Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

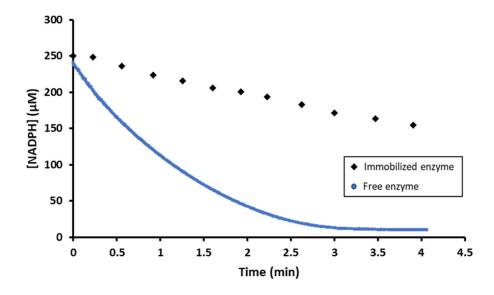
Electronic supplementary material

Mediated Electron Transfer in a Photo-Bioreactor: Continuous Flow Hydroxylation Using Cytochrome P450 BM3 In NADPH-Free Conditions

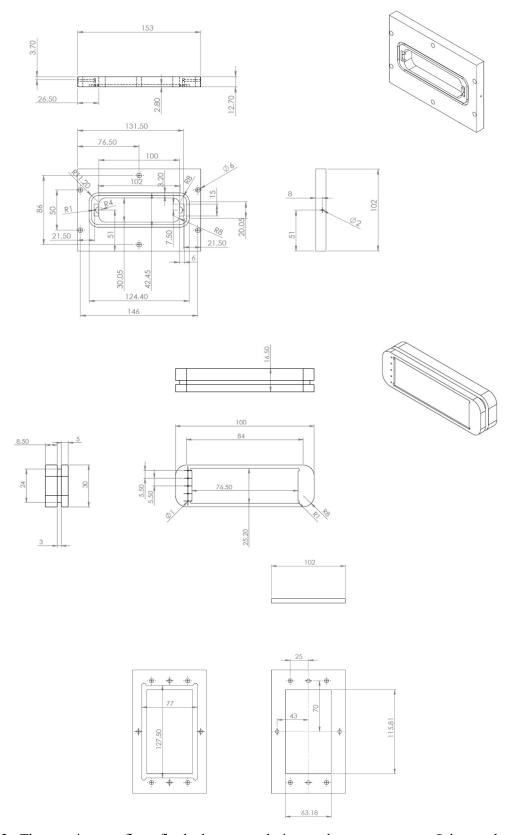
Ali Fendri^{1,2,3}, Donya Valikhani^{1,2,3}, and Joelle N. Pelletier^{1,2,3*}

Table of Contents

Figure S1. NADPH consumption using immobilized and free P450 BM3.


Figure S2. The continuous flow flat-bed reactor design and measurements.

^{*}Corresponding author: Joelle N. Pelletier. email: joelle.pelletier@umontreal.ca


¹ Department of Chemistry, Université de Montréal, 1375 Thérèse-Lavoie-Roux ave, Montréal, Canada

² Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux ave, Montréal, Canada

³ PROTEO, the Québec Network for Protein Function, Engineering and Applications, Québec, Canada

Figure S1. NADPH consumption using immobilized and free P450 BM3. The same enzyme concentration (1 μ M) was used in presence of lauric acid (0.4 mM) and NADPH (250 μ M) in phosphate buffer (pH 7.2). NADPH quantification was continuously monitored at 340 nm for the free enzyme. For the immobilized enzyme a discontinuous assay was used.

Figure S2. The continuous flow flat-bed reactor design and measurements. Scheme drawn using DOLIDWORKS AutoCAD. All measurements are presented in mm.