Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Zeolite domination in coordination between metal and acid sites on an industrial catalyst for

tetralin hydrocracking

Jiayao Qi^a, Hanqiong Jia^a, Fei Wang^a, Hang Gao^b, Bo Qin^{b*}, Xinwei Zhang^b, Jinghong Ma^a, Yanze Du^b,

Ruifeng Lia*

^a Research Centre of Energy Chemical & Catalytic Technology, State Key Laboratory of Clean and

Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of

Technology, Taiyuan 030024, China

^b SINOPEC Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian 116045,

China

Fig. S1. XRD patterns of NiMo/Al₂O₃, USY and catalysts

Fig. S2. Py-FTIR spectra of NiMo/Al₂O₃, USY and catalysts after desorption of pyridine at 150 °C,

250 °C, 350 °C.

Fig. S3. NH_3 -TPD profiles of $NiMo/Al_2O_3$, USY and their composite catalysts

Fig. S4. The FTIR spectra in the OH stretching vibration of different catalysts.

Fig. S5. TEM image of (a) USY (b) $NiMo/Al_2O_3+Y(70)$ catalysts

Scheme S1 Compatibility of zeolite and NiMo/Al₂O₃ in the catalysts (FAU zeolite Si/Al = 4.8,

nAl/u.c=33)

Fig. S6. $\rm NH_3\text{-}TPD$ profiles of the $\rm NiMo/Al_2O_3\text{+}Y(70)$ catalysts.

Fig. S7. Hydrocracking of LCO using NiMo/Al₂O₃+USY-1(70) catalyst; Temp-380 °C, Pressure-4 mpa,

WHSV-2.3 h^{-1} , TOS-22 h

Sample	$N_{\rm Mo}/\Lambda 1$ O	$NiMo/Al_2O_3$	NiMo/Al ₂ O ₃	NiMo/Al ₂ O ₃	NiMo/Al ₂ O ₃	USV
Sample	11110/Al ₂ O ₃	+USY(10)	+USY(30)	+USY(50)	+USY(70)	031
Conversion (%)	27.3	29.3	38.7	48.6	56.9	49.3
Product						
Distribution(wt%)						
C10 ⁻ Naphtha	0	0.3	0.6	1.3	1.8	0.6
Benzene	0.1	0.8	2.2	4.1	5.6	3.5
Toluene	0.0	0.4	0.8	1.8	2.4	2.2
Xylene	0.1	0.3	0.3	0.2	0.6	0.6
Ethylbenzene	0.0	0.1	0.2	0.3	0.6	0.4
C9 Aromatics	0.1	0.3	0.6	0.9	1.4	0.4
Indane	0.0	0.3	0.7	1.0	1.3	0.8
Methylindane	0.5	3.8	8.8	14.6	17.1	11.6
C10 Aromatics	0.1	1.3	2.5	5.2	7.1	3.5
Decalin	13.9	4.9	3.2	3.1	3.1	1.2
Tetralin	72.7	70.7	61.3	51.4	43.1	50.7
Naphthalene	12.5	14.4	14.2	11.6	10.8	19.5
C10 ⁺	0.1	2.2	4.6	4.5	5.1	4.9

Table S1 The detailed product distribution of different catalysts s at 9 h.

Subtotal	100	100	100	100.0	100.0	100.0
BTX yield (wt%)	0.2	1.5	3.3	6.0	8.7	6.3
Cracking Yield (wt%)	0.3	2.5	5.4	9.5	13.7	8.5

Pressure (MPa)	3	4	5
Conversion (%)	51.5	49.3	47.3
Product Distribution(wt%)			
C10 ⁻ Naphtha	0.3	0.6	0.8

Table S2 Effect of the reaction pressure for USY zeolite on the tetralin hydrocracking

C10 ⁻ Naphtha	0.3	0.6	0.8
Benzene	3.7	3.5	2
Toluene	3.4	2.2	1.5
Xylene	0.6	0.6	0.7
Ethylbenzene	0.4	0.4	0.4
C9 Aromatics	0.6	0.4	0.5
Indane	0.8	0.8	0.9
Methylindane	10.2	10.6	11.5
C10 Aromatics	3.7	3.5	4
Decalin	1	1.2	1.3
Tetralin	48.5	50.7	52.7
Naphthalene	21.8	19.5	19.4
C10 ⁺	5	4.9	4.3
Subtotal	100	100	100

Sample	Si/Al	S _{BET} (m²/g)	S_{mic} (m ² /g)	S _{ext} (m ² /g)	V _{mic} (cm ³ /g)	V _{meso} (cm ³ /g)	V _{total} (cm ³ /g)
NiMo/Al ₂ O ₃ +USY-1(70)	18.8	609.7	485.5	124.2	0.19	0.23	0.41
NiMo/Al ₂ O ₃ +USY-2(70)	25.7	645.8	511.0	134.8	0.20	0.20	0.40
NiMo/Al ₂ O ₃ +USY-3(70)	35.1	639.0	501.5	137.5	0.20	0.21	0.41
NiMo/Al ₂ O ₃ +USY-4(70)	63.0	631.1	488.2	142.9	0.20	0.21	0.41

Table S3 Textural parameters of catalysts with different Si/Al ratios of USY zeolite.

 Table S4 Acid properties of catalysts with different Si/Al ratios of USY zeolite determined by Py-FT-IR.

	Acid	Acid amount (150 °C)			Acid	Acid amount (250 °C)			Acid	Acid amount (350 °C)		
Sample		(µm	ol/g)			(µm	ol/g)			(µm	ol/g)	
	В	L	B+L	B/L	В	L	B+L	B/L	В	L	B+L	B/L
NiMo/Al ₂ O ₃ +USY-1(7	70) 160.7	108.7	269.4	1.5	153.1	79.6	232.7	1.9	134.9	56.9	191.8	2.4
NiMo/Al ₂ O ₃ +USY-2(7	70) 61.1	68.4	129.5	0.9	50.5	48.6	99.0	1.0	38.4	34.2	72.6	1.1
NiMo/Al ₂ O ₃ +USY-3(7	70) 33.0	59.5	92.5	0.6	25.7	40.8	66.5	0.6	16.2	27.1	43.3	0.6
NiMo/Al ₂ O ₃ +USY-4(7	70) 30.5	83.1	113.6	0.4	27.7	63.2	91.2	0.4	18.5	46.7	65.2	0.4

 Table S5 Analysis of Light Cycle Oil.

Property	Value	
Density, g/cm ³	0.916	
Nitrogen, ppm	39	
Distillation range, °C		
IBP-T10	186–218	
T30-T50	242-260	
T70-T90	281-309	
T95-FBP	323–334	
Hydrocarbon distribution, wt%		
Alkanes	12.0	
Cycloalkanes	4.9	
Aromatics	83.1	
Monoaromatics	60.5	
Diaromatics	21.4	
Tri-aromatics	1.2	