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General:
Experimental section:

Materials and methods

All the reagents and reactants were purchased from commercial suppliers and were used
without further purification. The reactions were monitored by thin-layer chromatography
(TLC) using silica gel 60 GF245 precoated sheets and component were visualized using a
UV-lamp at a wavelength of 254 nm. Column chromatography was performed using silica
gel (60-120 mesh).'H and *C NMR spectra were recorded using an Agilent 500 MHz
spectrometer with CDClz as the solvent (with TMS as the internal standard). Powder XRD
analysis was carried out using a Shimadzu (Maxima 7000 S) using CuKo, (A=1.5418 A and
1.6 KW X-ray tube with applied voltage and current values as 40 kV and 40 mA) radiation
from 20 to 80° 260 range at scanning speed of 2 min-1. FTIR spectra were recorded with
KBr pellets using a Bruker Tensor 27 instrument. The TGA thermograms were recorded
on schimadzu 60H DTG apparatus in the range of 30-600°C with a heating rate 10°C/min
under nitrogen atmosphere. UV-Visible spectra were recorded on a Perkin Elmer Lambda
25 UV-VIS spectrophotometer. Morphology was investigated on scanning electron
microscope (SEM) using Hitachi S-4800, and Transmission Electron Microscopy (TEM)
analysis using a S3 PHILIPS model CM 200. Raman analysis was carried out on a STR

500 confocal micro-raman spectrometer.

Preparation of Graphene oxide by improved Hummer's method (IHM):

Graphene Oxide was prepared by improved hummer’s method: In 9:1 a mixture of concentrated
H2S04/H3PO4 (360:40 mL), natural graphite flakes (3g,) were suspended and then KMnO4 (18.0
g,) was added slowly with a slight exotherm of 35-40 °C. The reaction mixture was heated to 50-
60 °C and stirred for 12 h. The reaction mixture was cooled to RT and poured on ice cubes (4009)
followed by the addition of H>O> (30 %, 3 mL). The resultant suspension was filtered and
centrifuged for 4 h (4000 rpm). The supernatant layer was decanted and the residual solid material
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was washed sequentially using water (2 x 200 mL), 30% HCI (2 x 200 mL), and ethanol (2 x 200
mL). After this, the remaining solid material was coagulated using ether (200 mL), and the
resulting suspension was filtered. The processed dark brown oxidized material is graphite oxide.
Graphite oxide was further exfoliated into graphene oxide using ultrasonic probe VCX 750, Sonics
& Materials, USA (tip diameter: 13 mm, intensity: 50%, time: 30 minutes). The obtained solid
mass was vacuum-dried overnight, 6 g of graphene oxide was obtained and was thoroughly

characterized using various spectral techniques.

Oxidation (Improved
Hummers *method
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Figure S1: Preparation of Graphene oxide by improved Hummer's method (IHM)[!!
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Characterization of Graphene Oxide (GO) and recycled Graphene Oxide

The powder XRD pattern of GO (Figure S2a) showed a sharp diffraction peak at 260 =9.4 and a
small intensity peak at 42.14 which correspond to (001) and (101) planes respectively indicating

the oxidation of graphite to graphene oxide. [

The powder XRD pattern of reused GO showed a sharp diffraction peak at 26=10.0 and a small
intensity peak at 42.58 which correspond to (001) and (101) planes respectively of GO. We
observed peak around 26 which corresponds to formation of rGO in small amounts. But from the

obtained yields the catalytic activity of GO was found unaltered (Figure S2b).

The presence of various oxygenated functionalities on the surface of GO was confirmed by FTIR
analysis. Figure S2c shows the IR spectrum of GO, the peaks at 3386, 1727, 1638, 1211, 1055
cm should be attributed to O—H stretching vibrations, C=0 stretching vibrations from carbonyl
and carboxylic groups, skeletal vibrations from unoxidized graphene domains, C—OH stretching

vibrations and C—O stretching vibrations respectively.™

The presence of oxygenated functionalities (like carboxyl, epoxy, and hydroxyl) on the surface of
recycled GO was confirmed from the FTIR study. The peak present at 1722 cm™ corresponds to
the stretching vibration of carbonyl (C=0) and the C-O stretching vibration of the epoxy group
appeared at 1192 cm™. The skeletal vibration of the graphitic domains emerged around 1631 cm*

and a peak at 1045 cm™ can be assigned as C-O stretching vibration. (Figure S2d).

The synthesized GO was further analysed by Raman spectroscopy (Figure S2e). Since it is a very
helpful method for the characterization of carbon-based materials, it revealed two prominent
characteristic peaks. One is a G-band at around 1596.0 cm™* which is because of stretching of C—C
bonds common to sp? carbon network and the other one is a D-band at around 1349.8 cm™ which
is due to the chaos in that network ID/1G, the intensity ratio of D and G bands was also calculated,
and its value was found to be 1.06 which designates the introduction of anarchy in the n-network
of graphite. ™

Raman analysis of the reused GO was also performed. In Raman spectra of GO, two peaks around
1357.31 and 1596.79 cm are characteristic of D and G band respectively (Figure 5). The intensity
ratio of two characteristic bands (ID/IG) was found to be ~0.90 and it indicated little or

inconsequential changes over that of fresh GO (Figure S2f).
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The UV-Vis spectrum of graphene oxide (Figure S2g) displays a strong absorption peak at 220
nm, which is the attribute to the m—n* transition of graphitic C—C bonds and a shoulder at ~305
nm is assigned to the n — 7* transitions of C=0 bonds. FI

The recovered GO was further characterized by UV-Vis spectrum as shown in Figure S2h. The
UV-Vis spectrum of graphene oxide exhibits a strong absorption peak at 222 nm, which is
attributable to the n—m*transition of graphitic C—C bond and a shoulder at 305 nm are assigned to

the n — =* transitions of C=0 bond.

TGA analysis of synthesized GO shows weight loss in two steps (Figure S2i). First, Weight loss
of around 10% at 100°C due to the loss of the intercalated water molecules is displayed, and the
second drastic weight loss of around 85% at above 180 °C signifies decomposition of various
oxygenated functional groups decorated on graphite oxide nanosheet. [l

Further to check the quality of the recovered GO, Thermal gravimetric analysis (TGA) was
performed (Figure S2j). A Major weight loss was observed at ~100 °C, signifying the loss of water
molecules, and minor weight loss was observed around 190 °C due to the removal of oxygenated
functional groups. From the results, it was concluded that GO maintained its original catalytic

activity even after repeated use (Figure S2j).

To further gain information regarding the structure of catalyst we took TEM images of GO, and it
showed the presence of distinct multi-layered GO sheet (Figure S2k).El

The TEM image reveals the morphology of reused GO remains unchanged as the layer structure
of the GO sheet was found intact, with little amount of reduction in oxygen functionalities of the
recovered GO after fourth recycle also supports the preservation of the catalytic activity (Figure
S3l).

Then to get a fair idea regarding the structure and shape of GO, SEM images were taken. Figure
S2m shows the SEM image of graphite oxide which indicates that it possesses a sheet-like

structure.
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Figure S2I. TEM analysis of GO Figure S2m. TEM analysis of recycled GO
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The catalytic activities of cyclohexane oxidation over different catalyst

The effectiveness of the various catalysts in bromination of anisole was shown in Table
S1. Graphene Oxide catalytic system demonstrated a high yield of p-bromoanisole in
comparison to other catalysts, the metal free strong catalytic performance over safe
halogenating agent and reusability upto four cycle. Graphene oxide might be viewed as a
notable metal free heterogeneous catalyst for the bromination of aromatic compounds as a

results.

Table S1: The catalytic activities of cyclohexane oxidation over different catalyst

Catalyst Brominating | Time(h) Yield Reference
Agent

CAN LiBr 1 99 [4]

HZSM-5 KBr 2 98 [5]

NH4VO3 AIBr3 8 96 [6]

NH4VO3 HBr 24 48 7]

Graphene oxide KBr 12 99 Present Work
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Spectral data of selected brominated compounds:

1] 1-bromo-4-methoxybenzene(2b)
OMe

Br

IH NMR (500 MHz, cdcls) § 7.38 — 7.34 (m, 2H), 6.78 — 6.75 (m, 2H), 3.76 (s, 3H).13C NMR (126
MHz, cdcls) § 158.67 (s), 132.22 (s), 115.75 (s), 112.79 (s), 55.41 (s).

2] 1-bromo-2,3,4-trimethoxybenzene(2c)
OMe

Br< i jOMe
OMe
IH NMR (500 MHz, cdcls) § 7.18 (d, J = 9.0 Hz, 1H), 6.56 (d, J = 9.0 Hz, 1H), 3.88 (s, 3H), 3.86

(s, 3H), 3.82 (s, 3H).23C NMR (126 MHz, cdcls) & 150.94 (s), 143.49 (s), 126.81 (s), 108.61 (s),
61.02 (d, J = 9.5 Hz), 56.13 (s).

3] 3-bromo-4,5-dimethoxybenzaldehyde(2d)

OMe
Br OMe

H™ ~0

IH NMR (500 MHz, cdcls) § 10.18 (s, 1H), 7.41 (s, 1H), 7.05 (s, 1H), 3.96 (s, 3H), 3.91 (s, 3H).
13C NMR (126 MHz, cdcls) § 190.79 (s), 154.74 (s), 148.85 (s), 126.64(s), 120.39 (s), 115.43 (s),
110.10 (s), 56.57 (S), 56.15 (S).

4] 1-bromonaphthalen-2-ol (2e)

Br

0H

IH NMR (500 MHz, cdcls) 5 8.04 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.8
Hz, 1H), 7.57 (t, J = 8.1 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.28 (s, 1H), 5.95 (s, 1H). 1*C NMR
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(126 MHz, cdcls) § 150.57 (s), 132.28 (s), 129.67 (s), 129.32 (s), 128.26 (s), 127.83 (s), 125.32
(s), 124.13 (s), 117.15 (s), 106.13 (s).

5] 1,6-dibromonaphthalen-2-ol (2f)

Br

B
Br

IH NMR (500 MHz, cdcls) § 7.92 (d, J = 1.9 Hz, 1H), 7.89 (d, J = 9.0 Hz, 1H), 7.65 — 7.59 (m,
2H), 7.27 (s, 1H), 5.94 (s, 1H). 3C NMR (126 MHz, cdcls) 5 150.90 (s), 130.97 (d, J = 9.5 Hz),
130.59 (s), 130.05 (s), 128.35 (s), 127.20 (s), 118.34 (s), 117.99 (s), 106.08 (s).

6] 1-bromo-7-methoxynaphthalen-2-ol (29)

Br

'H NMR (500 MHz, dmso) & 10.46 (s, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.32
(d, J = 2.3 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H), 6.99 (dd, J = 8.8, 2.5 Hz, 1H), 3.87 (s, 3H). 3C NMR
(126 MHz, dmso) & 159.35 (s), 153.40 (s), 134.67 (s), 130.59 (s), 129.03 (s), 124.29 (s), 115.95
(s), 104.38 (s), 103.93 (s), 55.55 (5).

7] 1,7-dibromonaphthalen-2-ol (2h)

Br

Br. I il OH

'H NMR (500 MHz, dmso) & 10.81 (s, 1H), 8.12 (d, J = 1.9 Hz, 1H), 7.82 (ddd, J = 8.4, 5.3, 3.1
Hz, 2H), 7.47 (dd, J = 10.2, 2.3 Hz, 1H), 7.30 (d, J = 8.9 Hz, 1H). *C NMR (126 MHz, dmso) &
153.92 (s), 134.47 (s), 131.06 (s), 129.54 (s), 127.58 (s), 126.99 (s), 126.84 (s), 122.09 (s), 119.31
(s), 103.37 (s).

8] 1-bromo-2-methoxynaphthalene (2i)

Br

I il OMe

IH NMR (500 MHz, cdcls) & 8.23 (d, J = 8.6 Hz, 1H), 7.80 (dd, J = 14.8, 8.6 Hz, 2H), 7.57 (t, J =
8.3 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.26 (s, 1H), 4.02 (d, J = 6.1 Hz, 3H). 3C NMR (126 MHz,
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cdcls) 8 153.82 (s), 133.11 (s), 129.79 (s), 128.96 (s), 128.03 (s), 127.73 (s), 126.10 (s), 124.30 (s),
113.58 (s), 108.62 (), 57.04 (s).

9] 1,6-dibromo-2-methoxynaphthalene (2j)

Br

I il OMe
Br

IH NMR (500 MHz, cdcls) 5 8.01 (d, J = 9.1 Hz, 1H), 7.85 (s, 1H), 7.63 (d, J = 9.0 Hz, 1H), 7.53
(d, J=9.1 Hz, 1H), 7.18 (s, 1H), 3.95 (s, 3H).13C NMR (126 MHz, cdcls) & 153.98 (s), 131.72 (s),
131.01 (s), 130.53 (s), 129.81 (s), 128.03 (s), 127.98 (s), 118.15 (s), 114.45 (s), 108.64 (s), 56.93

(s).
10] 2,2-dibromo-1-phenylethanone (2k)

(0]
Br

Br
'H NMR (500 MHz, dmso) & 8.10 (dd, J = 8.4, 1.2 Hz, 2H), 7.90 (s, 1H), 7.73 (t, J = 8.0 Hz, 1H),

7.62 — 7.57 (m, 2H). 3C NMR (126 MHz, dmso) 3 187.30 (s), 135.01 (s), 131.25 (), 129.83 (),
129.54 (s), 43.74 (S).

Spectral data of selected chlorinated compounds:

1] 1-chloronaphthalen-2-ol
Cl

on

IH NMR (500 MHz, cdcls) § 8.07 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 8.9
Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 7.43 — 7.39 (m, 1H), 7.28 (s, 1H), 5.96 (s, 1H). *C NMR (126
MHz, cdcls) 3 149.34 (s), 131.05 (5), 129.45 (s), 128.43 (s), 128.21 (s), 127.57 (s), 124.14 (s),
122.77 (s), 117.23 (s), 113.32 (5).

2] 6-bromo-1-chloronaphthalen-2-ol

Cl

"’
Br
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'H NMR (500 MHz, cdcls) § 7.94 — 7.90 (m, 2H), 7.62 (dd, J = 12.8, 5.4 Hz, 2H), 7.28 (s, 1H),
5.95 (s, 1H). 3C NMR (126 MHz, cdcls) § 149.73 (s), 130.78 (s), 130.43 (s), 130.09 (s), 129.67
(s), 127.46 (), 124.64 (s), 118.41 (s), 117.99 (s), 113.49 (s).

3] 7-bromo-1-chloronaphthalen-2-ol
Cl

Br. I il OH

IH NMR (500 MHz, dmso) & 10.77 (s, 1H), 8.16 (d, J = 1.7 Hz, 1H), 7.85 (dd, J = 15.7, 8.8 Hz,
2H), 7.52 (dd, J = 8.6, 1.9 Hz, 1H), 7.35 (d, J = 8.9 Hz, 1H).1*C NMR (126 MHz, dmso) &
152.67 (s), 133.16 (s), 131.01 (s), 128.69 (), 127.33 (), 126.87 (), 124.48 (s), 121.80 (s),
119.53 (s), 111.65 (5).

4] 1-chloro-7-methoxynaphthalen-2-ol

Cl

MeO. I i OH

IH NMR (500 MHz, dmso) § 10.40 (s, 1H), 7.78 (d, J = 8.9 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H),
7.35(d, J = 2.7 Hz, 1H), 7.15 (d, J = 8.8 Hz, 1H), 7.04 (dd, J = 8.9, 2.6 Hz, 1H), 3.91 (s, 3H).

13C NMR (126 MHz, dmso) & 159.18 (s), 152.08 (s), 133.38 (s), 130.45 (s), 128.17 (s), 124.08 (s),
116.07 (d, J = 9.0 Hz), 111.92 (s), 101.59 (s), 55.64 (s).

5] 1-chloro-2-methoxynaphthalene

Cl

OMe

IH NMR (500 MHz, cdcls) § 8.10 (d, J = 8.6 Hz, 1H), 7.63 (dd, J = 18.9, 8.6 Hz, 2H), 7.47 — 7.41
(m, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.13 (d, J = 9.0 Hz, 1H), 3.88 (s, 3H). 13C NMR (126 MHz,
cdcls) § 152.52 (s), 131.85 (s), 129.49 (), 128.02 (s), 127.99 (s), 127.47 (s), 124.31 (s), 123.42 (s),
116.78 (s), 113.62 (s), 56.92 (S).

6] 1-chloro-2,3,4-trimethoxybenzene

OMe
C|\©[0Me
OMe
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IH NMR (500 MHz, cdcls) 8 7.15 (d, J = 9.0 Hz, 1H), 6.73 (d, J = 9.0 Hz, 1H), 4.02 (s, 3H), 4.00
(s, 3H), 3.96 (s, 3H).
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1H and 3C NMR Spectra
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