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S1. Chemicals 

All chemicals were used as received unless otherwise specified. 1-Octene, 99+% was purchased 
from Thermo Scientific Chemicals. Acetylacetonato dicarbonyl rhodium(I) (Rh(CO)2(acac)), 
97%, was purchased from Alfa Aesar. Toluene (Anhydrous 99.8%) and tridecane analytical 
standard were purchased from MilliporeSigma. Carbon monoxide, hydrogen, and nitrogen 
cylinders were purchased from Airgas at 99.9% purity. The bulky fluorophosphite ligand (L) was 
provided by Eastman Chemical. Synthesis details and spectra of ligand L are reported in prior 
work.1,2  

S2. Experimental Setup 

 
Figure S1. Schematic illustration of the closed-loop autonomous hydroformylation platform utilized to generate experimental 
training data for the ML model. Reaction conditions are executed and analyzed automatically, then the experimentally generated 
data is fed to the model training and new experiment selection algorithms. 
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Figure S2. A picture of the flow chemistry platform utilized to generate the initial experimental training data. The setup includes 
a liquid delivery module, a reactive gas manifold, a precursor refilling module, two heated coil flow reactors, and an on-line 
sampling module (GC-FID). 

The automated flow chemistry platform consists of six primary modules, including fluid delivery 
with automated refilling, syngas delivery, heated flow reactor coils, in-line reaction sampling, and 
in-line characterization using flame ionization gas chromatography (GC-FID). The flow reactor is 
supplied with four separate stock solutions to independently control concentrations of each reagent 
species and set the next hydroformylation condition generated by the machine learning (ML) 
module. The components present in the liquid streams are: solvent stream (solvent + internal 
standard), olefin stream (olefin + solvent + internal standard), ligand stream (ligand + solvent + 
internal standard), and metal catalyst stream (rhodium, Rh, salt + solvent + internal standard). The 
stock solutions are created so an equal volumetric flowrate of all streams results in a standard 
concentration of 0.5M 1-octene, 0.25 mM Rh(CO)2(acac), 2.5 mM Ligand, and 20 mM tridecane 
internal standard in toluene as the solvent (Table S1). 

Table S1. Composition of liquid feed solutions.  

Precursor Stream Composition 

Solvent 20 mM tridecane in toluene 

Olefin 2.0M 1-octene, 20 mM tridecane in toluene 

Ligand 10 mM ligand, 20 mM tridecane in toluene 

Rhodium 1 mM Rh(CO)2(acac), 20 mM tridecane in toluene 
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S3. Reaction Scheme 

 The hydroformylation reaction occurs with 1-octene in the presence of high pressure 
carbon monoxide (CO) and hydrogen (H2, 150-300 psig) with a phosphorous-based ligand and Rh 
salt. The formyl group can be added to either of the atoms of the double bond depending on the 
selectivity of the reaction. Competing olefin isomerizations can form internal olefins and certain 
ligands including L can perform hydroformylation on the internal olefins resulting in further 
branched products. 

 
Scheme S1. Hydroformylation of 1-octene to linear (l) and branched (b) aldehyde products with fluorophosphite ligand L. 
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S4. Model Inputs and Normalization. 

Table S2. Model input normalization for non-dimensionalized parameters between 0 and 1. Upper and lower bounds are generally 
hardware (X1 and X2: MFC Flow limits) or system limitations (X5-7: stable multi-phase flow). 

 X1 
CO 

X2 

H2 
X3 

Pressure 
X4 

Temp. 
X5 

Dilution 
X6 

L:Rh 
X7 

Olefin:Rh 

Min 0.1 
mLn/min 

0.1 
mLn/min 150 psig 75 °C 0.1 0.2 0.2 

Max 1.9 
mLn/min 

1.9 
mLn/min 300 psig 110 °C 0.4 0.8 0.8 

Formula 𝑋 − 0.11.9− 0.1 
𝑋 − 0.11.9 − 0.1 

𝑋 − 150300− 150 
𝑋 − 75110− 75 

𝑋 − 0.10.4 − 0.1 
𝑋 − 0.20.8 − 0.2 

𝑋 − 0.20.8− 0.2 

Def. MFC 
Flowrate 

MFC 
Flowrate 

Total 
Pressure 

Reactor 
Temperature 

Solvent 
Stream 
Fraction 

Ligand Stream 
Fraction 

Olefin Stream 
Fraction 

     
𝑉𝑉  

𝑉𝑉 + 𝑉  
𝑉𝑉 + 𝑉  

 

Model parameters were normalized by hardware or system limitations to limit the potential 
reaction space to physically accessible new experimental conditions. The other option for defining 
the gas phase stream composition (total flow rate, pressure, and CO:H2 ratio) results in physically 
inaccessible regions of parameter space present in the model input space. For example, at a desired 
gas flowrate of 3.8 mLn/min, with current hardware, it is only possible to have a 1:1 CO:H2 ratio 
as both MFCs would be operating at their maximum value, whereas a total flowrate of 2 mLn/min 
could allow for ratios of 1:19 to 19:1 (0.1 mLn/min CO and 1.9 mLn/min H2 and vice versa) and 
as the total flowrate drops down to 0.2 mLn/min, again, only a 1:1 syngas ratio becomes possible 
as the MFCs are both operating at their minimum value. In a pressurized reactor with a fixed 
volume and a gas-to-liquid volumetric ratio of 3:1, the residence time along with the compositions, 
flowrates, temperature, and pressure fully defines both the gas and liquid streams. A consequence 
of the selected parameters is that X1-X3 contribute to the total residence time in the reactor either 
as a greater total flow rate or expansion/compression of the gas phase within the reactor. 
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S5. Experimental Data 

Table S3. Summary of experimental conditions autonomously selected and tested for accelerated Pareto-front mapping of ligand 
L. Init: initialization run; L: Linear aldehyde campaign; B: Branched aldehyde campaign. 

X1 
CO 

X2 
H2 

X3 
Pressure 

X4 
Temp. 

X5 
Dilution 

X6 
L:Rh 

X7 
Olefin:Rh 

Y 
Yield 

SN 
Selectivity 

Opt. 

0.309 0.309 0.347 0.000 0.500 0.500 0.500 0.914 0.528 Init.* 
0.674 0.674 0.347 1.000 0.500 0.500 0.500 0.684 0.416 Init.* 
0.309 0.309 0.347 1.000 0.500 0.500 0.500 0.770 0.376 Init. 
0.431 0.917 0.347 0.286 0.500 0.500 0.500 0.687 0.571 Init.* 
1.000 0.806 0.966 0.252 1.000 0.096 0.428 0.784 0.626 L* 
1.000 0.000 0.359 0.723 0.000 0.343 1.000 0.081 0.709 L 
0.793 1.000 0.819 0.000 0.395 0.992 0.980 0.254 0.673 L* 
0.000 1.000 1.000 0.000 0.739 0.428 1.000 0.446 0.823 L* 
0.504 0.000 0.000 0.119 0.876 1.000 0.869 0.101 0.688 L* 
0.999 0.882 0.567 0.481 0.984 1.000 0.320 0.721 0.662 L* 
0.000 1.000 0.897 0.990 0.282 1.000 0.591 0.747 0.603 L* 
0.263 0.874 0.991 1.000 1.000 0.845 0.597 0.976 0.473 L* 
0.000 1.000 0.387 0.000 1.000 1.000 0.176 0.603 0.813 L* 
1.000 0.901 1.000 0.000 0.388 1.000 0.000 0.890 0.652 L* 
0.748 1.000 1.000 0.825 1.000 0.879 0.000 0.915 0.526 L 
0.093 0.539 0.000 0.000 0.861 1.000 1.000 0.541 0.770 L* 
0.911 1.000 0.813 0.000 0.944 0.500 0.949 0.218 0.678 L 
0.802 0.719 0.000 0.000 1.000 0.595 1.000 0.038 0.701 L* 
0.000 1.000 1.000 0.000 0.700 0.838 0.921 0.530 0.838 L 
0.090 1.000 0.668 0.000 0.287 1.000 1.000 0.611 0.789 L* 
0.000 1.000 0.000 0.458 0.769 0.947 1.000 0.178 0.844 L* 
0.000 1.000 1.000 0.000 1.000 1.000 0.900 0.582 0.851 L* 
0.936 1.000 1.000 0.773 0.372 1.000 1.000 0.788 0.563 L 
1.000 1.000 0.000 0.070 0.000 0.979 0.101 0.340 0.717 L* 
0.202 1.000 0.123 1.000 0.918 1.000 0.533 0.432 0.593 L* 
1.000 0.707 1.000 0.741 1.000 0.822 0.000 1.000 0.540 L* 
0.411 1.000 0.958 0.961 1.000 1.000 0.773 0.851 0.518 L* 
0.000 1.000 1.000 0.825 0.000 1.000 1.000 0.561 0.751 L* 
1.000 1.000 0.603 0.859 0.542 0.000 0.038 0.776 0.506 L* 
0.070 1.000 0.337 0.000 0.392 1.000 1.000 0.525 0.832 L* 
0.000 1.000 0.617 0.075 0.113 0.719 0.977 0.362 0.857 L* 
0.000 1.000 0.979 0.000 1.000 1.000 0.480 0.682 0.802 L* 
1.000 0.000 0.466 0.338 0.922 1.000 1.000 0.105 0.701 L 
1.000 0.855 0.000 0.758 1.000 0.827 1.000 0.409 0.647 L 
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0.439 0.542 1.000 0.638 0.844 0.217 0.000 1.000 0.504 B* 
0.533 0.790 1.000 0.528 1.000 0.218 0.000 0.988 0.514 B 
0.940 0.629 1.000 0.509 1.000 1.000 0.148 0.834 0.591 B* 
0.372 0.586 1.000 0.941 0.392 0.000 0.000 1.000 0.477 B 
0.228 1.000 0.712 0.683 0.532 1.000 0.112 0.880 0.578 B* 
1.000 0.971 1.000 1.000 0.269 0.847 0.000 0.934 0.506 B 
0.439 1.000 0.529 1.000 1.000 1.000 0.337 0.664 0.548 B* 
0.550 1.000 0.763 1.000 1.000 0.757 0.221 0.945 0.483 B* 
0.360 1.000 1.000 1.000 1.000 0.000 0.132 0.920 0.470 B* 
1.000 0.000 1.000 0.356 1.000 0.377 0.000 0.820 0.555 B* 
0.815 0.631 1.000 1.000 0.509 0.000 0.000 0.893 0.467 B 
0.699 1.000 1.000 0.922 1.000 0.841 0.000 0.962 0.491 B* 
0.933 0.932 1.000 0.661 0.041 0.558 0.000 0.994 0.517 B 
0.402 0.597 0.977 1.000 0.662 0.282 0.000 0.995 0.463 B* 
0.455 0.951 1.000 1.000 0.975 0.384 0.000 1.000 0.446 B* 
1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.049 0.712 B* 
1.000 0.841 0.066 0.003 0.797 1.000 0.995 0.046 0.702 B* 
0.000 1.000 1.000 1.000 0.905 0.365 0.586 0.713 0.551 B 
0.922 0.823 0.429 0.852 1.000 1.000 1.000 0.685 0.561 B* 
0.074 0.997 1.000 0.000 1.000 0.809 0.152 0.897 0.669 B* 
1.000 1.000 1.000 1.000 0.956 0.146 0.074 0.895 0.469 B* 
1.000 1.000 1.000 1.000 0.467 0.000 0.000 0.894 0.480 B* 
0.303 0.712 1.000 0.000 0.637 0.842 0.742 0.946 0.613 B* 
0.379 1.000 1.000 0.147 0.000 1.000 0.000 0.898 0.642 B* 
0.634 1.000 0.886 1.000 1.000 1.000 1.000 0.781 0.500 B* 
0.497 0.493 0.924 0.135 1.000 0.701 0.922 0.904 0.619 B* 
0.635 0.336 0.890 0.172 1.000 1.000 1.000 0.639 0.678 B* 
0.178 0.814 1.000 0.777 1.000 1.000 0.232 0.888 0.555 B* 
0.000 1.000 1.000 0.052 1.000 0.631 0.789 0.650 0.808 B 
0.685 1.000 0.875 0.000 1.000 0.234 0.497 0.889 0.635 B 
1.000 0.822 1.000 0.000 1.000 1.000 1.000 0.090 0.663 B 

 

*The data set used for training the model. The remaining data was allocated for testing and 
validation purposes. 
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S6. Machine Learning Model Hyperparameter Tuning 

This section discusses the 
construction of a ML model of 
the hydroformylation reaction. 
To select the most suitable 
model for this problem, we 
conducted a comprehensive 
benchmarking analysis, 
comparing the performance of 
linear regression, K-nearest 
neighbors (KNN), and Random 
Forest models against an 
ensemble of neural networks (ENNs). In Table S4, we present the R2 values, summarizing the 
performance of each model on both the training and evaluation datasets. 

To optimize the Random Forest model, we performed a grid search to identify the best 
architecture. It is worth noting that ENNs outperformed both linear regression and KNN models. 
While the performance of the optimized Random Forest model and ENNs is comparable, we opted 
for ENNs due to their versatility in handling various types of inputs. ENNs can not only handle 
tabular data but can also accommodate graph representations of molecular structures, thus allowing 
facile incorporation of additional features with the presented model in this work in the future. This 
ML model, which is an ensemble of deep neural networks (ENNs), is built using the experimental 
data (provided in S5) generated by the experimental setup shown in Fig. S2. The ML model is 
designed to mimic the intricate dynamics of the reaction space, thereby providing a robust tool for 
analysis and prediction. It leverages the power of ENNs to learn from the experimental data and 
generate insights about the reaction space. 

To assess the performance of the ML model, we utilized the coefficient of determination (R2). 
This metric is derived from the parity plot of the ML model validation. The R2 value quantifies 
how well the regression model fits the data, serving as an indicator of the model's explanatory 
power. 

The coding and training of the ML model were executed in Python 3.9.13, utilizing libraries 
such as numpy, pandas, and tensorflow. In the initial step, we conducted a comparative analysis 
of the performance between a feedforward and a cascade forward NN. The cascade structure has 
previously been demonstrated to exhibit superior performance compared to the feedforward 
structure for modelling in sparse data environments. 2 The superior performance of the cascade NN 
architecture can be attributed to its multi-stage feature extraction, error propagation, ability to 
manage high-dimensional data, non-linear mapping capabilities, and resilience to data noise. The 
objective of the NN architecture search was to rapidly identify the most suitable number of layers 
and nodes, by maximizing the coefficient of determination. Fig. S3 illustrates the R2 values of 
aldehyde yield and regioselectivity (in the presence of ligand L), derived from the complete dataset 
for an ensemble of 5 cascade feed forward NN models. Each model comprises n layers (represented 
on the x-axis) and each layer consists of m nodes (represented on the y-axis). 

Figure S3. The ML model architecture study on the cascade forward NN. 
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ENN structure was specifically selected to 
incorporate an element of uncertainty into the ML 
model representation of the hydroformylation 
reaction studied in this work. The development of 
the ML model entailed the random selection of the 
number of layers and nodes from a predefined 
range established in the pre ceding step (see Fig. 
S3). To optimize the performance of the ML 
model, an outer NN with two layers was 
introduced to aggregate the outputs of each 
individual model instead of linearly averaging in 
to improve model prediction.3 The influence of 
the ensemble size on the ML model's performance 
was investigated, utilizing the average R2 value 
derived from 50 ensemble NNs of equivalent size 
as the benchmark metric. As depicted in Fig. S4, 
an ensemble size of 10 cascade NNs, chosen 
randomly, exhibited satisfactory performance 
(R2>0.7) when applied to experimental. A further 
increase in ensemble size was observed to lead to 
prolonged training times without yielding 
additional benefits. In order to further enhance the 
performance of the ML model, various 
hyperparameters such as the learning rate and 
optimizer were fine-tuned, with the aim of 
achieving a smoothly descending learning curve 
(see Fig. S5). Given the regression nature of the 
task, the loss function was set as the root-mean-
squared error, which the ENN model aimed to 
minimize during the training process. The 
rectified linear unit (ReLU) activation function 
was applied to all hidden layers, while the output 
layers used a linear activation function. The 
RMSprop optimizer was used for optimization. A tolerance level was set on the output layer that 
rounded results higher than one to one ensuring valid predictions, as the fractional aldehyde yield 
and regioselectivity values should not exceed one. This step was taken to prevent the model from 
making predictions outside the feasible experimental range and to comply with the physical 
constraints of the hardware. 

Figure S4. Average performance of an ensemble of 50
randomly selected cascade NNs of a size 5- 50. 

Figure S5. The Average learning curve (i.e., the
improvement in the ML model's performance) of the
ensemble model over time. To address the variability
introduced by shuffling inputs, the simulation was
executed five times. The graph displays the mean
outcomes and their associated uncertainty. Early
stopping will monitor changes in the validation set error
to avoid overfitting. and after passing 20 epochs without
significant improvement, it will terminate the training
process.  
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The ML model was then built using 65 in-
house generated experimental data, with 75% 
data allocated for training, 15% for validation, 
and the remaining 10% for testing. The test 
dataset, was not seen by the ML model during 
training. An early-stopping function was used to 
monitor the loss function of the validation set to 
avoid overfitting. Overall, test and validation set 
together was used to evaluate the performance 
of the ML model in the reaction space.  Fig. S6 
provides a visual representation of the ML 
model's performance, showing the average of 
the model-predicted values on the training and 
evaluation dataset compared to the actual values 
obtained from the experiments. Table S4 
summarizes R2 values for training and evaluation dataset. Finally, we have provided a simple 
representation of our ML model in Fig. S7. This illustrative representation serves as a visual aid 
to enhance the understanding of our model's architecture and its components.  

Table S4. R2 Values for training and evaluation dataset 

 

 

 

 

 

 

R2 
   Data 

Model 
Yield Regioselectivity 

Training Evaluation Training Evaluation 
Linear 

Regression 
0.71 0.64 0.75 0.61 

KNN 0.73 0.70 0.81 0.83 
Random 

forest 
0.98 0.55 0.99 0.81 

ENN 0.89 0.80 0.93 0.91 

Figure S6. Predicted values by the ML Model vs. the actual 
values from the experiment with ligand L for training and test
set.

Figure S7. Illustration of our machine learning model's architecture, offering a visual insight into its components 
and interactions for enhanced comprehension. 
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