100)

Chemical Formula: C₁₄H₁₇N Exact Mass: 199.1361

¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 7.41 – 7.21 (m, 5H), 3.61 (d, *J* = 6.7 Hz, 1H), 1.74 (m, 6H), 1.22 – 1.07 (m, 5H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 135.2 (C), 129.3 (2x CH), 128.4 (2x CH), 128.4 (CH), 120.6 (CN), 44.8 (CH), 43.2 (CH), 31.7 (CH₂), 30.0 (CH₂), 26.4 (CH₂), 26.3 (CH₂), 26.3 (CH₂). **IR** (neat) v/cm⁻¹: 3031 (w), 2925 (s), 2853 (s), 2238 (w), 1493 (w), 1451 (s), 754 (m), 715 (s). Data is in agreement with reported data. ^[5]

2-(Benzo[d][1,3]dioxol-5-yl)propanenitrile (2l)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2I** was obtained in 76% yield (120 mg, 0.69 mmol).

Appearance: pale pink oil

Rf: 0.16 (DCM/cyclohexane = 1/1)

Chemical Formula: C₁₀H₉NO₂ Exact Mass: 175.0633

¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 6.82 – 6.77 (m, 3H), 5.97 (s, 2H), 3.81 (q, *J* = 7.3 Hz, 1H), 1.60 (d, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 148.1 (C), 147.2 (C), 130.6 (C), 121.4 (CN), 119.8 (CH), 108.4 (CH), 107.0 (CH), 101.2 (CH₂), 30.7 (CH), 21.4 (CH₃). **IR** (neat) v/cm⁻¹: 2985 (w), 2898 (w), 2240 (w), 1610 (w), 1488 (s), 1441 (s), 1248 (s), 1039 (s), 936 (m), 812 (m). **HR-MS** (TOF ES): calculated for C₁₀H₁₀NO₂, found 176.0707 (M+H)⁺. Data is in agreement with reported data. ^[6]

1,2,3,4-Tetrahydronaphthalene-1-carbonitrile (2m)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2m** was obtained in 84% yield (358 mg, 2.28 mmol).

Appearance: colourless oil **Rf**: 0.22 (DCM/cyclohexane = 2/3)

Chemical Formula: C₁₁H₁₁N Exact Mass: 157.0891

¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 7.41 – 7.38 (m, 1H), 7.29 – 7.23 (m, 2H), 7.19 – 7.16 (m, 1H), 4.02 (t, J = 6.3 Hz, 1H), 2.87 (m, 2H), 2.19 (m, 2H), 2.13 – 2.01 (m, 1H), 1.95 – 1.82 (m, 1H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 136.8 (C), 130.2 (C), 130.2 (CH), 129.2 (CH), 128.4 (CH), 126.9 (CH), 122.2 (CN), 31.2 (CH), 28.8 (CH₂), 27.8 (CH₂), 21.2 (CH₂). **IR** (neat) v/cm⁻¹: 3061 (w), 3020 (m), 2934 (w), 2865 (w), 2235 (m), 1580 (w), 1492 (m), 1450 (s), 767 (s), 740 (s), 432 (w). **HR-MS** (TOF ES): calculated for C₁₁H₁₂N, found 158.0964 (M+H)⁺. Data is in agreement with reported data.^[7]

7-Methoxy-1,2,3,4-tetrahydronaphthalene-1-carbonitrile (2n)

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **2n** was obtained in 75% yield (126.8 mg, 0.68 mmol).

Exact Mass: 187.0997

Appearance: colourless oil **Rf**: 0.30 (DCM/cyclohexane = 3/2)

¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 7.03 (m, 1H), 6.88 (m, 1H), 6.80 (m, 1H), 3.95 (t, *J* = 6.3 Hz, 1H), 3.80 (s, 3H), 2.83 – 2.66 (m, 2H), 2.19 – 2.06 (m, 2H), 2.06 – 1.96 (m, 1H), 1.82 (m, 1H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 158.1 (C), 130.8 (CH), 130.7 (C), 128.4 (C), 121.8 (CN), 114.8 (CH), 113.2 (CH), 55.5 (CH₃), 31.2 (CH), 27.7 (CH₂), 27.4 (CH₂), 21.1 (CH₂). **IR** (neat) v/cm⁻¹: 2943 (m), 2837 9 (w), 2236 (w), 1611 (m), 1504 (s), 1249 (s), 1037 (m), 829 (w), 708 (w). **HR-MS** (TOF ES): calculated for C₁₂H₁₄NO, found 188.1069 (M+H)⁺. Data is in agreement with reported data. ^[8]

Following the general continuous flow procedure B (3. Reaction with NaO^tBu), compound **20** was obtained in 88% yield (178.3 mg, 1.2 mmol).

Appearance: colourless oil

Rf: 0.40 (DCM/cyclohexane = 1/1)

Chemical Formula: C₁₀H₁₁N Exact Mass: 145.0891

¹**H-NMR** (500 MHz, CDCl₃) δ /ppm 7.41 – 7.29 (m, 5H), 3.74 (t, *J* = 7.2 Hz, 1H), 1.99 – 1.90 (m, 2H), 1.08 (t, *J* = 7.4 Hz, 3H). ¹³**C-NMR** (125 MHz, CDCl₃) δ /ppm 135.8 (C), 129.1 (2x CH), 128.1 (CH), 127.2 (2x CH), 120.8 (CN), 39.0 (CH), 29.3 (CH₂), 11.5 (CH₃). **IR** (neat) v/cm⁻¹: 2969 (w), 2869 (w), 2237 (w), 1493 (m), 1454 (s), 760 (m), 699 (s). Data is in agreement with reported data. ^[9]

4-Tosyloxazole (9)

Following the general continuous flow procedure B (4. Scaled-up reaction with NaO^tBu), compound **9** was obtained in 40% yield (2.00 g, 9.27 mmol).

Appearance: colourless solid **Rf**: 0.04 (DCM/cyclohexane = 1/1)

Chemical Formula: C₁₀H₉NO₃S Exact Mass: 223.0303

¹**H-NMR** (500 MHz, CDCl₃) δ/ppm 8.28 (m, 1H), 7.93 (d, *J* = 8.3 Hz, 2H), 7.88 (d, *J* = 0.9 Hz, 1H), 7.37 – 7.32 (m, 2H), 2.42 (s, 3H). ¹³**C-NMR** (125 MHz, CDCl₃) δ/ppm 152.14 (CH), 145.29 (C), 142.75 (C), 141.84 (CH), 136.21 (C), 129.98 (2x CH), 128.35 (2x CH), 21.68 (CH₃). **IR** (neat) v/cm⁻¹: 3144 (m), 1593 (w), 1504 (w), 1318 (s), 1203 (w), 1142 (s), 1055 (s), 909 (m), 862 (m), 811 (s), 690 (s), 652 (s), 596 (s), 529 (s), 488 (w). **HR-MS** (TOF ES): calculated for C₁₀H₁₀NO₃S, found 224.0376 (M+H)⁺. Data is consistent with that reported.^[10] **Crystal data (CCDC-2288150):** C₁₀H₉NO₃S, f.w. 223.03, T = 100.3 K, triclinic, space group P 2₁/c (14), a 7.3626(2) b 18.2561(6) c 7.9316(3), Å, α = 90, β = 110.701(4), γ = 90, V = 997.275 Å3, Z = 4, Dx = 1.485 g cm-3, R-factor (%) 3.75

Short contact < (sum of vdW radii)

Number Atom 1	Atom 2	Length	Length - VdW
---------------	--------	--------	--------------

1	H14	07	2.443	-0.277
2	08	C2	3.046	-0.174
3	08	H2	2.538	-0.182
4	H13	08	2.557	-0.163
5	H5	07	2.521	-0.199

References

- 1 P. Theerthagiri, A. Lalitha, *Tetrahedron Letters*, 2012, **53** (41), 5535-5538.
- 2 Z. Liu, Z. Yang, X. Yu, H. Zhang, B. Yu, Y. Zhao, Z. Liu, Org. Lett., 2017, **19** (19), 5228-5231.
- 3 S. Shee, S. Kundu, J. Org. Chem. 2021, 86 (9), 6943–6951.
- 4 G, Rajagopal, S. S. Kim, *Tetrahedron*, 2009, **65** (22), 4351-4355.
- 5 M. Yang, H. Zhang, Y. Liu, Org. Lett., 2023, **25** (7), 1223-1228.
- 6 H. Xia, F. Zhang, T. Ye, Y. Wang, Angew. Chem. Int. Ed., 2018, 57 (36), 11770-11775.
- 7 D. Mo, C. Ding, L. Dai, X. Hou, *Chem. Asian J.*, 2011, **6** (12), 3200-3204.
- S. Kloubert, M. Mathé-Allainmat, J. Andrieux, M. Langlois, Synth. Commun., 2000, 30 (16), 2873-2887.
- 9 S. Yadav, M. R. Kuram, *EurJOC*, 2022, **26** (5), e202201344.
- 10 J. R. Bull, A. Tuinman, *Tetrahedron*, 1975, **31**, 2151-2154.

Copies of NMR spectra of compounds: ¹H and ¹³C NMR of compound 2a

¹H and ¹³C NMR of compound 2b

22

^1H and ^{13}C NMR of compound 2c

^1H and ^{13}C NMR of compound 2d

¹H and ¹³C NMR of compound 2e

 $^1\text{H}\textsc{,}\,^{13}\text{C}$ and ^{19}F NMR of compound 2f

¹H and ¹³C NMR of compound 2i

¹H and ¹³C NMR of compound 2j – Compound is volatile (qNMR spectrum shown below)

^1H and ^{13}C NMR of compound 2k

in a first a sector with the first of the state of the first of the state of

170 160

150 140 130 120

180

200 190

110

-100

¹H and ¹³C NMR of compound 2I

¹H and ¹³C NMR of compound 2m

¹H and ¹³C NMR of compound 2n

¹H and ¹³C NMR of compound 20

¹H and ¹³C NMR of compound 9

