# Continuous Synthesis of Ruthenium Nanoparticles with Tuneable Sizes using Ruthenium Nitrosyl Nitrate precursor 

Joseph El-Kadi, Eugenio Fenoaltea Pieche, Seung Woo Ko, Laura Torrente-Murciano*<br>Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 OAS, Cambridge, UK<br>*Corresponding author: It416@cam.ac.uk

## Supplementary information

Table S. 1 TEM and DLS results of Ru NPs synthesised in flow and batch synthesis and collected in $\mathrm{HNO}_{3}$, BSA

| Synthesis type | Acid/Sta biliser | Final pH with stabiliser | TEM results |  | DLS results |  | ZP Results |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Average size (nm) | Standard deviation (nm) | Average size by number ( nm ) | Standard deviation (nm) | Average Zeta Potential (mV) | Standard deviation (mV) |
| Batch | $\mathrm{HNO}_{3}$ | 1.2 | 4.0 | 0.7 | 7 | 1 | +37 | 1 |
| Flow | $\mathrm{HNO}_{3}$ | 1.2 | 2.9 | 0.4 | 15 | 2 | +32 | 2 |
|  | PVP | 10.8 | 3.4 | 0.6 | 9 | 3 | -35 | 2 |
|  | BSA | 10.6 | 3.0 | 0.8 | 13 | 5 | -39 | 4 |

and PVP post-synthesis.

Figure S.1: TEM images comparing batch and flow synthesis of Ru NPs collected in $\mathrm{HNO}_{3}$, BSA and PVP postsynthesis. (a) TEM image of nanoparticles synthesised in batch collected in $\mathrm{HNO}_{3}\left(\mathrm{C}_{\mathrm{f}} 0.1 \mathrm{M}\right)$. (b) TEM image of nanoparticles synthesised in flow and collected in $\mathrm{HNO}_{3}\left(\mathrm{C}_{\mathrm{f}} 0.1 \mathrm{M}\right)$ (c) in BSA ( $\mathrm{Cf}=\mathbf{1} \mathbf{~ m g ~ m L - 1}$ ) and (d) in PVP (Cf $=\mathbf{2 m g} \mathbf{m L}-1$ ) (e) Lattice fringes from flow-synthesised Ru NPs in $\mathrm{HNO}_{3}$ showing spacing of 0.22 nm corresponding to hexagonal close-packed $\mathrm{Ru}(0)$.



Figure S.2: Pd NPs synthesised in batch by mixing 2.5 mM of $\mathrm{K}_{2}\left[\mathrm{Pd}\left(\mathrm{NO}^{2}\right)\left(\mathrm{NO}_{2}\right)_{4}\left(\mathrm{NO}_{3}\right)\right]$ (prepared from potassium tetranitropalladate as per Griffith, Lewis and Wilkinson $1961^{59}$ ) and $3 \mathbf{~ m M ~ N a B H} 4$ at $25^{\circ} \mathrm{C}$.


Figure S.3: Effect of pH on Ru precursor (a) UV-vis absorbance spectra for mixed solutions of 1.25 mM $\mathrm{Ru}(\mathrm{NO})(\mathrm{NO} 3) 3$ and NaOH at various final pH values, measured 10 seconds after mixing, from pH 2.4 (equivolume water addition in the absence of NaOH ) to pH 12.6 (equivolume addition of 0.1 M NaOH ) (b) relaxation of UV-vis shoulder for Ru solution with final pH 12.6 with time (c) Photo showing colours of Ru
solutions of final pH 2.4 and 12.6, taken 30 mins after conducting experiments. DLS measurements show no particles present.


Figure S.4: Effect of pH on $\mathrm{Ru}(\mathrm{NO})\left(\mathrm{NO}_{3}\right)_{3}$ reducibility. DLS number size distribution plots for mixed solutions of $2.5 \mathrm{mM} \mathrm{Ru}(\mathrm{NO})(\mathrm{NO})_{3}$ of varied starting pH values $\left(\mathrm{pH}_{\mathrm{Ru}}\right)$ and $6.25 \mathrm{mM} \mathrm{NaBH}_{4}$, measurements were conducted after 30 mins of mixing at $25^{\circ} \mathrm{C}$. Repeatable results are observed only for solutions with $\mathrm{pH}_{\mathrm{Ru}}$

between 6.3-9.7.

Figure S.5: Evident precipitation during the reduction of $\mathrm{RuCl}_{3}(\mathbf{2 ~ m M}, 40 \mathrm{~mL})$ to form Ru NPs by dropwise addition of powder-derived $\mathrm{NaBH}_{4}$ solution ( $0.1 \mathrm{M}, 1.5 \mathrm{~mL}$ ) at $0.2 \mathrm{ml} / \mathrm{min}$.

Table S.2: Batch experiments with $\mathrm{RuCl}_{3}(2 \mathrm{mM}, 40 \mathrm{~mL})$ with 8.5 mL of HCl of different concentrations, to which 1.5 mL of $\mathrm{NaBH}_{4}$ was added either in one shot or dropwise, producing large DLS sizes and significant agglomeration after 24 h .

| Concentration before mixing (mM) |  |  | $\mathrm{NaBH}_{4}$ addition | Final concentration (mM) |  |  | Molar Ratio |  | Final pH | DLS average size by number ( nm ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RuCl ${ }^{\text {l }}$ | $\mathrm{NaBH}_{4}$ | HCl |  | $\mathrm{RuCl}_{3}$ | $\mathrm{NaBH}_{4}$ | HCI | $\mathrm{NaBH}_{4}: \mathrm{Ru}$ | $\mathrm{HCl}: \mathrm{NaBH}_{4}$ |  |  |
| 2.00 | 100 | 35 | One shot | 1.6 | 3 | 5.95 | 1.88 | 2.0 | 1.90 | 152 |
| 2.00 | 800 | 140 | One shot | 1.6 | 24 | 23.8 | 15.0 | 1.0 | 2.42 | 345 |
| 2.00 | 100 | 35 | $0.3 \mathrm{ml} / \mathrm{min}$ | 1.6 | 3 | 5.95 | 1.88 | 2.0 | 1.87 | 184 |
| 2.00 | 800 | 140 | $0.3 \mathrm{ml} / \mathrm{min}$ | 1.6 | 24 | 23.8 | 15.0 | 1.0 | 1.92 | 252 |

Table S.3: TEM, DLS and Zeta Potential results of HNO3 stabilised Ru NPs from various size control experiments, Table 3.


Figure S. 6 Effect of reactor helix diameter on the size and distribution of continuously synthesised Ru NPs. Representative TEM images. Experiments 1 and 6, Table 3.

