Supporting Information

# Optimized synthesis of functional organosilicon monomers and polymers exploiting new type of CuAAC recoverable heterogeneous catalyst

Kseniya A. Bezlepkina,<sup>a,c</sup> Irina I. Belikova,<sup>a,b</sup> Vasilissa A. Aristova,<sup>a,b</sup> Kseniia S. Klokova,<sup>a</sup> Sofia N. Ardabevskaia,<sup>a,c</sup> Alexander Yu Pereyaslavtsev, <sup>d</sup> Dmitry A. Migulin <sup>a</sup>, Sergey A. Milenin,<sup>a,c\*</sup>

a- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences,

117393, Moscow, Russian Federation

b- Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia

c - Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, 300026 Tula, Russia

d-A. N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119991, Moscow, Russia

#### Table of contents

| . Synthesis of hyperbranched poly[3-(2-Aminoethylamino)propyl]methoxysiloxane poly(e ropyl-methoxysiloxane)                                         | ι-<br>3 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2. Synthesis of Sodiumoxy-[3-(2-Aminoethylamino)propyl]dimethoxysilane                                                                              | 3       |
| 3. Synthesis of hyperbranched poly[3-(2-Aminoethylamino)propyl]methoxysiloxane poly(en-<br>propyl-siloxane)                                         | 4       |
| 4. Synthesis of hyperbranched poly(3-(4-((dimethylamino)methyl)-1H-1,2,3-triazol-1-<br>yl)propyl)ethoxysiloxane - poly(DMA-1,2,3-triazole-siloxane) | 6       |
| 5. NMR spectra and GPC curves of functional siloxanes                                                                                               | .11     |
| 7. Preparation of Functional carbosilane dendrimer                                                                                                  | .26     |
| 8. Cell culture and cytotoxicity assay                                                                                                              | .30     |
| 9. References                                                                                                                                       | .32     |

## 1. Synthesis of hyperbranched poly[3-(2-Aminoethylamino)propyl]methoxysiloxane poly(en-propyl-methoxysiloxane)

Hyperbranched poly[3-(2-Aminoethylamino)propyl]methoxysiloxane was synthesized in the process of heterofunctional polycondensation of the corresponding AB<sub>2</sub>-type Sodiumoxy-[3-(2-Aminoethylamino)propyl]dimethoxysilane momomer according to the procedure previously described in <sup>1</sup>

#### 2. Synthesis of Sodiumoxy-[3-(2-Aminoethylamino)propyl]dimethoxysilane



<sup>1</sup>H NMR (300 MHz, THF)  $\delta$ : 2,81-2,73 ppm (m, 2H, -C<u>H</u><sub>2</sub>-NH<sub>2</sub>), 2,66-2,62 ppm (m, 2H, -NH-C<u>H</u><sub>2</sub>-), 2,66-2,62 ppm (m, 2H, -C<u>H</u><sub>2</sub>-NH-), 1,73-1,63 ppm (q, 2H, -C<u>H</u><sub>2</sub>-CH<sub>2</sub>-NH-, J= 7 Hz), 0,52 ppm (t, 2H, -Si-C<u>H</u><sub>2</sub>-, J= 7,6 Hz), 3,45 ppm (s, 6H, C<u>H</u><sub>3</sub>O-), 1,38 ppm (t, 2H, -N<u>H</u><sub>2</sub>, J= 6,5 Hz), 1,63-1,54 ppm (q, 1H, -N<u>H</u>-, J= 7 Hz); <sup>13</sup>C NMR (THF)  $\delta$ : 9,25 ppm (-Si-<u>C</u>H<sub>2</sub>-CH<sub>2</sub>-), 24,54 ppm (-Si-CH<sub>2</sub>-<u>C</u>H<sub>2</sub>-), 52,57 ppm or 52,54 ppm (-CH<sub>2</sub>-C<u>H</u><sub>2</sub>-NH-), 52,57 ppm or 52,54 ppm (-NH-<u>C</u>H<sub>2</sub>-CH<sub>2</sub>-), 41,64 ppm (CH<sub>2</sub>-<u>C</u>H<sub>2</sub>-NH<sub>2</sub>); <sup>29</sup>Si (THF),  $\delta$ : -44,46 ppm; <sup>15</sup>N (THF),  $\delta$ : 34 ppm (-NH-), 16 ppm (-NH<sub>2</sub>); <sup>23</sup>Na (THF) 13 ppm; HRMS calcd for C<sub>7</sub>H<sub>19</sub>N<sub>2</sub>NaO<sub>3</sub>Si: 231.1135; found: [M+nNa] = 231.1132.



Figure S1. <sup>1</sup>H NMR Spectral data of Sodiumoxy-[3-(2-Aminoethylamino)propyl]dimethoxysilane



Figure S2. <sup>13</sup>C NMR Spectral data of Sodiumoxy-[3-(2-Aminoethylamino)propyl]dimethoxysilane



Figure S3. <sup>29</sup>Si NMR Spectral data of Sodiumoxy-[3-(2-Aminoethylamino)propyl]dimethoxysilane



Figure S4. Mass spectra of Sodiumoxy-[3-(2-Aminoethylamino)propyl]dimethoxysilane

### **3.** Synthesis of hyperbranched poly[3-(2-Aminoethylamino)propyl]methoxysiloxane poly(en-propyl-siloxane)



<sup>1</sup>H NMR (300 MHz, THF) δ: 2,84-2,73 ppm (m, 2H ,-C<u>H</u><sub>2</sub>-NH<sub>2</sub>), 2,70-2,54 ppm (m, 2H, -NH-C<u>H</u><sub>2</sub>-), 2,70-2,54 ppm (m, 2H, -C<u>H</u><sub>2</sub>-NH-), 1,66-1,50 ppm (q, 2H, -C<u>H</u><sub>2</sub>-CH<sub>2</sub>-NH-), 0,72-0,57 ppm (m, 2H, -Si-C<u>H</u><sub>2</sub>-), 3,58-3,48 ppm (m, 6H, C<u>H</u><sub>3</sub>O-), 1,20-1,06 ppm (m, 2H, -N<u>H</u><sub>2</sub>), 1,20-1,06 ppm (m, 1H, -N<u>H</u>-); <sup>29</sup>Si (THF), δ: 49,18-49,93 ppm (m, R-Si(OCH<sub>3</sub>)<sub>2</sub>O-), 56,45-59,16 (m, R-Si(OCH<sub>3</sub>)(O-)<sub>2</sub>), 63,75-68,62 (m, R-Si(O-)<sub>3</sub>).

![](_page_4_Figure_2.jpeg)

Figure S5. <sup>1</sup>H NMR Spectral data of poly(en-propyl-siloxane)

![](_page_5_Figure_0.jpeg)

Figure S6. <sup>29</sup>Si NMR Spectral data of <sup>1</sup>H NMR Spectral data of poly(en-propyl-siloxane) with the addition of paramagnetic relaxation agent Chromium (III) Acetylacetonate

## 4. Synthesis of hyperbranched poly(3-(4-((dimethylamino)methyl)-1H-1,2,3-triazol-1-yl)propyl)ethoxysiloxane - poly(DMA-1,2,3-triazole-siloxane)

Hyperbranched DMA-1,2,3-triazole-siloxane was synthesized according to the procedure previously described in <sup>2</sup> .

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.7-7.4 (m, 1H), 4.3-4.1 (m, 2H) , 3.7- 3.5 (m, 1.5H), 3.6 -3.3 (m, 2H), 2.1 (br.s, 3H), 1.9 - 1.7 (m, 2H), 1.0-0.8 (m, 2H), 0.6-0.3 (m, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  144.4, 122.5, 58.0, 53.9, 51.9, 44.8, 25.2, 23.8, 17.8, 9.9, 9.2, 8.7, 8.0; <sup>29</sup>Si NMR (60 MHz, CDCl<sub>3</sub>)  $\delta$ : (-53.6) - (-54.5) (R-Si(OCH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>O<sub>0.5</sub>), (-59.0) - (-62.6) (R-Si(O CH<sub>2</sub>CH<sub>3</sub>)O), (-64.0) - (-70.0) (R-SiO<sub>1.5</sub>). MALDI: M<sub>w</sub>=2348 g/mol, M<sub>w</sub>/M<sub>n</sub>=1.1.

![](_page_6_Figure_0.jpeg)

Figure S7. <sup>1</sup>H NMR Spectra of poly(DMA-1,2,3-triazole-siloxane)

![](_page_6_Figure_2.jpeg)

Figure S8. <sup>13</sup>C NMR Spectra of poly(DMA-1,2,3-triazole-siloxane)

![](_page_7_Figure_0.jpeg)

![](_page_7_Figure_1.jpeg)

Figure S9. <sup>13</sup>C NMR APT Spectra of poly(DMA-1,2,3-triazole-siloxane)

![](_page_7_Figure_3.jpeg)

Figure S10. <sup>1</sup>H, <sup>13</sup>C NMR HSQC Spectra of poly(DMA-1,2,3-triazole-siloxane)

![](_page_8_Figure_2.jpeg)

Figure S11.<sup>29</sup> Si NMR Spectra of DMA-1,2,3-triazole-siloxane

![](_page_8_Figure_4.jpeg)

Figure S12. FTIR Spectra of poly(DMA-1,2,3-triazole-siloxane)

![](_page_9_Figure_0.jpeg)

Figure S13. MALDI spectra of poly(DMA-1,2,3-triazole-siloxane)

#### 5. NMR spectra and GPC curves of functional siloxanes

![](_page_10_Figure_1.jpeg)

Figure S14. <sup>1</sup>H NMR spectrum of 1-1

![](_page_10_Figure_3.jpeg)

Figure S15. GPC curve of 1-1

![](_page_10_Figure_5.jpeg)

Figure S16. <sup>1</sup>H NMR spectrum of 1-2

![](_page_11_Figure_0.jpeg)

Figure S17. GPC curve of 1-2

![](_page_11_Figure_2.jpeg)

Figure S18. <sup>1</sup>H NMR spectrum of 1-3

![](_page_11_Figure_4.jpeg)

Figure S19. GPC curve of 1-3

![](_page_12_Figure_0.jpeg)

Figure S20. <sup>1</sup>H NMR spectrum of 1-4

![](_page_12_Figure_2.jpeg)

Figure S21. GPC curve of 1-4

![](_page_12_Figure_4.jpeg)

Figure S22. <sup>1</sup>H NMR spectrum of 1-5

![](_page_13_Figure_0.jpeg)

Figure S23. GPC curve of 1-5

![](_page_13_Figure_2.jpeg)

Figure S24. <sup>1</sup>H NMR spectrum of 1-6

![](_page_13_Figure_4.jpeg)

Figure S25. GPC curve of 1-6

![](_page_14_Figure_0.jpeg)

Figure S26. <sup>1</sup>H NMR spectrum of 1-7

![](_page_14_Figure_2.jpeg)

Figure S27. GPC curve of 1-7

![](_page_15_Figure_0.jpeg)

Figure S28. <sup>1</sup>H NMR spectrum of 1-8

![](_page_15_Figure_2.jpeg)

Figure S29. GPC curve of 1-8

![](_page_16_Figure_0.jpeg)

1

Figure S30. <sup>1</sup>H NMR spectrum of 1-9

![](_page_16_Figure_2.jpeg)

Figure S31. GPC curve of 1-9

![](_page_17_Figure_0.jpeg)

Figure S32. <sup>1</sup>H NMR spectrum of 1-10

![](_page_17_Figure_2.jpeg)

Figure S33. <sup>1</sup>H NMR spectrum of 1-11

![](_page_17_Figure_4.jpeg)

Figure S34. GPC curve of 1-11

![](_page_18_Figure_0.jpeg)

Figure S35. <sup>1</sup>H NMR spectrum of 1-12

![](_page_18_Figure_2.jpeg)

Figure S36. GPC curve of 1-12

![](_page_18_Figure_4.jpeg)

Figure S37. <sup>1</sup>H NMR spectrum of 1-13

![](_page_19_Figure_1.jpeg)

Figure S39. <sup>1</sup>H NMR spectrum of 1-14

![](_page_19_Figure_3.jpeg)

Figure S40. GPC curve of 1-14

![](_page_20_Figure_0.jpeg)

Figure S41. <sup>1</sup>H NMR spectrum of 1-15

#### 6. NMR spectra of functional silanes

![](_page_20_Figure_3.jpeg)

Figure S42. <sup>1</sup>H NMR spectrum of 2-1

![](_page_21_Figure_0.jpeg)

Figure S43. <sup>1</sup>H NMR spectrum of 2-2

![](_page_21_Figure_2.jpeg)

Figure S44. <sup>1</sup>H NMR spectrum of 2-3

![](_page_22_Figure_0.jpeg)

Figure S45. <sup>1</sup>H NMR spectrum of 2-4

![](_page_22_Figure_2.jpeg)

Figure S46. <sup>1</sup>H NMR spectrum of 2-5

![](_page_23_Figure_0.jpeg)

Figure S47. <sup>1</sup>H NMR spectrum of 2-6

![](_page_23_Figure_2.jpeg)

Figure S48. <sup>1</sup>H NMR spectrum of 2-7

![](_page_24_Figure_0.jpeg)

Figure S49. <sup>1</sup>H NMR spectrum of 2-8

![](_page_24_Figure_2.jpeg)

Figure S50. <sup>1</sup>H NMR spectrum of 2-9

![](_page_25_Figure_0.jpeg)

Figure S51. <sup>1</sup>H NMR spectrum of 2-10

#### 7. Preparation of Functional carbosilane dendrimer

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_26_Figure_0.jpeg)

**G<sub>3</sub>Si<sub>93</sub>(N<sub>3</sub>)<sub>32</sub>** The allyl-terminated **carbosilane** dendrimer G3Si<sub>29</sub>All<sub>32</sub> (312 mg,  $8.4 \times 10^{-5}$  mol) was dissolved in 5 mL of dry dioxane, then 1-(11-azidoundecyl)-1,1,3,3-tetramethyldisiloxane (0.89 g,  $2.7 \times 10^{-3}$  mol) and Karstedt's catalyst were added to the solution. The obtained mixture was stirred at room temperature for 48 h. The reaction was monitored by <sup>1</sup>H NMR. The reaction mixture was concentrated under reduced pressure (80 °C/0.5 mbar). The product was obtained as a colorless oil with a 99% yield (1.19 g, 99% of purity according to GPC). And then the product was purified on a preparative chromatograph from excess low-molecular compounds with a yield of 80% (0.952 g, 99% of purity according to GPC).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  3.25 (m, 16H, CH<sub>2</sub>-N<sub>3</sub>), 1.64-1.55 (m, 16H, C<u>H<sub>2</sub></u>-CH<sub>2</sub>- N<sub>3</sub>), 1.36-1.28 (m, 158H, -C<u>H<sub>2</sub></u>), 0.61-0.48 (m, 76H, Si-CH<sub>2</sub>), 0.03 -0.07 (m, 117H, Si-CH<sub>3</sub>). <sup>13</sup>C NMR (77.5 MHz, CDCl<sub>3</sub>):  $\delta$  51.48, 33.48, 33.41, 29.62, 29.53, 29.42, 29.19, 28.86, 26.75, 23.32, 23.26, 19.11, 19.01, 18.54, 18.45, 17.93, 0.56, 0.46, -4.99. <sup>29</sup>Si NMR (59.6 MHz, CDCl<sub>3</sub>):  $\delta$  7.19, 6.62, 1.03, 0.86, 0.72.

![](_page_26_Figure_3.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

Figure S53. <sup>13</sup>C NMR spectrum of  $G_3Si_{93}(N_3)_{32}$ 

![](_page_27_Figure_3.jpeg)

35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 Chemical shift (ppm)

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

Figure S55. <sup>1</sup>H NMR spectrum of G<sub>3</sub>Si<sub>93</sub>(TEG)<sub>32</sub> (3-1)

![](_page_28_Figure_3.jpeg)

Figure S56. <sup>13</sup>C NMR spectrum of G<sub>3</sub>Si<sub>93</sub>(TEG)<sub>32</sub> (3-1)

![](_page_29_Figure_1.jpeg)

Figure S58. GPC of of G<sub>3</sub>Si<sub>93</sub>(TEG)<sub>32</sub> (3-1) before purification on a preparative chromatograph

#### 8. Cell culture and cytotoxicity assay

![](_page_30_Figure_0.jpeg)

Polymer product of CuAAC with Cul
Initial Polyazidopropylsiloxane
Polymer product of CuAAC with CuBr
Polymer product of CuAAC with Cat.1

![](_page_30_Figure_2.jpeg)

Polymer product of CuAAC with Cul

- 🕇 Initial Polyazidopropylsiloxane
- Polymer product of CuAAC with CuBr
- Polymer product of CuAAC with Cat.1

Figure S59. Induced cell death by the components.

#### 9. References

- 1 D. Migulin, S. Milenin, G. Cherkaev, E. Svidchenko, N. Surin and A. Muzafarov, *J* Organomet Chem, 2018, **859**, 24–32.
- 2 D. A. Migulin, J. V. Rozanova, V. A. Migulin, G. V. Cherkaev, I. B. Meshkov, A. A. Zezin and A. M. Muzafarov, *Soft Matter*, 2022, **18**, 2441–2451.