# Investigations on the photocatalytic Methanol Oxidation to yield formaldehyde in a continuous laboratory plant

## **Supporting Informations**

Stubenrauch, Florian<sup>1</sup>; Schörner, Markus<sup>1</sup>; Andreas, Bösmann<sup>2</sup>; Schühle, Patrick<sup>2</sup>;

Wasserscheid, Peter<sup>1,2</sup>

<sup>1</sup>Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen-Nürnberg for renewable Energy (IEK-11)

<sup>2</sup>Lehrstuhl für chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg

## 1. Continuous laboratory plant flow chart



Figure S1: PI-flow diagram of the laboratory plant used in this study.

| Module | Injector           | Column                          | Carrier gas | Detector | Substances                                               |
|--------|--------------------|---------------------------------|-------------|----------|----------------------------------------------------------|
| A      | Backflush          | Rt-Molsieve<br>0.25 mm<br>10 m  | Ar          | TCD      | H <sub>2</sub> , O <sub>2</sub> , N <sub>2</sub> ,<br>CO |
| В      | Variable<br>Volume | Rt-U-Bond<br>0.25 mm<br>8 m     | Не          | TCD      | СО <sub>2</sub> , НСНО,<br>Н <sub>2</sub> О              |
| С      | Large<br>Volume    | Stabilwax DB<br>0.25 mm<br>10 m | Не          | TCD      | DMM, DME,<br>MF, MeOH,<br>HeFal                          |

## 2. Gas chromatography setup details: Inficon Micro-GC Fusion

## 3. UV-irradiance and local intensity

Tabelle S1: Second degree polynomial fit equation in x and y direction for irradiance in the reactor with determined parameters.

| $p20x^2 + p10x + p02y^2$ | + p01 y + p11xy + p00 | Goodness of fit     |        |  |
|--------------------------|-----------------------|---------------------|--------|--|
| p20                      | -9.324 E-03           | SSE:                | 601.4  |  |
| p10                      | 1.442                 | R <sup>2</sup>      | 0.9531 |  |
| p02                      | -4.464 E-02           | Adj. R <sup>2</sup> | 0.9374 |  |
| p01                      | 3.585                 | RMSE                | 6.332  |  |
| p11                      | -3.078 E-04           |                     |        |  |
| p00                      | 1.066 E+02            |                     |        |  |

#### 4. Long term experiment course: Products



Figure S2: Conversion over time in a standard experiment.  $m_{Catalyst} = 0.1561 \text{ g}; \omega_{Catalyst} = 1.1478 \text{ mg cm}^{-2};$ T = 78 °C;  $\tau = 11.8 \text{ s}; E = 186.8 \text{ mW cm}^{-2}$ 



## 5. Conversion of oxygen and product yields at different loadings and irradiations

Figure S3: Resulting conversion of  $O_2$  (left) and yields (right) towards HCHO, MF and  $CO_2$  for different catalyst loads on the irradiated area. T = 78 °C,  $\tau = 11.8$  s



Figure S4: Apparent quantum efficiencies in total (left) and broken down to product species (right). T = 78 °C,

 $\tau = 11.8 \ s$ 



### 6. Residence Time influence: Yields and AQE

Figure S5: Yield (left) and AQE (right) at different residence times.  $m_{Catalyst} = 0.0465 \text{ g}$ ;  $\omega_{Catalyst} = 0.3419 \text{ mg}$  $cm^{-2}$ ; T = 78 °C;  $E = 186.8 \text{ mW} \text{ cm}^{-2}$ 



Figure S6: Yields (left) and AQE (right) for different irradiation intensities.  $m_{Catalyst} = 0.0335 \text{ g};$  $\omega = 0.2463 \text{ mg cm}^{-2}; T = 78 \text{ }^\circ\text{C}; \tau = 11.8 \text{ s}$ 



# 8. Temperature influence: Yields and AQE

Figure S7: Yield towards product species (left) and AQE for product species and in total at different temperatures.  $m_{Catalyst} = 0.0735 \text{ g} \text{ (circles)} / 0.0541 \text{ g} \text{ (triangles)}; \omega_{Catalyst} = 0.5404 \text{ mg cm}^{-2} / 0.3978 \text{ mg cm}^{-2};$  $\tau = 11.8 \text{ s}; E = 186.8 \text{ mW cm}^{-2}$ 



#### 9. Temperature Variation: Reproduction experiment

Figure S8: Conversion of MeOH and  $O_2$  and product selectivities for different temperatures.  $m_{Catalyst} = 0.0484$  g;  $\omega_{Catalyst} = 0.3559$  mg cm<sup>-2</sup>;  $\tau = 11.8$  s; E = 186.8 mW cm<sup>-2</sup>



Figure S9: Catalyst activities (MeOH and  $O_2$  consumption rates, left) and productivities (right) for different temperatures.  $m_{Catalyst} = 0.0484 \text{ g}; \omega_{Catalyst} = 0.3559 \text{ mg cm}^2; \tau = 11.8 \text{ s}; E = 186.8 \text{ mW cm}^2$ 



Figure S10: Yield towards products (left) and apparent quantum efficiencies (right) for different temperatures.  $m_{Catalyst} = 0.0484 \text{ g}; \omega_{Catalyst} = 0.3559 \text{ mg cm}^{-2}; \tau = 11.8 \text{ s}; E = 186.8 \text{ mW cm}^{-2}$