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1 Adaptive Latent Bayesian Optimiser (ALaBO) 

Bayesian optimisation commonly uses Gaussian process (GP) surrogate models to describe 

the relationship between the input variables and the desired response. Let 𝑦(∙) denote the 

response model with inputs 𝑤 = (𝑥, 𝑡), where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑝) represent 𝑝 continuous 

variables, and 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑞) represent 𝑞 categorical variables, with the 𝑗 th categorical 

variable having 𝑚𝑗 levels, 𝑗 = 1,2, … , 𝑞. For a design space with only continuous variables 𝑥, 

the model can be defined as: 

𝑦(𝑥) = 𝜇 + 𝐺(𝑥) 
 

(1) 

𝐾(∙,∙) = 𝜎2𝑅(∙,∙ |∅) 
 

(2) 

where 𝜇 is a constant prior mean and 𝐺(𝑥) is a zero-mean GP with covariance function 𝐾(∙,∙), 

where 𝜎2 is the prior variance and 𝑅(∙,∙ |∅) is the correlation function with ∅ correlation 

parameters.  

The correlation function defines how similar the function values at two different points in the 

search space are expected to be. It measures the covariance between these points, indicating 

how changes in the value of one point might relate to changes in the value of another point 

i.e., it encodes the prior belief about the smoothness and interactions within the unknown 

objective function. 

The Adaptive Latent Bayesian Optimiser (ALaBO) constructs a 2D latent variable (LV) 

representation of the categorical and continuous variables according to Apley et al.1 For a 

single categorical variable (𝑞 = 1), the 𝑚 levels of 𝑡 are mapped to 𝑚 points in 2D latent space. 

Therefore, the input 𝑤 = (𝑥, 𝑡) is mapped to (𝑥, 𝑧(𝑡)), where 𝑧(𝑡) is a numerical vector. The 

corresponding Gaussian correlation function is:  

𝐶𝑜𝑟{𝑦(𝑥, 𝑡), 𝑦(𝑥′, 𝑡′)} = 𝑒𝑥𝑝 {−∑∅𝑖(𝑥𝑖 − 𝑥𝑖
′)2 − ‖𝑧(𝑡) − 𝑧(𝑡′)‖2

2

𝑝

𝑖=1

} 

 

 
(3) 

When there are multiple categorical variables (𝑞 > 1), the approach scales by using a different 

2D LV 𝑧𝑗 to represent each categorical variable 𝑡𝑗  (𝑗 = 1,2, … , 𝑞). Here there are 2𝑚𝑗 − 3 

parameters for each 𝑧𝑗, resulting in ∑ (2𝑚𝑗 − 3)
𝑞
𝑗=1  parameters which are estimated using 

maximum likelihood estimation. The corresponding Gaussian correlation function is: 

𝐶𝑜𝑟 {𝑦 (𝑥, 𝑡 = (𝑡1, … , 𝑡𝑞)) , 𝑦 (𝑥
′, 𝑡′ = (𝑡1

′ , … , 𝑡𝑞
′ ))}

= 𝑒𝑥𝑝 {−∑∅𝑗(𝑥𝑗 − 𝑥𝑗
′)
2
−∑‖𝑧𝑗(𝑡𝑗) − 𝑧

𝑗(𝑡𝑗
′)‖
2

2

𝑞

𝑗=1

𝑝

𝑗=1

} 

 

 
 

(4) 
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The acquisition function guides the selection of the next point to evaluate in the search space. 

It quantifies the utility or potential benefit of evaluating a candidate point based on the 

surrogate model of the objective function i.e., it aims to balance the trade-off between 

exploration (trying new points) and exploitation (sampling where the function is likely to be 

optimal). 

ALaBO utilises an adaptive expected improvement (AEI) acquisition function as described by 

Pyzer-Knapp et al.2 For maximisation, the improvement, 𝛾, for a given data point, 𝑥, can be 

defined by: 

𝛾(𝑥) =
𝜇(𝑥) − 𝑓∗

𝜎(𝑥)
 

 

(5) 

where 𝑓∗ is the current best observation and 𝜇(𝑥) is the predicted means from the model 

with corresponding variances, 𝜎(𝑥). Expected improvement (EI) is a widely used acquisition 

function which simultaneously considers the probability and magnitude of improvement a 

data point offers over the current best point: 

𝐸𝐼(𝑥) = 𝜇(𝑥) − 𝑓∗𝛷(𝛾) + 𝜎(𝑥)∅(𝛾) 
 

(6) 

where 𝛷 and ∅ are the cumulative and probability density functions respectively. In this form, 

EI will heavily favour exploitation over exploration of the design space, thus potentially failing 

to identify more lucrative solutions. This can be resolved by modification of the improvement 

function [Eq. (5)] to include a hyperparameter, 𝜀, which defines the trade-off between 

exploitation and exploration: 

𝛾 =
𝑦𝑝𝑟𝑒𝑑 − 𝑓

∗ + 𝜀

𝜎
 

 

(7) 

where 𝜀 ≥ 0 represents the degree of exploration. However, the requirement to predefine the 

value of 𝜀 is a significant limitation of this approach: if too small, the search will be highly local 

around the current best point; and if too large, the search will be excessively global and 

therefore slow to fine-tune promising solutions. AEI overcomes this limitation by allowing the 

trade-off parameter to dynamically change based on the current state of the model, defined 

as contextual improvement, 𝜒: 

𝜒 =
𝑦𝑝𝑟𝑒𝑑 − 𝑓

∗ + 𝑐𝑣

𝜎
 

 

(8) 

𝑐𝑣 =
𝜎2̅̅ ̅

𝑓∗
 

 

(9) 

where 𝑐𝑣 is the contextual variance and 𝜎2̅̅ ̅ is the mean of the variances contained in the 

sampled posterior distribution.   
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2 Simulations 

2.1 Case Studies 

The five case studies proposed by Jensen et al., which are based on simulated kinetic data of 

catalytic reactions, were used to benchmark the performance of ALaBO.3 Each case study was 

designed to have unique properties by varying the kinetic parameters of three different rate 

equations: 

 

where 𝐶𝐴0  = 0.167 M, 𝐶𝐵0 = 0.250 M, 𝐴𝑅 = 3.1 × 107 L0.5 mol-1.5 s-1 and 𝐸𝐴𝑅  = 55 kJ mol-1.  

Table S1. Overview of the settings for the five simulation case studies. 

Case Catalyst effect 𝒌𝑺𝟏  𝒌𝑺𝟐  

1 𝐸𝑎1 > 𝐸𝑎2−8  = 0 = 0 

2 𝐸𝑎1 = 𝐸𝑎2 > 𝐸𝑎3−8  = 0 = 0 

3 𝐸𝑎1 > 𝐸𝑎2−8  > 0a = 0 

4 𝐸𝑎1 > 𝐸𝑎2−8  = 0 > 0b 

5 𝐸𝑎1 > 𝐸𝑎2−8  𝑖𝑓 𝑇 < 80 °𝐶 = 0 = 0 

a: 𝐸𝑎𝑆1  = 100 kJ mol-1, 𝐴𝑆1  = 1 × 1012 s-1 

b: 𝐸𝑎𝑆2  = 50 kJ mol-1, 𝐴𝑆2  = 3.1 × 105 L0.5 mol-1.5 s-1 

Table S2. Catalyst-specific activation energies, 𝐸𝑎𝑖  (kJ mol-1), for each case study. 

Catalyst Case 1 Case 2 Case 3/4 Case 5 

1 (𝑇 < 80 °C) 0 0 0 -5.0 
1 (𝑇 > 80 °C) 0 0 0 -5.0 + 0.3 (𝑇 – 80) 

2 0.3 0 0.3 0.7 
3 0.3 0.3 0.3 0.7 
4 0.7 0.7 0.7 0.7 
5 0.7 0.7 0.7 0.7 
6 2.2 2.2 2.2 2.2 
7 3.8 3.8 3.8 3.8 
8 7.3 7.3 7.3 7.3 
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Each case study was optimised using the catalyst type, residence time (𝑡𝑟𝑒𝑠), temperature (𝑇) 

and catalyst concentration (𝐶𝑐𝑎𝑡) as input variables. In contrast to the original paper, the 

objective was to maximise a weighted objective function, 𝑓(𝑥), combining the yield and TON 

with respect to desired product, R:  

 

To evaluate the accuracy of the optimisation algorithms the true optima for each case study 

were required. These were identified by performing global SNOBFIT optimisations of the 

continuous variables (100 iterations) for each catalyst type per case study (Table S3). The 

relative weightings were selected such that the optimal yield and TON were comparable with 

the original case studies.3 
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Table S3. Optimal solutions for each catalyst type for the five case studies.  

Case 𝑪𝒂𝒕  𝒕𝒓𝒆𝒔 𝑻 𝑪𝒄𝒂𝒕 Yield TON 𝒇(𝒙) 
— — (min) (°C) (mol%) (%) — — 

1 

1 10.0 110.0 0.500 90.4 180.8 4.6775 
2 10.0 110.0 0.500 88.8 177.6 4.6597 
3 10.0 110.0 0.500 88.8 177.6 4.6597 
4 10.0 110.0 0.500 86.5 172.9 4.6330 
5 10.0 110.0 0.500 86.5 172.9 4.6330 
6 10.0 110.0 0.500 75.7 151.4 4.5003 
7 10.0 110.0 0.500 61.8 123.6 4.2973 
8 10.0 110.0 2.500 53.2 21.3 3.7455 

2 

1 10.0 110.0 0.500 90.4 180.8 4.6775 
2 10.0 110.0 0.500 90.4 180.8 4.6775 
3 10.0 110.0 0.500 88.8 177.6 4.6597 
4 10.0 110.0 0.500 86.5 172.9 4.6330 
5 10.0 110.0 0.500 86.5 172.9 4.6330 
6 10.0 110.0 0.500 75.7 151.4 4.5003 
7 10.0 110.0 0.500 61.8 123.6 4.2973 
8 10.0 110.0 2.500 53.2 21.3 3.7455 

3 

1 10.0 81.9 1.522 54.9 36.1 3.9012 
2 10.0 81.9 1.855 54.9 29.6 3.8504 
3 10.0 81.9 1.862 54.9 29.5 3.8504 
4 10.0 82.0 2.435 54.9 22.5 3.7827 
5 10.0 82.0 2.436 54.9 22.5 3.7827 
6 10.0 83.0 2.500 41.7 16.7 3.5008 
7 10.0 83.9 2.500 29.0 11.6 3.1391 
8 10.0 85.6 2.500 11.1 4.4 2.1784 

4 

1 2.2 110.0 1.380 36.8 26.6 3.5243 
2 2.2 110.0 1.672 36.8 22.0 3.4772 
3 2.2 110.0 1.669 36.8 22.0 3.4772 
4 2.2 110.0 2.148 36.8 17.1 3.4144 
5 2.2 110.0 2.149 36.8 17.1 3.4144 
6 2.5 110.0 2.500 29.8 11.9 3.1661 
7 2.9 110.0 2.500 22.0 8.8 2.8618 
8 3.8 110.0 2.500 9.9 4.0 2.0669 

5 

1 10.0 80.0 0.500 93.8 187.5 4.7141 
2 10.0 110.0 0.500 86.5 172.9 4.6330 
3 10.0 110.0 0.500 86.5 172.9 4.6330 
4 10.0 110.0 0.500 86.5 172.9 4.6330 
5 10.0 110.0 0.500 86.5 172.9 4.6330 
6 10.0 110.0 0.500 75.7 151.4 4.5003 
7 10.0 110.0 0.500 61.8 123.6 4.2973 
8 10.0 110.0 2.500 53.2 21.3 3.7455 
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2.2 Simulation Procedure 

The simulations were programmed in MATLAB and followed the procedure shown in Figure 

S1. In this work, the performance of different algorithms (ALaBO, Dragonfly, 

ProcessOptimizer), initialisation strategies (CP, LHC = 3, 5) and batch sizes (BS = 1, 2, 3, 4) 

across each of the five case studies were assessed. Therefore, each of these parameters were 

set as a user input prior to the start of the simulation. Each simulation was run 10 times with 

an experimental budget of 100, enabling the average speed of convergence and robustness 

of each strategy to be determined. Two-way integration of MATLAB (2023a) and Python (3.10) 

enabled Dragonfly and ProcessOptimizer to be called directly from MATLAB to suggest new 

sampling points. 

 

 

Figure S1. Flowchart of the simulated optimisations procedure. 
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Differential rate equations, describing the change in concentration of each compound as a 

function of time [Eq. (15-20)], were solved using Ordinary Differential Equation (ODE) solver 

ODE45. The yield and TON were calculated according to [Eq. (21)] and [Eq. (22)] respectively, 

where [𝑅]𝑡𝑟𝑒𝑠  is the concentration of desired product at time 𝑡 = 𝑡𝑟𝑒𝑠.  

 

𝑑𝐶𝑐𝑎𝑡
𝑑𝑡

= 0 

 

(15) 

𝑑[𝐴]

𝑑𝑡
= −𝑘𝑅[𝐴][𝐵] 

 

(16) 

𝑑[𝐵]

𝑑𝑡
= −𝑘𝑅[𝐴][𝐵] − 𝑘𝑆1[𝐵] − 𝑘𝑆2[𝐵][𝑅] 

 

(17) 

𝑑[𝑅]

𝑑𝑡
= 𝑘𝑅[𝐴][𝐵] − 𝑘𝑆2[𝐵][𝑅] 

 

(18) 

𝑑[𝑆1]

𝑑𝑡
= 𝑘𝑆1[𝐵] 

 

(19) 

𝑑[𝑆2]

𝑑𝑡
= 𝑘𝑆2[𝐵][𝑅] 

 

(20) 

𝑌𝑖𝑒𝑙𝑑 =  
[𝑅]𝑡𝑟𝑒𝑠
𝐶𝐴0

× 100 
(21) 

𝑇𝑂𝑁 =  
[𝑅]𝑡𝑟𝑒𝑠
𝐶𝑐𝑎𝑡

 
(22) 

 

To enable the behaviour of the algorithms to be better understood, the evaluated conditions 

were stored alongside the responses for post-processing. These could then be used to 

visualise the optimisation pathway with respect to the response and each individual variable. 

An example of this for a run of ALaBO on case study one is shown in Figure S2. 
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Figure S2. An example of an optimisation pathway for the objective function and each 
reaction variable (ALaBO, Case 1). 
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2.3 Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Robustness plots showing the evolving fragility of the model. Lower values for 
the 95% confidence range indicate a more reliable model at any given experiment. 
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Figure S4. Optimisation progress plots comparing ALaBO performance using different 
initialisation strategies. Plots show the average running maxima and 95% confidence 
intervals across 10 separate runs. CP = centre point; LHC = Latin hypercube. 
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Figure S5. Optimisation progress plots comparing ALaBO performance using different 
iteration batch sizes (BS). Plots show the average running maxima and 95% confidence 
intervals across 10 runs using CP initialisation. 
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3 Self-Optimisation of a Suzuki-Miyaura Cross-Coupling 

3.1 Automated Continuous Flow Reactor 

 

Figure S6. Photo of the automated continuous flow reactor platform.    

 

 

Scheme S1. Schematic of the reactor set-up for the self-optimisation of the Suzuki-Miyaura 
cross-coupling reaction.  
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Ligand selection was achieved using a Knauer Azura 16-port multiposition valve connected to 

a pre-prepared array of catalyst/ligand stock solutions stored under nitrogen. Reagents were 

pumped using a combination of JASCO (PU-4580) and Knauer Azura (P 4.1S) HPLC pumps and 

mixed using Swagelok SS-100-3 tee pieces.  A 5 mL reactor was made from stainless steel 

tubing (1/16” OD, 1/32” ID), which was fitted to an aluminium cylinder and heated with a 

Eurotherm 3200 temperature controller. The reactor was maintained under 250 psi using an 

Upchurch Scientific back pressure regulator. Online HPLC sampling was achieved using a VICI 

Valco EUHA-CI4W sample loop (4-port) with 0.1 μL direct injection volume. Quantitative 

analysis was performed on an Agilent 1100 series HPLC instrument fitted with a Supelco 

Ascentis Express C18 reverse phase column (5 cm length, 4.6 mm ID and 2.7 μm particle size) 

and an Agilent EC-C18 (4.6 × 5 mm, 2.7 μm) guard column. The platform was controlled and 

automated using a custom written MATLAB program. 

3.2 Chemicals & Analytical Method 

All of the following chemicals were purchased from commercial sources and used as received: 

bromobenzene (98.0%, Fluorochem); 4-methylphenylboronic acid (>97%, Apollo Scientific); 

DBU (98.0%, Fluorochem); palladium (II) acetate (≥99.9%, Sigma-Aldrich); DavePhos (98.0%, 

Fluorochem); XPhos (98.0%, Fluorochem); SPhos (98.0%, Fluorochem); CyJohnPhos (99.0%, 

Fluorochem); dppp (95.0%, Fluorochem); dppf (97%, Sigma-Aldrich); 4-methylbiphenyl 

(98.0%, Fluorochem); 4,4’-dimethylbiphenyl (98%, Activate Scientific); toluene (≥99.8%, 

Fisher Scientific); biphenyl (99.5%, Sigma-Aldrich); tetrahydrofuran (≥99.8%, Fisher Scientific); 

acetonitrile (≥99.9%, Sigma-Aldrich).  

Reservoir solutions were prepared by dissolving the desired reagents in solvent under 

nitrogen, and were replenished as required throughout the optimisation. Reagent pump (150 

mL): bromobenzene 1 (7.85 mL, 0.075 mol, 0.50 M), 4-methylphenylboronic acid 2 (15.30 g, 

0.113 mol, 0.75 M), DBU (22.43 mL, 0.150 mol, 1.00 M) and biphenyl (1.39 g, 0.009 mol, 0.06 

M) in THF/H2O (5:1). Catalyst pump (25 mL): Pd(OAc)2 (42.1 mg, 0.0002 mol, 0.0075 M) and 

ligand (0.0002 mol, 0.0075 M) in THF/H2O (5:1). Solvent pump: THF/H2O (5:1). The catalyst 

pump was connected to a multiposition valve, enabling selection of six different ligands 

(DavePhos, XPhos, SPhos, CyJohnPhos, dppp, dppf) from separate reservoir solutions. The 

solvent pump was necessary to enable residence time and catalyst mol% to be varied 

independently whilst holding the concentration of the limiting reactant (bromobenzene 1) 

fixed at 0.167 M within the reactor. 

HPLC method development and analytical calibrations were performed using the products 

from commercial sources and biphenyl as internal standard. HPLC mobile phases were A H2O 

(18.2 MΩ) and B MeCN. The method used was 5% B 2 min, 5 to 95% B 5 min, 95% B 1 min, 95 

to 5% B 0.5 min, 5% B 1 min, flow rate 1.5 mL min-1, column temperature 30 °C. An example 

of a HPLC chromatogram from the calibrations is shown in Figure S7. Retention times: DBU 

(1.30 min), 4-methylphenylboronic acid 2 (3.92 min), toluene (5.41 min), bromobenzene 1 

(5.53 min), biphenyl (6.08 min), 4-methylbiphenyl 3 (6.40 min), 4,4’dimethylbiphenyl (6.70 

min). Toluene and 4,4’-dimethylbiphenyl were included in HPLC method development to 

enable monitoring of potential protodeboronation or homocoupling reactions of 4-
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methylphenylboronic acid 2. However, these were not observed in the subsequent 

optimisation experiments. 

 

Figure S7. Example HPLC chromatogram (wavelength = 220 nm). IS = internal standard 
(biphenyl). 

3.3 Optimisation Procedure 

A custom written MATLAB program controlled the pump flow rates, valve positions, reactor 

temperature and sampling. Each iteration adhered to the following sequence: (i) 

multiposition valve was set to the corresponding ligand; (ii) reactor was allowed to stabilise 

at the desired operating temperature (iii) pumps were set to the required flow rates and left 

for three reactor volumes to reach steady state; (iv) sampling valve was triggered alongside 

HPLC analysis. During the analysis, the reagent pumps were paused to reduce material 

consumption, and the solvent pump set to 0.5 mL min-1 to wash the reactor. In addition, the 

temperature of the reactor was set to the minimum bounds. As cooling is slower than heating 

in this system, this provided the most time-efficient method for changing the temperature 

between experiments. The response was calculated from the HPLC chromatograms at the end 

of each iteration, and the results used to update the surrogate models and generate the next 

recommended reaction conditions.  

The ALaBO algorithm was initialised using one centre point experiment with respect to the 

quantitative variables per ligand, equalling six total experiments. The optimisation was 

performed with a batch size of one. This process was repeated iteratively with a total 

experimental budget (including initialisation) of 25, after which point the optimisation was 

terminated. 

IS 
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Figure S8. Flowchart of the self-optimisation experimental procedure. 

The self-optimisation was conducted with respect to four variables: residence time, Pd mol%, 

temperature and ligand. The lower and upper bounds of the continuous variables, and the 

levels of the categorical variable are shown in Scheme S2. Fixed parameters were the 

concentration of bromobenzene 1 in the reaction (0.167 M), the equivalents of DBU and 

boronic acid 2 (2.0 and 1.5 respectively), and the Pd/ligand ratio (1:1). The objective of the 

optimisation was to simultaneously maximise the yield and TON as defined by the weighted 

objective function, 𝑓(𝑥) [Eq. (14)]. For reactions with a 0% yield, a value of 0.1 was assigned 

to the product peak area. This prevented the code from attempting to take the natural log of 

0 and pass the algorithm an undefined number. However, this method still provided a poor 

response to deter the algorithm from further exploring this region.  
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Scheme S2. Optimisation parameters for the Suzuki-Miyaura cross-coupling reaction between 
bromobenzene 1 and 4-methylphenylboronic acid 2. 

3.4 Results 

 

Figure S9. Optimisation pathway for the separate terms in the weighted objective function 
and for each reaction variable. 
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Table S4. Optimisation results showing the yield and TON with respect to desired product 3, 
and the response from the weighted objective function. Experiments 1-6 = CP initialisation; 
experiments 7-25 = ALaBO iterations. 

Entry tres (min) Pd mol% T (°C) Ligand Yield (%) TON 𝒇(𝒙) 

1 5.50 1.50 110.0 DavePhos 40.9 27.2 3.6085 

2 5.50 1.50 110.0 XPhos 14.8 9.9 2.5921 

3 5.50 1.50 110.0 SPhos 12.9 8.6 2.4570 

4 5.50 1.50 110.0 CyJohnPhos 44.3 29.6 3.6906 

5 5.50 1.50 110.0 dppp 25.8 17.2 3.1489 

6 5.50 1.50 110.0 dppf 14.8 9.9 2.5944 

7 4.57 1.95 108.8 CyJohnPhos 53.3 27.4 3.8096 

8 1.00 2.50 94.2 CyJohnPhos 12.8 5.1 2.3227 

9 1.00 2.50 150.0 CyJohnPhos 76.7 30.7 4.1108 

10 9.94 0.97 144.7 CyJohnPhos 92.7 95.3 4.5362 

11 2.96 1.54 139.7 CyJohnPhos 62.4 40.4 4.0244 

12 10.00 2.50 150.0 SPhos 62.9 25.2 3.9130 

13 10.00 0.50 135.1 SPhos 37.0 73.5 3.7822 

14 5.08 0.50 145.2 SPhos 34.5 68.8 3.7138 

15 10.00 0.50 70.0 SPhos 0.0 0.0 -5.4334 

16 1.00 2.50 129.0 CyJohnPhos 35.3 14.1 3.3348 

17 10.00 0.50 101.4 CyJohnPhos 8.4 16.7 2.2995 

18 10.00 2.50 123.4 CyJohnPhos 75.0 30.1 4.0892 

19 1.00 2.50 118.5 CyJohnPhos 20.2 8.1 2.7781 

20 7.14 0.50 127.3 CyJohnPhos 20.8 41.5 3.2068 

21 10.00 2.50 140.3 CyJohnPhos 71.7 28.7 4.0444 

22 10.00 2.50 87.8 CyJohnPhos 15.7 6.3 2.5250 

23 1.00 0.50 83.8 SPhos 0.0 0.0 -5.0861 

24 10.00 2.50 117.6 CyJohnPhos 53.0 21.2 3.7420 

25 10.00 2.50 93.8 CyJohnPhos 22.0 8.8 2.8613 
 

 

 

 

 

 

 

 

 

 

 



S20 
 

4 References 

1 Y. Zhang, S. Tao, W. Chen and D. W. Apley, Technometrics, 2020, 62, 291. 
 

2 D. Jasrasaria and E. O. Pyzer-Knapp, arXiv.org, 2018, 1807.01279. 
 

3 L. M. Baumgartner, C. W. Coley, B. J. Reizman, K. W. Gao and K. F. Jensen, React. Chem. 
Eng., 2018, 3, 301. 

 


