Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Green Synthesis of Surfactant-free Mesoporous Silica with Strong Hydrophilicity via Metal Salt Modifications for Moisture Adsorption Super-hydrophilic Surfactant-free Mesoporous Silica

Pariyawalee Sangteantong^{1,2}, Kunpirom Chainarong¹, Waleeporn Donphai^{1,2}, and Metta Chareonpanich^{1,2,*}

¹ KU-Green Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

² Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural

Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900,

Thailand

Supplementary data

Table S1 Percentage of hydrophilic functional groups (Si-O- and Si-OH) of metal salt

 modified mesoporous silica.

Figure S1: TEM images of (a) MPS and NaCl-modified MPS products: (b) MPS_0.125NaCl, (c) MPS_0.250NaCl, (d) MPS_0.375NaCl, and (e) MPS_0.500NaCl.

Figure S2: TEM images of (a) MPS and MgCl₂-modified MPS products: (b) MPS_ $0.125MgCl_2$, (c) MPS_ $0.250MgCl_2$, (d) MPS_ $0.375MgCl_2$, and (e) MPS_ $0.500MgCl_2$.

Figure S3: FTIR spectra of (a) silica gel, (b) MPS and MPS modified by (A) NaCl, (B) KCl, (C) MgCl₂, and (D) CaCl₂ salts with concentrations of 0.125 (c, g, k, o); 0.250 (d, h, l, p); 0.375 (e, i, m, q); and 0.500 (f, j, n, r) g salt/g SiO₂.

Figure S4: DTG curves of silica gel, MPS and MPS modified by (A) NaCl, (B) KCl, (C) MgCl₂, and (D) CaCl₂ salts.

	Percentage of hydrophilic functional group ^a (%)	
Adsorbents		
_	Si-O ⁻	Si-OH
Silica gel	4.91	2.86
MPS	4.48	2.75
MPS_0.125NaCl	4.66	2.50
MPS_0.250NaCl	4.85	2.60
MPS_0.375NaCl	5.09	2.70
MPS_0.500NaCl	5.47	3.04
MPS_0.125KCl	4.28	2.65
MPS_0.250KC1	4.62	2.82
MPS_0.375KC1	4.67	2.83
MPS_0.500KC1	4.93	2.95
MPS_0.125MgCl ₂	4.66	2.50
$MPS_0.250MgCl_2$	3.49	2.18
$MPS_0.375MgCl_2$	3.03	1.83
$MPS_0.500MgCl_2$	2.30	1.40
MPS_0.125CaCl ₂	1.27	0.84
$MPS_0.250CaCl_2$	1.22	0.84
$MPS_0.375CaCl_2$	1.18	0.78
$MPS_0.500CaCl_2$	1.12	0.75

 Table S1 Percentage of hydrophilic functional groups (Si-O- and Si-OH) of metal salt–

 modified mesoporous silica.

^a Calculated by using area from deconvolution of FTIR spectra.

Figure S1: TEM images and particle size distributions of (a) MPS and NaCl-modified MPS products: (b) MPS_0.125NaCl, (c) MPS_0.250NaCl, (d) MPS_0.375NaCl, and (e) MPS_0.500NaCl.

Figure S2: TEM images and particle size distributions of (a) MPS and MgCl₂-modified MPS products: (b) MPS_0.125MgCl₂, (c) MPS_0.250MgCl₂, (d) MPS_0.375MgCl₂, and (e) MPS_0.500MgCl₂.

Figure S3: FTIR spectra of (a) silica gel, (b) MPS and MPS modified by (A) NaCl, (B) KCl, (C) MgCl₂, and (D) CaCl₂ salts with concentrations of 0.125 (c, g, k, o); 0.250 (d, h, l, p); 0.375 (e, i, m, q); and 0.500 (f, j, n, r) g salt/g SiO₂.

gure S4: DTG curves of silica gel, MPS and MPS modified by (A) NaCl, (B) KCl, (C) MgCl₂, and (D) CaCl₂ salts.