# Supporting Information 

# Empowering boronic acids as hydroxyl synthons for aryne induced three-component coupling reactions 

Rong Fan, $\ddagger^{\mathrm{a}}$ Shihan, Liu, $\ddagger^{\mathrm{b}}$ Qiang Yan, ${ }^{a}$ Yun Wei, ${ }^{a}$ Jingwen Wang, ${ }^{a}$ Yu Lan, ${ }^{*}{ }^{\mathrm{bc}}$ and Jiajing Tan ${ }^{*}{ }^{*}$

${ }^{\text {a }}$ Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
${ }^{\mathrm{b}}$ School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
${ }^{c}$ College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100
Science Avenue, Zhengzhou, Henan, 450001, China
$\ddagger$ These authors contributed equally to this work.
Email: lanyu@cqu.edu.cn; tanjj@mail.buct.edu.cn

## Contents

1. General Information ..... 3
2. Synthesis and Characterization of Starting Material and Reagents ..... 4
2.1 Synthesis and Characterization of Cyclic Thioethers ..... 4
2.2 Synthesis and Characterization of 1-Fluoroisoquinolines. ..... 8
3. Reaction Optimization for Synthesis of Isoquinolin-1(2H)ones ..... 16
4. General Procedure for Aryne Reaction ..... 17
4.1 Ring-opening Reaction ..... 17
4.2 Three-component Reaction of Halo-azaarenes ..... 30
4.3 Failed Substrates ..... 43
5. Synthetic Application ..... 44
5.1 Scale-up Reaction ..... 44
5.2 Downstream Synthesis ..... 45
6. Mechanistic Studies ..... 50
6.1 Deuterium-labeling Study ..... 50
6.2 Control Experiment ..... 51
6.3 Spectroscopic Studies ..... 51
6.4 Control Experiments for 4a' Formation ..... 54
7. Density Functional Theory (DFT) Calculations ..... 55
8. Crystal Data ..... 69
9. References ..... 71
10. Spectra ..... 73

## 1. General Information

Unless otherwise mentioned, all reactions were carried out in Schlenk tubes under an atmosphere of nitrogen. Oven-dried glassware with standard vacuum line techniques were used for reaction set-up. All commercial reagents and anhydrous solvents were used as received without further purification unless otherwise noted. Boronic acids were recrystallized from hexane and ethyl acetate. Both potassium fluoride and cesium fluoride were dried at $150^{\circ} \mathrm{C}$ under vacuum. The 18 -crown- 6 was recrystallized from acetonitrile. All reactions were monitored by either thin-layer chromatography on silica gel $60-\mathrm{F} 254$ coated 0.2 mm plates (Yantai Chemical Industry Research Institute) or GC-MS (Thermo Fisher Trace 1300-ISQ). Visualization was accomplished by UV light ( 254 nm ). Melting point was measured with RY-1 melting point instrument (from NanBei Instrument). The crude products were purified using flash column chromatography with silica gel (normal phase, 200-300 mesh, Branch of Qingdao Haiyang Chemical). NMR spectra was recorded on a Bruker 400 AVANCE III HD spectrometer at ambient temperature. ${ }^{1} \mathrm{H}$ NMR chemical shifts were determined relative to internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}(\mathrm{TMS})$ at $\delta 0.00 \mathrm{ppm}$ or the signal of the residual solvent $\mathrm{CHCl}_{3}$ at $\delta 7.26 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR chemical shifts were determined relative to the signal of the solvent: $\mathrm{CDCl}_{3}$ at $\delta 77.16 \mathrm{ppm}$. All the ${ }^{1} \mathrm{H} .{ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data are reported as follows: (1) chemical shift $(\delta, \mathrm{ppm})$; (2) multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{br}=$ broad, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{td}=$ triplet of doublets and $\mathrm{m}=$ multiplet); (3) coupling constants ( $J, \mathrm{~Hz}$ ). High resolution mass spectrums (HRMS) were recorded on an Agilent Q-TOF 6540 mass spectrometer using electrospray ionization and Agilent 7890B-7250 GCQTOF mass spectrometer using electron ionization.

## 2. Synthesis and Characterization of Starting Material and Reagents

All aryne precursors were prepared following the literature procedures. ${ }^{1}$

### 2.1 Synthesis and Characterization of Cyclic Thioethers

Cyclic thioether 2a, 2q-2s were commercially available. $\mathbf{2 b}, \mathbf{2 c}, \mathbf{2 j} \mathbf{- 2 0}$ and $\mathbf{2 t}$ were prepared following the literature procedures. ${ }^{2}$
$\mathbf{2 d} \mathbf{- 2} \mathbf{i}$ and $\mathbf{2 p}$ were synthesized according to the following procedures.


General procedure: Step 1: To a solution of diol $\mathbf{S 1}^{3}(7.5 \mathrm{mmol}, 1.0$ equiv.) and dimethylaminopyridine ( $22.5 \mathrm{mmol}, 2.75 \mathrm{~g}, 3.0$ equiv.) in $\mathrm{DCM}(20 \mathrm{~mL})$ was added $p$-toluene sulfonyl chloride ( $16.5 \mathrm{mmol}, 3.14 \mathrm{~g}, 2.2$ equiv.) in $\mathrm{DCM}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 30 minutes. The reaction was kept stirring for 12 hours at room temperature. Then, the reaction was diluted with DCM ( $3 \times 20 \mathrm{~mL}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was further purified by silica gel flash chromatography to give S2.

Step 2: To a mixture of $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(6 \mathrm{mmol}, 1.44 \mathrm{~g}, 3.0$ equiv.) in DMF ( 10 mL ) was added bis(4methylbenzenesulfonate) ( $2 \mathrm{mmol}, 1.0$ equiv.) in DMF ( 5 mL ). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 hours. The reaction was then quenched with water ( 30 mL ) and extracted with EA ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layer was washed with water $(5 \times 5 \mathrm{~mL})$ and brine ( $3 \times 5 \mathrm{~mL}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was further purified by silica gel flash chromatography to give cyclic thioether $\mathbf{2}$.


3-(4-methylbenzyl)thietane (2d)
Following the general procedure, the crude product was purified by silica gel chromatography (PE as the eluent) to give $\mathbf{2 d}$ as a yellow oil ( $0.14 \mathrm{~g}, 40 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=50: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.18(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.88,133.74,127.26,126.61,40.62,39.76,29.27,19.12$.


3-(4-methoxybenzyl)thietane (2e)
Following the general procedure, the crude product was purified by silica gel chromatography (PE as the eluent) to give 2 e as a yellow oil $\left(0.19 \mathrm{~g}, 50 \%\right.$ yield). $\mathrm{R}_{f}=0.4$ (PE:EA $\left.=50: 1\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.44$ $(\mathrm{m}, 1 \mathrm{H}), 3.16(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 158.12, 130.80, 129.57, 113.90, 55.24, 42.04, 41.77, 31.11.


3-(4-fluorobenzyl)thietane (2f)
Following the general procedure, the crude product was purified by silica gel chromatography (PE as the eluent) to give $\mathbf{2 f}$ as a yellow oil $(0.33 \mathrm{~g}, 91 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=50: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.52(\mathrm{~d}, J=244.1 \mathrm{~Hz}), 134.38,129.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 115.27(\mathrm{~d}, J=$ $21.1 \mathrm{~Hz}), 42.01,41.60,31.01$.
${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-116.87$.


3-(benzyloxy)thietane (2h)
Following the general procedure, the crude product was purified by silica gel chromatography (PE as the eluent) to give $\mathbf{2 h}$ as a pale yellow oil $(0.31 \mathrm{~g}, 87 \%$ yield $) . \mathrm{R}_{f}=0.5(\mathrm{PE}: \mathrm{EA}=50: 1)$.
${ }^{1}$ H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.43-7.31(\mathrm{~m}, 4 \mathrm{H}), 4.74-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 2 \mathrm{H})$, 3.23-3.13 (m, 2H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.67,128.53,127.95,127.86,73.25,69.83,36.13$.


3-(octyloxy)thietane (2i)
Following the general procedure, the crude product was purified by silica gel chromatography ( $\mathrm{PE}: \mathrm{CHCl}_{3}=1: 1$ as the eluent) to give $\mathbf{2} \mathbf{i}$ as a pale yellow oil ( $0.2 \mathrm{~g}, 50 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=$ 40:1).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.61-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.32(\mathrm{~m}, 4 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.51(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.21(\mathrm{~m}, 10 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 73.60,67.68,36.13,31.80,29.71,29.37,29.23,26.10,22.65,14.09$.


3-benzyl-3-methylthietane (2p)
Following the general procedure, the crude product was purified by silica gel chromatography (PE as the eluent) to give $\mathbf{2 p}$ as a pale yellow oil ( $0.32 \mathrm{~g}, 90 \%$ yield). $\mathrm{R}_{f}=0.4$ (PE).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$ 137.77, 130.03, 128.19, 126.43, 47.99, 44.82, 36.84, 26.91 .


3-cinnamylthietane (2g)


Synthesis of S3: To a suspension of lithium aluminum hydride ( $60 \mathrm{mmol}, 2.28 \mathrm{~g}, 3.0$ equiv.) in anhydrous THF ( 80 mL ) was added diethyl 2-cinnamylmalonate ( $20 \mathrm{mmol}, 5.52 \mathrm{~g}, 1.0$ equiv.) in anhydrous THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was kept stirring overnight at room temperature. The reaction mixture was then diluted with ethyl acetate $(50 \mathrm{~mL})$ and quenched by sequential addition of water ( 1 mL ), $6 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$, and water $(3 \mathrm{~mL})$ carefully at $0^{\circ} \mathrm{C}$. After stirring for 30 minutes, the mixture was filtered through Celite and concentrated in vacuo. The crude product was further purified by silica gel flash chromatography ( $\mathrm{PE}: \mathrm{EA}=8: 1$ as the eluent) to give $\mathbf{S 3}$ as a pale yellow oil ( 1.12 g , 29\% yield).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20$ (dt, $J=15.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=10.7,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=10.0,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{td}, J=$ $7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of S4: To a mixture of $\mathrm{KOH}(46.4 \mathrm{mmol}, 2.6 \mathrm{~g}, 8.0$ equiv.) and 2-cinnamylpropane-1,3-diol ( $5.8 \mathrm{mmol}, 1.12 \mathrm{~g}, 1.0$ equiv.) in THF ( 10 mL ) was added $p$-toluene sulfonyl chloride ( $17.4 \mathrm{mmol}, 3.32$ $\mathrm{g}, 3.0$ equiv.) in THF ( 10 mL ) dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and allowed to warm to the room temperature. The mixture was kept stirring overnight. The reaction was quenched with water $(30 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was further purified by silica gel flash chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1$ as the eluent) to give $\mathbf{S 4}$ as a white solid ( $2.76 \mathrm{~g}, 95 \%$ yield $)$.

Synthesis of $\mathbf{2 g}$ : To a mixture of $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(2.25 \mathrm{mmol}, 0.54 \mathrm{~g}, 1.5$ equiv.) in DMF ( 10 mL ) was added 2-cinnamylpropane-1,3-diyl bis(4-methylbenzenesulfonate) ( $1.5 \mathrm{mmol}, 0.75 \mathrm{~g}, 1.0$ equiv.) in DMF ( 5 mL ). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 hours. The reaction was then quenched with water $(30 \mathrm{~mL})$ and extracted with EA $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was further purified by silica gel flash chromatography (PE:EA $=10: 1$ as the eluent) to give $\mathbf{2 g}$ as a colorless oil ( $0.13 \mathrm{~g}, 40 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: E A=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ (dt, $J=15.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{td}$, $J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H})$.

### 2.2 Synthesis and Characterization of 1-Fluoroisoquinolines.

1-Chloroisoquinolines are all prepared following the literature procedures. ${ }^{4}$

## Synthesis of 5a-5c, 5f-5g, 5i-5l, 5n and 5o:



General Procedure: A solution of substituted 1-chloroisoquinolines ( $8 \mathrm{mmol}, 1.0$ equiv.) and CsF (24 mmol, $3.6 \mathrm{~g}, 3.0$ equiv.) in DMSO ( 30 mL ) was stirred for 18 hours. The reaction mixture was diluted with water ( 20 mL ), filtrated through celite and extracted with ethyl acetate ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layer was washed with water ( $5 \times 10 \mathrm{~mL}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel chromatography to give substituted 1-fluoroisoquinoline products


1-fluoroisoquinoline (5a) ${ }^{5}$
Following the general procedure at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=50: 1\right.$ as the eluent) to give $\mathbf{5 a}$ as a pale yellow oil $(0.96 \mathrm{~g}, 82 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=50: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.96(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 139.61(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 139.18(\mathrm{~d}, J=16.2 \mathrm{~Hz})$, 131.48, $127.91,126.32(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.06,119.33(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 117.66(\mathrm{~d}, J=32.0 \mathrm{~Hz})$.
${ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-71.23.


1-fluoro-4-iodoisoquinoline (5b)

Following the general procedure at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=50: 1\right.$ as the eluent) to give $\mathbf{5 b}$ as a yellow solid ( $1.76 \mathrm{~g}, 81 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20: 1)$. ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.47(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{td}, J=8.4,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.65(\mathrm{~d}, J=248.4 \mathrm{~Hz}), 146.53(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 140.16(\mathrm{~d}, J=5.9 \mathrm{~Hz})$, 133.07, $130.74(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 129.02,123.70,118.82(\mathrm{~d}, J=32.7 \mathrm{~Hz}), 91.69(\mathrm{~d}, J=5.0 \mathrm{~Hz})$.
${ }^{19} \mathbf{F} \mathbf{N M R}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$-72.22.
HRMS (ESI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FIN}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 273.9523$, found 273.9521.


4-bromo-1-fluoroisoquinoline (5c)
Following the general procedure at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=50: 1\right.$ as the eluent) to give $\mathbf{5 c}$ as a yellow solid $\left(1.32 \mathrm{~g}, 73 \%\right.$ yield). $\mathrm{R}_{f}=0.3$ ( $\mathrm{PE}: \mathrm{EA}=20: 1$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.34(\mathrm{~d}, J=247.7 \mathrm{~Hz}), 140.32(\mathrm{~d}, J=16.3 \mathrm{~Hz}), 137.86,132.71,128.87$, 126.21, 123.53, $118.65(\mathrm{~d}, J=33.3 \mathrm{~Hz}), 115.89(\mathrm{~d}, J=5.2 \mathrm{~Hz})$.
${ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ - 71.90 .
HRMS (ESI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrFN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$225.9662, found 225.9661 .


1-fluoro-5-nitroisoquinoline (5f)
Following the general procedure at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=20: 1\right.$ as the eluent) to give $\mathbf{5 f}$ as a white solid $(0.8 \mathrm{~g}, 52 \%$ yield $) . \mathrm{R}_{f}=0.2(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.87(\mathrm{~d}, J=247.7 \mathrm{~Hz}), 144.69,143.06(\mathrm{~d}, J=16.3 \mathrm{~Hz}), 131.82(\mathrm{~d}, J$ $=4.9 \mathrm{~Hz}), 130.01,129.39,126.72,118.71(\mathrm{~d}, J=33.1 \mathrm{~Hz}), 114.86(\mathrm{~d}, J=5.2 \mathrm{~Hz})$.
${ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-67.90$.
HRMS (ESI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{FN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$193.0408, found 193.0408.


5-bromo-1-fluoroisoquinoline (5g)
Following the general procedure at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=50: 1\right.$ as the eluent) to give $\mathbf{5 g}$ as a white solid $(1.11 \mathrm{~g}, 62 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.85(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 140.49(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 138.60(\mathrm{~d}, J=5.6 \mathrm{~Hz})$, $135.15,128.22,122.68,121.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 118.75(\mathrm{~d}, J=33.1 \mathrm{~Hz}), 118.44(\mathrm{~d}, J=5.0 \mathrm{~Hz})$.
${ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.59$.
HRMS (ESI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrFN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$225.9662, found 225.9661.


6-bromo-1-fluoroisoquinoline (5j)
Following the general procedure at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=50: 1\right.$ as the eluent) to give $\mathbf{5 j}$ as a yellow solid $(1.34 \mathrm{~g}, 75 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20: 1)$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.03(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}$, 1 H ).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.91(\mathrm{~d}, J=246.8 \mathrm{~Hz}), 140.60(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 140.48,131.50,128.60$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}), 126.55,124.72,118.29(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 116.06(\mathrm{~d}, J=33.1 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.19$.
HRMS (ESI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrFN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$225.9662, found 225.9662.


1-fluoro-6,7-dimethoxyisoquinoline (5k)
Following the general procedure at $140^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=50: 1\right.$ as the eluent) to give $\mathbf{5 k}$ as a white solid ( $0.79 \mathrm{~g}, 48 \%$ yield). $\mathrm{R}_{f}=0.2(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dd}, J=5.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.25(\mathrm{~d}, J=241.8 \mathrm{~Hz}), 153.82,150.67,138.11(\mathrm{~d}, J=16.3 \mathrm{~Hz}), 136.56$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}), 118.10(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 112.66(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 104.88(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 101.15,56.20$, 56.18.
${ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ - 73.99 .
HRMS (ESI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$208.0768, found 208.0767.


1-fluoro-3-methylisoquinoline (51)
Following the general procedure at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography ( $\mathrm{PE}: \mathrm{EA}=50: 1$ as the eluent) to give $\mathbf{5 1}$ as a pale yellow oil $\left(0.84 \mathrm{~g}, 65 \%\right.$ yield). $\mathrm{R}_{f}=0.3$ ( $\mathrm{PE}: \mathrm{EA}=20: 1$ ). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.16(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 148.79(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 140.39(\mathrm{~d}, J=5.9 \mathrm{~Hz})$, $131.41,126.84,125.71(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 123.05,116.97(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 115.66(\mathrm{~d}, J=32.5 \mathrm{~Hz}), 23.66$.
${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ - 71.55 .


6-fluorophenanthridine (5n)
Following the general procedure at $130^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=50: 1\right.$ as the eluent) to give $\mathbf{5 n}$ as a white solid $\left(0.79 \mathrm{~g}, 48 \%\right.$ yield). $\mathrm{R}_{f}=0.3$ (PE:EA $=20: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.12(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 141.56(\mathrm{~d}, J=18.3 \mathrm{~Hz}), 136.49(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, $132.05,129.40,128.72,127.90,126.50,124.22,123.95,122.26,122.18(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 117.29(\mathrm{~d}, J=$ 35.1 Hz ).
${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-68.23$.
HRMS (ESI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrFN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$225.9662, found 225.9662.


Tert-butyl 4-((1-fluoroisoquinolin-5-yl)sulfonyl)-1,4-diazepane-1-carboxylate (50)
Following the general procedure at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=6: 1\right.$ as the eluent) to give $5 \mathbf{5}$ as a colorless oil $(1.41 \mathrm{~g}, 43 \%$ yield $) . \mathrm{R}_{f}=0.2(\mathrm{PE}: \mathrm{EA}=3: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.31(\mathrm{~m}, 8 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.05(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 154.99,154.65,141.57(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 135.21$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}), 134.82,133.63,133.47,128.47,126.66,118.70(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 116.43(\mathrm{~d}, J=5.1 \mathrm{~Hz})$, 79.91, 79.82, 49.91, 49.69, 49.10, 48.99, 47.67, 47.47, 45.91, 45.43, 28.61, 28.31.
${ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-68.54,-68.50$.
HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 484.1901$, found 484.1906.

## Synthesis of 5d and 5e



General procedure: A solution of 1-fluoro-4-iodoisoquinoline ( $2 \mathrm{mmol}, 0.54 \mathrm{~g}, 1$ equiv.), aryl boronic acid ( $3 \mathrm{mmol}, 0.46 \mathrm{~g}, 1.5$ equiv. $), \mathrm{Pd}(\mathrm{OAc})_{2}(0.1 \mathrm{mmol}, 23 \mathrm{mg}, 0.05$ equiv. $), \mathrm{DABCO}(0.2 \mathrm{mmol}, 14 \mathrm{mg}$, 0.06 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(6 \mathrm{mmol}, 0.83 \mathrm{~g}, 3\right.$ equiv.) in acetone ( 10 mL ) was stirred at $110^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled to room temperature, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$, and extracted with DCM ( $3 \times 10 \mathrm{~mL}$ ). The combined organic layer was then dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel chromatography to give 1-fluoro-4arylisoquinolines.


1-fluoro-4-(4-methoxyphenyl)isoquinolines (5d)

Following the general procedure, the crude product was purified by silica gel chromatography ( $\mathrm{PE}: \mathrm{EA}=$ $50: 1$ as the eluent) to give $\mathbf{5 d}$ as a white solid $(0.44 \mathrm{~g}, 82 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=30: 1)$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.56,159.29(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 138.61(\mathrm{~d}, J=15.6 \mathrm{~Hz}), 138.27(\mathrm{~d}, J$ $=5.9 \mathrm{~Hz}), 132.15(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 131.44,131.19,128.54,127.68,125.20(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 123.26,117.33$ (d, $J=32.2 \mathrm{~Hz}$ ), 114.15, 55.40.
${ }^{19} \mathbf{F} \mathbf{N M R}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-72.96$.
HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$254.0976, found 254.0973.


1-fluoro-4-(4-(trifluoromethyl)phenyl)isoquinolines (5e)
Following the general procedure, the crude product was purified by silica gel chromatography ( $\mathrm{PE}: \mathrm{EA}=$ $50: 1$ as the eluent) to give $\mathbf{5 e}$ as a yellow solid $(0.44 \mathrm{~g}, 76 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1}$ H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.68(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0$ Hz, 2H).
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.94(\mathrm{~d}, J=247.8 \mathrm{~Hz}), 140.13,138.94(\mathrm{~d}, J=16.3 \mathrm{~Hz}), 137.78(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}), 131.98,131.12(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 130.48,130.44(\mathrm{q}, J=32.7 \mathrm{~Hz}), 128.10,125.67(\mathrm{q}, J=3.4$ $\mathrm{Hz}), 124.65(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 124.11(\mathrm{dd}, J=544.3,272.0 \mathrm{~Hz}), 123.54,117.44(\mathrm{~d}, J=32.2 \mathrm{~Hz})$.
${ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.57,-71.19$.
HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$292.0744, found 292.0740.

Synthesis of 1-fluoro-5-(naphthalen-2-yl)isoquinoline (5h)


General procedure: A solution of 5-bromo-1-fluoroisoquinoline ( $1.5 \mathrm{mmol}, 0.34 \mathrm{~g}, 1.0$ equiv.), naphthalen-2-ylboronic acid ( $2.3 \mathrm{mmol}, 0.39 \mathrm{~g}, 1.5$ equiv. $), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.075 \mathrm{mmol}, 104 \mathrm{mg}, 0.05$ equiv. $)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6 \mathrm{mmol}, 0.83 \mathrm{~g}, 4.0$ equiv.) in ethanol ( 3 mL )/water $(5 \mathrm{~mL}) /$ toluene $(10 \mathrm{~mL})$ was stirred at $95^{\circ} \mathrm{C}$ for 36 hours. The reaction mixture was cooled to room temperature, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 10 mL ), and extracted with DCM ( $3 \times 10 \mathrm{~mL}$ ). The combined organic layer was dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel chromatography (PE:EA $=50: 1$ as the eluent) to give $\mathbf{5 h}$ as a yellow solid $(0.39 \mathrm{~g}, 95 \%) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{dt}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.91(\mathrm{~m}, 5 \mathrm{H}), 7.84(\mathrm{dd}, J=7.2,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.42(\mathrm{~d}, J=246.4 \mathrm{~Hz}), 139.43(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 139.40,138.20(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}), 136.39,133.34,132.80,132.38,128.83,128.23,128.13,127.82,127.72,127.49,126.69$, $126.57,122.52,118.14(\mathrm{~d}, J=32.0 \mathrm{~Hz}), 117.63(\mathrm{~d}, J=4.8 \mathrm{~Hz})$.
${ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.80$.
HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{FN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$274.1027, found 274.1025.

Synthesis of 1-fluoro-5-(phenylethynyl)isoquinoline (5i)


General procedure: A solution of 5-bromo-1-fluoroisoquinoline ( $1.4 \mathrm{mmol}, 0.32 \mathrm{~g}, 1.0$ equiv.), ethynylbenzene ( $1.6 \mathrm{mmol}, 0.18 \mathrm{~mL}$, 1.1 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.028 \mathrm{mmol}, 20.2 \mathrm{mg}, 0.02$ equiv.) and triethylamine ( $8.4 \mathrm{mmol}, 1.2 \mathrm{~mL}, 6.0$ equiv.) in THF ( 10 mL ) was stirred at $75^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled to room temperature, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 10 mL ), and extracted with DCM ( $3 \times 10 \mathrm{~mL}$ ). The combined organic layer was dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel chromatography (PE:EA $=50: 1$ as the eluent) to give $5 \mathbf{i}$ as yellow solid $(0.25 \mathrm{~g}, 71 \%) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=20: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20-8.12(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.62$ (m, 3H), 7.47-7.41 (m, 3H).
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.24(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 140.11(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 139.92(\mathrm{~d}, J=5.7 \mathrm{~Hz})$, $135.02,131.75,128.99,128.57,127.40,123.26,122.60,120.59(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 117.90(\mathrm{~d}, J=4.9 \mathrm{~Hz})$, $117.74(\mathrm{~d}, J=32.9 \mathrm{~Hz}), 95.80,85.68$.
${ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.82$.
HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{FN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$248.0870, found 248.0869.

## 3. Reaction Optimization for Synthesis of Isoquinolin-1(2H)ones

Table S1 Optimization of Reaction Conditions ${ }^{a}$


| Entry | Equivalent of 1a (equiv.) | $\mathrm{F}^{-}$Source | Solvent | Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Yield of $\mathbf{6} \mathbf{a}^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.5 | KF/18-Crown-6 | THF | 40 | 62\% |
| 2 | 1.5 | CsF | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 43\% |
| 3 | 2 | KF/18-Crown-6 | THF | 40 | 70\% |
| 4 | 2.5 | KF/18-Crown-6 | THF | 40 | 72\% |
| 5 | 3 | KF/18-Crown-6 | THF | 40 | 76\% |
| 6 | 3 | KF/18-Crown-6 | THF | 20 | 70\% |
| 7 | 3 | KF/18-Crown-6 | THF | 60 | 65\% |
| 8 | 3 | KF/18-Crown-6 | $\mathrm{CH}_{3} \mathrm{CN}$ | 40 | 52\% |
| 9 | 3 | KF/18-Crown-6 | 1,4-dioxane | 40 | 81\% (79\%) ${ }^{\text {c }}$ |

${ }^{a}$ Reaction conditions: 1a, 5a $(0.1 \mathrm{mmol}), \mathbf{3 a}(0.15 \mathrm{mmol}), \mathrm{F}^{-}$source $(0.5 \mathrm{mmol})$, solvent $(1 \mathrm{~mL})$ for 24 hours ${ }^{b}$ Yields by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{c}$ Isolated yield.

Table S2 Screening of Boronic Acid ${ }^{a, b}$


| Entry | R | Yield of 6a | Entry | R | Yield of 6a |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Ph | $81 \%$ | 5 | $4-\mathrm{FPh}$ | $75 \%$ |
| 2 | $4-\mathrm{MeOPh}$ | $79 \%$ | 6 | $2-\mathrm{MePh}$ | $85 \%$ |
| 3 | $4-\mathrm{MePh}$ | $83 \%$ | 7 | $2-\mathrm{FPh}$ | $83 \%$ |
| 4 | $4-\mathrm{ClPh}$ | $64 \%$ | $8^{c}$ | $i-\mathrm{Bu}$ | $65 \%$ |

${ }^{a}$ Reaction conditions: 1a $(0.3 \mathrm{mmol})$, 5a $(0.1 \mathrm{mmol}), \mathbf{3}(0.15 \mathrm{mmol})$, KF $(0.5 \mathrm{mmol}), 18-\mathrm{crown}-6(0.5 \mathrm{mmol})$, solvent ( 1 mL ) for 24 hours at $40^{\circ} \mathrm{C}$. ${ }^{b}$ Yields by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{c} 48 \mathrm{~h}$.

For the same reason mentioned in the manuscript, we eventually choose $\mathrm{Ph} B(\mathrm{OH})_{2}$ for further investigations.

## 4. General Procedure for Aryne Reaction

4.1 Ring-opening Reaction


General procedure A: To a suspension of $\mathrm{CsF}(0.6 \mathrm{mmol}, 91.1 \mathrm{mg}, 3.0$ equiv. $), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 0.4 mmol , $130.3 \mathrm{mg}, 2.0$ equiv. $)$, 18 -crown-6 ( $0.4 \mathrm{mmol}, 105.6 \mathrm{mg}, 2.0$ equiv.) and phenylboronic acid ( 0.3 mmol , $36.6 \mathrm{mg}, 1.5$ equiv.) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added aryne precursor ( $0.2 \mathrm{mmol}, 1.0$ equiv.) and cyclic thioether ( $0.4 \mathrm{mmol}, 2$ equiv.) at $-10^{\circ} \mathrm{C}$. Then the mixture was kept stirring for 12 hours at $-10^{\circ} \mathrm{C}$. After complete consumption of the aryne precursors indicated by TLC, the reaction was quenched with $1 \mathrm{M} \mathrm{NaOH}(2 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \mathrm{x} 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was further purified by silica gel flash chromatography to afford the products

General procedure B: To a suspension of $\mathrm{CsF}(0.2 \mathrm{mmol}, 30.6 \mathrm{mg}, 1.0$ equiv. $), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 0.8 mmol , $260.6 \mathrm{mg}, 4.0$ equiv. $)$, 18 -crown- $6(0.8 \mathrm{mmol}, 211.4 \mathrm{mg}, 4.0$ equiv. $)$ and phenylboronic acid ( 0.3 mmol , $36.6 \mathrm{mg}, 1.5$ equiv.) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added aryne precursor ( $0.2 \mathrm{mmol}, 1.0$ equiv.) and cyclic thioether ( $0.4 \mathrm{mmol}, 2.0$ equiv.) dropwise at $40^{\circ} \mathrm{C}$. Then the mixture was kept stirring for 12 hours at $40^{\circ} \mathrm{C}$. After complete consumption of the aryne precursors indicated by TLC, the reaction was quenched with $1 \mathrm{M} \mathrm{NaOH}(2 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was further purified by silica gel flash chromatography to afford the products.


3-(phenylthio)propan-1-ol (4a) ${ }^{6}$
Following the general procedure A, the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give $\mathbf{4 a}$ as a pale yellow oil ( $29.0 \mathrm{mg}, 85 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.20,129.16,128.88,125.95,61.33,31.65,30.20$.
HRMS (EI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{OS}[\mathrm{M}]^{+}$168.0603; found 168.0602.


2-phenyl-3-(phenylthio)propan-1-ol (4b)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=8: 1$ as the eluent $)$ to give $\mathbf{4 b}$ as a yellow oil $(23.9 \mathrm{mg}, 49 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=5: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{td}, J=7.3,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.97-$ $3.84(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{dd}, J=13.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=13.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.57$ (s, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.89,136.19,129.30,128.93,128.76,127.90,127.27,126.09,66.06$, 47.42, 36.21.

HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OS}[\mathrm{M}]^{+}$244.0916; found 244.0916.


2-benzyl-3-(phenylthio)propan-1-ol (4c)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=6: 1$ as the eluent) to give $\mathbf{4 c}$ as a yellow oil $(44.2 \mathrm{mg}, 86 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: E A=4: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=$ $10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.14-2.03 (m, 1H), $1.51(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.62,136.40,129.15,128.89,128.84,128.40,126.17,125.83,63.84$, 42.24, 36.82, 34.59.

HRMS (EI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}[\mathrm{M}]^{++}$258.1073; found 258.1073.


2-(4-methylbenzyl)-3-(phenylthio)propan-1-ol (4d)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=10: 1$ as the eluent) to give $\mathbf{4 d}$ as a yellow oil ( $38.0 \mathrm{mg}, 70 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=4: 1)$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{dd}, J=10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.59,136.53,135.71,129.16,129.10,128.94,128.90,125.86,63.97$, 42.37, 36.47, 34.71, 21.07.

HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{OS}[\mathrm{M}]^{+}$272.1229; found 272.1229.


2-(4-methoxybenzyl)-3-(phenylthio)propan-1-ol (4e)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=10: 1$ as the eluent) to give $4 \mathbf{e}$ as a yellow oil $(43.7 \mathrm{mg}, 76 \%$ yield $) . \mathrm{R}_{f}=0.3($ PE:EA $=4: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}, J=10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.06,136.56,131.62,130.13,128.94,128.89,125.86,113.88,63.92$, 55.30, 42.43, 35.96, 34.63.

HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$288.1179; found 288.1177.


2-(4-fluorobenzyl)-3-(phenylthio)propan-1-ol (4f)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=8: 1$ as the eluent) to give $\mathbf{4 f}$ as a yellow oil ( $40.0 \mathrm{mg}, 73 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=4: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.34-7.25 (m, 3H), 7.23-7.16(m, 1H), 7.17-7.09 (m, 2H), 7.03-6.95 (m, 2H), 3.74 (dd, $J=10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.48(\mathrm{~d}, J=244.1 \mathrm{~Hz}), 136.36,135.29,130.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.03$, $128.99,126.02,115.21(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 63.67,42.37,35.91,34.65$.
${ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-116.99$.
HRMS (EI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}[\mathrm{M}]^{+}$276.0979; found 276.0978.

(E)-5-phenyl-2-((phenylthio)methyl)pent-4-en-1-ol (4g)

Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=10: 1$ as the eluent) to give $\mathbf{4 g}$ as a yellow oil ( $37.6 \mathrm{mg}, 67 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=4: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}$, $J=15.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=10.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.26,136.50,132.21,129.13,128.91,128.47,127.52,127.11,125.98$, $125.95,64.25,40.60,35.09,34.16$.

HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{OS}[\mathrm{M}]^{+}$284.1229; found 284.1229.


2-(benzyloxy)-3-(phenylthio)propan-1-ol (4h)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=8: 1$ as the eluent) to give $\mathbf{4 h}$ as a yellow oil $(40.2 \mathrm{mg}, 74 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=4: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.25(\mathrm{~m}, 9 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dd}, J=13.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (dd, $J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.83,135.97,129.40,129.01,128.51,127.94,127.93,126.28,78.21$, 72.08, 63.27, 34.30.

HRMS (EI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$274.1022; found 274.1022.


2-(octyloxy)-3-(phenylthio)propan-1-ol (4i)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=8: 1$ as the eluent) to give $4 \mathbf{i}$ as a yellow oil ( $30.0 \mathrm{mg}, 50 \%$ yield). $\mathrm{R}_{f}=0.5(\mathrm{PE}: \mathrm{EA}=4: 1)$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=$ $11.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.41(\mathrm{~m}, 4 \mathrm{H}), 3.17(\mathrm{dd}, J=13.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.6,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.98(\mathrm{~s}, 1 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.18(\mathrm{~m}, 10 \mathrm{H}), 0.97-0.86(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.23,129.35,128.99,126.22,78.75,70.25,63.32,34.33,31.83,30.00$, 29.41, 29.26, 26.10, 22.67, 14.11.

HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$296.1805; found 296.1802.


1-phenyl-3-(phenylthio)propan-1-ol (4j)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=15: 1$ as the eluent) to give $\mathbf{4} \mathbf{j}$ as a yellow oil ( $31.4 \mathrm{mg}, 64 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}$, $J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.96,136.13,129.20,128.90,128.56,127.75,125.97,125.77,73.08$, 38.08, 29.97.

HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OS}[\mathrm{M}]^{+}$244.0916; found 244.0915.

(3-((phenylthio)methyl)-1-tosylazetidin-3-yl)methanol (4k)
Following the general procedure A, the crude product was purified by silica gel chromatography (PE:EA $=3: 1$ as the eluent) to give $\mathbf{4 k}$ as a yellow oil ( $62.2 \mathrm{mg}, 86 \%$ yield $) . \mathrm{R}_{f}=0.2(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 5 \mathrm{H}), 3.67$ (s, 2H), $3.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 144.10,135.62,131.34,129.86,129.76,129.11,128.35,126.78,64.98$, 56.71, 39.13, 38.77, 21.61.

HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$364.1036; found 364.1030.

(1-((phenylthio)methyl)cyclohexyl)methanol (4l)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA
$=6: 1$ as the eluent) to give $\mathbf{4 I}$ as a yellow oil ( $43.6 \mathrm{mg}, 48 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=3: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 1 \mathrm{H}), 1.53-1.44(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 10 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.59,129.37,128.88,125.90,67.93,40.92,38.99,32.31,26.11,21.47$.
HRMS (EI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OS}[\mathrm{M}]^{+}$236.1229; found 236.1229.

(2,2-dimethyl-5-((phenylthio)methyl)-1,3-dioxan-5-yl)methanol (4m)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give $\mathbf{4 m}$ as a yellow oil $(38.0 \mathrm{mg}, 71 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=3: 1)$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80-3.73(\mathrm{~m}, 6 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.79,129.45,129.02,126.32,98.38,64.34,63.22,39.20,36.43,24.72$, 22.63.

HRMS (EI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}$268.1128; found 268.1127 .


2,2-dimethoxy-3-(phenylthio)propan-1-ol (4n)
Following the general procedure B , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give $\mathbf{4 n}$ as a yellow oil $(34.0 \mathrm{mg}, 75 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=4: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.31-3.29(\mathrm{~m}, 8 \mathrm{H}), 1.74(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.31,129.53,128.94,126.28,101.61,61.04,48.79,36.18$.
HRMS (EI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}$228.0815; found 228.0815.


2-methyl-2-phenyl-3-(phenylthio)propan-1-ol (40)
Following the general procedure B , the crude product was purified by silica gel chromatography (PE:EA $=10: 1$ as the eluent) to give $\mathbf{4 0}$ as a yellow oil ( $31.4 \mathrm{mg}, 61 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=5: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.12(\mathrm{~m}$, $1 \mathrm{H}), 3.84(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.61,137.51,129.40,128.85,128.54,126.79,126.51,125.95,70.54$, 44.38, 43.64, 22.37.

HRMS (EI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}[\mathrm{M}]^{+}$258.1073; found 258.1073.

(5-fluoropentyl)(phenyl)sulfane (4p)
Following the general procedure B , the crude product was purified by silica gel chromatography (PE:EA $=15: 1$ as the eluent) to give $\mathbf{4 p}$ as a yellow oil ( $24.1 \mathrm{mg}, 45 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=5: 1)$.

Following the general procedure A using $3-\mathrm{MePhB}(\mathrm{OH})_{2}$, the product $\mathbf{4 w}$ was obtained as a yellow oil ( $32.2 \mathrm{mg}, 59 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}$, $1 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}), 0.95(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.59,137.38,130.53,129.25,128.95,128.04,126.27,125.97,67.99$, 42.18, 41.73, 40.66, 21.46.

HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{OS}[\mathrm{M}]^{+}$272.1229; found 272.1232.


4-(phenylthio)butan-1-ol (4q) ${ }^{7}$
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give $\mathbf{4 q}$ as a colorless oil $(31.3 \mathrm{mg}, 86 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.52,129.05,128.83,125.81,62.28,33.41,31.66,25.44$.

HRMS (EI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{OS}[\mathrm{M}]^{+}$182.0760; found 182.0761.


5-(phenylthio)pentan-1-ol (4r) ${ }^{8}$
Following the general procedure A at $40^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=4: 1\right.$ as the eluent) to give $\mathbf{4 r}$ as a yellow oil $(28.8 \mathrm{mg}, 74 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=2: 1)$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37-7.33 (m, 2H), 7.33-7.28(m, 2H), 7.22-7.17(m, 1H), 3.66(t, $J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 136.70,128.93,128.80,125.72,62.64,33.48,32.17,28.85,24.91$. HRMS (EI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{OS}[\mathrm{M}]^{+}$196.0916; found 196.0917.


2-(2-(phenylthio)ethoxy)ethan-1-ol (4s)
Following the general procedure A at $40^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=4: 1\right.$ as the eluent) to give 4 s as a yellow oil ( $21.0 \mathrm{mg}, 53 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.57(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 135.74,129.61,128.95,126.33,71.98,69.73,61.73,33.52$.
HRMS (EI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$198.0709; found 198.0707.


2-(benzyl(2-(phenylthio)ethyl)amino)ethan-1-ol (4t)
Following the general procedure A at $40^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography (PE:EA $=3: 1$ as the eluent) to give $\mathbf{4 t}$ as a yellow oil ( $32.0 \mathrm{mg}, 53 \%$ yield). $\mathrm{R}_{f}=0.3$ (PE:EA $=1: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.43,136.01,129.22,128.91,128.88,128.40,127.28,126.00,58.71$, 58.64, 55.54, 52.55, 32.01 .

HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NOS}[\mathrm{M}]^{+}$287.1338; found 287.1339.


3-(benzo[d][1,3]dioxol-5-ylthio)propan-1-ol (4u)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent $)$ to give $4 \mathbf{u}$ as a yellow oil $(36.0 \mathrm{mg}, 85 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}$, $2 \mathrm{H}), 3.78(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.98,147.03,127.76,125.28,111.94,108.70,101.25,61.41,32.41$, 31.77.

HRMS (EI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}$212.0502; found 212.0500 .


4-((3,4-dimethylphenyl)thio)butan-1-ol (4v)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give 4 v as a yellow oil $(35.5 \mathrm{mg}, 85 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H}), 1.74-1.70(\mathrm{~m}, 4 \mathrm{H})$ ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.17,134.70,132.76,131.16,130.06,127.31,62.24,34.10,31.63$, 25.51, 19.64, 19.22.

HRMS (EI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{OS}[\mathrm{M}]^{+}$210.1073; found 210.1073.


3-(naphthalen-2-ylthio)propan-1-ol (4w)

Following the general procedure A, the crude product was purified by silica gel chromatography (PE:EA
$=5: 1$ as the eluent) to give $4 \mathbf{w}$ as a yellow oil (24.0, $55 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=2: 1)$.
Following the general procedure A using $2-\mathrm{MePhB}(\mathrm{OH})_{2}$, the product $\mathbf{4 w}$ was obtained as a yellow oil ( $28.8 \mathrm{mg}, 68 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 133.74,131.71,128.39,127.67,127.29,126.99,126.84,126.84,126.53$, 125.61, 61.39, 31.66, 30.11 .

HRMS (EI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{OS}[\mathrm{M}]^{+}$218.0760; found 218.0759.


2-benzyl-3-(phenanthren-9-ylthio)propan-1-ol (4x)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give $4 \mathbf{x}$ as a yellow oil ( $39.3 \mathrm{mg}, 55 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H})$, $3.83(\mathrm{dd}, J=10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{dd}, J=$ 7.2, 2.1 Hz, 2H), 2.30-2.17 (m, 1H), $1.60(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 139.63,132.18,131.71,131.08,130.57,129.33,129.15,128.46,127.80$, 127.04, 126.89, 126.89, 126.83, 126.43, 126.21, 125.39, 123.02, 122.51, 64.06, 42.16, 36.99, 34.53.

HRMS (EI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OS}[\mathrm{M}]^{+}$358.1386; found 358.1389.


3-((3,4-difluorophenyl)thio)-2,2-dimethoxypropan-1-ol (4y)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give $\mathbf{4 y}$ as a pale yellow oil ( $27.5 \mathrm{mg}, 52 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.03(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 6 \mathrm{H}), 3.23(\mathrm{~s}$, 2 H ).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.16(\mathrm{dd}, J=250.9,13.1 \mathrm{~Hz}), 148.84(\mathrm{dd}, J=249.5,13.1 \mathrm{~Hz}), 132.72$ (dd, $J=6.0,3.9 \mathrm{~Hz}), 126.12(\mathrm{dd}, J=6.1,3.6 \mathrm{~Hz}), 118.99(\mathrm{~d}, J=18.6 \mathrm{~Hz}), 117.62(\mathrm{~d}, J=17.9 \mathrm{~Hz})$, 101.52, 60.97, 48.81, 36.92.
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-136.35(\mathrm{~d}, J=21.0 \mathrm{~Hz}),-140.05(\mathrm{~d}, J=21.1 \mathrm{~Hz})$.
HRMS (EI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}$264.0626; found 264.0626.


3-((3-methoxyphenyl)thio)propan-1-ole (4z)
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give $\mathbf{4 z}$ as a yellow oil ( $37.7 \mathrm{mg}, 95 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=2: 1$ ).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.67$ (m, 5H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.74,137.92,129.61,120.94,114.24,111.31,62.21,55.18,33.14$, 31.65, 25.41.

HRMS (EI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$212.0866; found 212.0865.


3-((3-fluorophenyl)thio)propan-1-ol and 3-((4-fluorophenyl)thio)propan-1-ol (4aa+4aa')
Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=8: 1$ as the eluent $)$ to give 4aa+4aa' as a yellow oil ( $1: 2,36.8 \mathrm{mg}, 70 \%$ yield $) . \mathrm{R}_{f}=0.5(\mathrm{PE}: \mathrm{EA}=5: 1)$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.14(\mathrm{~m}, 21 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 5 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}$, $3 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.07-2.90(\mathrm{~m}, 6 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 6 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 162.84(\mathrm{~d}, J=248.0 \mathrm{~Hz}), 161.59(\mathrm{~d}, J=246.0 \mathrm{~Hz}) ., 139.56,139.44$, $139.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 131.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 131.24(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 130.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 129.12$,
$129.13,128.48,128.43,126.30,126.21,123.74(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 116.00(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 114.94(\mathrm{~d}, J=$ $23.4 \mathrm{~Hz}), 112.54(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 63.82,63.73,42.25,42.24,36.86,36.77,35.98,34.05$.
${ }^{19}$ F NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-112.24,-115.81$.
HRMS (EI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FOS}[\mathrm{M}]^{+}$276.0979; found 276.0982.


2,2-dimethoxy-3-(m-tolylthio)propan-1-ol and
2,2-dimethoxy-3-(p-tolylthio)propan-1-ol (4ab+4ab')

Following the general procedure A , the crude product was purified by silica gel chromatography (PE:EA $=4: 1$ as the eluent) to give $\mathbf{4 a b + 4 a b}$ ' as a yellow oil ( $1: 1,39.0 \mathrm{mg}, 81 \%$ yield). $\mathrm{R}_{f}=0.3$ (PE:EA $=2: 1$ ).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 16 \mathrm{H}), 2.31(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.83-1.77(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.77,136.53,136.06,132.56,130.32,130.09,129.76,128.82,127.16$, $126.48,101.70,101.65,61.04,61.03,48.82,48.79,36.86,36.10,21.27,20.96$.

HRMS (EI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ [M] ${ }^{+}$242.0971; found 242.0973.

### 4.2 Three-component Reaction of Halo-azaarenes



General procedure C: To a mixture of $\mathrm{KF}(1 \mathrm{mmol}, 58.1 \mathrm{mg}, 5.0$ equiv. $)$, 18-crown-6 ( $1 \mathrm{mmol}, 264.3$ $\mathrm{mg}, 5.0$ equiv.), phenylboronic acid ( $0.3 \mathrm{mmol}, 36.6 \mathrm{mg}, 3.0$ equiv.) and 1 -fluoroisoquinoline ( 0.2 mmol , 1.0 equiv.) in anhydrous 1,4-dioxane ( 2 mL ) was added aryne precursor ( $0.6 \mathrm{mmol}, 3.0$ equiv.). The mixture was kept stirring at $40^{\circ} \mathrm{C}$ over 24 hours. After complete consumption of the isoquinoline indicated by TLC, the reaction mixture was filtered through a pad of silica gel and washed with DCM. The filtrate was concentrated in vacuo, and the residue was then purified by silica gel flash chromatography to afford the products.


2-phenylisoquinolin-1(2H)-one (6a) ${ }^{9}$
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=10: 1$ as the eluent) to give $\mathbf{6 a}$ as a pale yellow solid ( $34.9 \mathrm{mg}, 79 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=5: 1)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{td}, J=8.2,7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}$, $1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.00,141.36,137.05,132.52,132.13,129.24,128.25,128.05,127.13$, $126.83,126.55,125.92,106.17$.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$222.0913, found 222.0917.


4-iodo-2-phenylisoquinolin-1(2H)-one (6b)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give $\mathbf{6 b}$ as a yellow solid $(63.7 \mathrm{mg}, 92 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.48(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.56$ $(\mathrm{m}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.24,140.28,138.05,137.03,133.49,130.40,129.34,128.54,128.39$, $128.05,126.72,126.65,72.10$.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{INO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 347.9880$, found 347.9871 .


4-bromo-2-phenylisoquinolin- $\mathbf{1 ( 2 H )}$-one (6c) ${ }^{9}$
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give $\mathbf{6 c}$ as a pale yellow solid ( $57.0 \mathrm{mg}, 95 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 1 \mathrm{H})$, 7.65-7.59 (m, 1H), 7.56-7.51 (m, 3H), 7.49-7.44 (m, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.04,140.45,135.46,133.27,132.56,129.38,128.66,128.43,128.10$, $126.69,126.68,125.90,100.19$.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$300.0019, found 300.0014


4-(4-methoxyphenyl)-2-phenylisoquinolin-1(2H)-one (6d)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give $\mathbf{6 d}$ as a yellow oil ( $60.2 \mathrm{mg}, 92 \%$ yield $) . \mathrm{R}_{f}=0.2(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.49$ (m, 4H), $7.44(\mathrm{dt}, J=4.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.48,159.24,141.27,136.74,132.37,131.01,130.86,129.22,128.61$,

HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$328.1332, found 328.1324.


2-phenyl-4-(4-(trifluoromethyl)phenyl)isoquinolin-1(2H)-one (6e)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give $\mathbf{6 e}$ as a yellow solid ( $51.0 \mathrm{mg}, 70 \%$ yield). $\mathrm{R}_{f}=0.3$ (PE:EA $=8: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.50,141.10,140.02,135.88,132.73,131.58,130.30,130.07(\mathrm{q}, J=$ $32.9 \mathrm{~Hz}), 129.38,128.94128 .31,127.55,126.84,126.48,125.68(\mathrm{q}, J=6.8 \mathrm{~Hz}), 124.32,124.12(\mathrm{q}, J=$ $271.9 \mathrm{~Hz}), 118.35$.
${ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.51$.
HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 366.1100$, found 366.1108.


5-nitro-2-phenylisoquinolin-1(2H)-one (6f)
Following the general procedure C , the crude product was purified by silica gel chromatography (DCM as the eluent) to give $\mathbf{6 f}$ as a yellow solid ( $21.0 \mathrm{mg}, 40 \%$ yield $) . \mathrm{R}_{f}=0.3$ (PE:EA $=10: 1$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.48,144.83,140.42,135.71,134.67,131.00,129.57,129.54,128.71$, 128.63, 126.56, 126.11, 100.70 .

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$267.0764, found 267.0757.


5-bromo-2-phenylisoquinolin-1(2H)-one ( 6 g$)^{10}$
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:DCM $=1: 1$ as the eluent) to give $\mathbf{6 g}$ as a yellow solid ( $37.0 \mathrm{mg}, 62 \%$ yield). $\mathrm{R}_{f}=0.3$ ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.46-7.40 (m, 3H), $7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.24,140.98,136.41,136.28,133.28,129.37,128.33,128.16,127.93$, 127.67, 126.69, 120.62, 104.78.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$300.0019, found 300.0014 .


5-(naphthalen-2-yl)-2-phenylisoquinolin-1(2H)-one (6h)
Following the general procedure C , the crude product was purified by silica gel chromatography (DCM as the eluent) to give $\mathbf{6 h}$ as a pale yellow solid ( $62.9 \mathrm{mg}, 91 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.92(\mathrm{~m}$, $3 \mathrm{H}), 7.76(\mathrm{dd}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.02,141.30,138.95,137.05,135.09,133.67,133.29,132.59,131.97$, $129.28,128.66,128.09,128.04,128.01,127.89,127.81,127.74,127.16,126.79,126.79,126.52,126.32$, 104.18.

HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$348.1383, found 348.1374.


2-phenyl-5-(phenylethynyl)isoquinolin-1(2H)-one (6i)
Following the general procedure C , the crude product was purified by silica gel chromatography (DCM as the eluent) to give $6 \mathbf{i}$ as a pink solid ( $38.6 \mathrm{mg}, 60 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1H).
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.76,141.19,137.90,135.98,132.88,131.63,129.33,128.68,128.53$, 128.47, 128.21, 126.77, 126.77, 126.65, 122.87, 119.84, 104.38, 94.76, 86.32.

HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$322.1226, found 322.1220.


6-bromo-2-phenylisoquinolin-1(2H)-one (6j)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give $\mathbf{6} \mathbf{j}$ as a yellow solid ( $46.2 \mathrm{mg}, 76 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.6,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.53,141.03,138.50,133.51,130.39,130.15,129.33,128.37,128.26$, $127.68,126.72,125.26,104.98$.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$300.0019, found 300.0013.


6,7-dimethoxy-2-phenylisoquinolin-1(2H)-one (6k) ${ }^{11}$
Following the general procedure C , the crude product was purified by silica gel chromatography (DCM as the eluent) to give $\mathbf{6 k}$ as a yellow solid $(46.0 \mathrm{mg}, 82 \%$ yield $) . \mathrm{R}_{f}=0.2(\mathrm{PE}: \mathrm{EA}=4: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.31,153.57,149.42,141.59,132.49,130.88,129.15,127.92,126.85$, 120.43, 108.16, 106.07, 105.68, 56.16, 56.10.

HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$282.1125, found 282.1117 .


5-phenylphenanthridin-6(5H)-one (6n) ${ }^{12}$
Following the general procedure C at $80^{\circ} \mathrm{C}$ and the reaction time was 48 hours, the crude product was purified by silica gel chromatography ( DCM as the eluent) to give $\mathbf{6 n}$ as a yellow solid ( $20.1 \mathrm{mg}, 37 \%$ yield, $54 \%$ starting material recovered). $\mathrm{R}_{f}=0.4$ (PE:EA $=5: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.40-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.71,139.21,138.32,134.03,132.84,130.22,129.12,129.11,129.05$, $128.79,128.15,125.90,123.01,122.66,121.80,119.05,117.04$.


## 2-(benzo[d][1,3]dioxol-5-yl)-4-bromoisoquinolin-1(2H)-one (11a)

Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=10: 1$ as the eluent) to give 11 a as a yellow solid ( $62.4 \mathrm{mg}, 91 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=5: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (ddd, $J=7.8,6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.07$ (s, 2H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.29,148.15,147.70,135.47,134.34,133.28,132.84,128.68,128.11$, $126.62,125.91,120.12,108.42,108.20,101.90,100.00$.

HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$343.9917, found 343.9921 .


2-(3,4-dimethylphenyl)-4-iodoisoquinolin-1(2H)-one (11b)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give $\mathbf{1 1 b}$ as a yellow solid ( $48.4 \mathrm{mg}, 78 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$,
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.48(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{ddd}$, $J=8.1,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (dd, $J=7.9,2.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.48,138.47,138.08,137.91,137.18,137.12,133.42,130.45,130.39$, $128.60,127.98,127.62,126.82,123.83,71.74,19.82,19.47$.

HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{INO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$376.0193, found 376.0195.


4-bromo-2-(naphthalen-2-yl)isoquinolin-1(2H)-one (11c)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give 11 c as a yellow solid $(44.6 \mathrm{mg}, 64 \%$ yield $) . \mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.89(\mathrm{~m}$, $4 \mathrm{H}), 7.84$ (ddd, $J=8.1,7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.55(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.30,138.13,135.55,133.41,133.37,132.75,132.75,129.26,128.70$, $128.19,128.07,127.80,126.93,126.84,126.76,125.99,125.15,124.66,100.38$.


6,7-dimethoxy-2-(phenanthren-9-yl)isoquinolin-1(2H)-one (11d)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=10: 1$ as the eluent) to give 11 d as a yellow solid ( $40.2 \mathrm{mg}, 53 \%$ yield). $\mathrm{R}_{f}=0.4$ (PE:EA $=5: 1$ ).
${ }^{1}$ H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.79(\mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.78-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.86,153.72,149.49,137.18,132.84,131.67,131.36,131.26,130.53$, $128.91,128.59,127.53,127.39,127.26,127.06,126.28,123.40,123.14,122.72,120.37,108.28,106.23$, 105.73, 56.17, 56.15.

HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 382.1438$, found 382.1441 .


2-(3,4-difluorophenyl)-4-iodoisoquinolin-1(2H)-one (11e)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give 11 e as a yellow solid ( $68.0 \mathrm{mg}, 87 \%$ yield). $\mathrm{R}_{f}=0.2(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.45(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{ddd}, J=8.3,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (dd, $J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.20,150.26(\mathrm{dd}, J=251.5,1.0 \mathrm{~Hz}), 150.20(\mathrm{~d}, J=239.4), 137.29$, $137.00,136.26(\mathrm{dd}, J=7.7,3.8 \mathrm{~Hz}), 133.89,130.69,128.65,128.46,126.52,123.14(\mathrm{dd}, J=6.6,3.8$ $\mathrm{Hz}), 117.84(\mathrm{~d}, J=18.4 \mathrm{~Hz}), 116.83(\mathrm{~d}, J=19.1 \mathrm{~Hz}), 72.78$.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{INO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$383.9691, found 383.9694.


2-(3-methoxyphenyl)-4-(4-methoxyphenyl)isoquinolin-1(2H)-one (11f)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give 11 f as a yellow solid $(61.3 \mathrm{mg}, 86 \%$ yield $) . \mathrm{R}_{f}=0.3($ PE:EA $=5: 1)$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{td}, J=7.4,6.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.37,160.09,159.17,142.26,136.64,132.33,130.94,130.78,129.89$, $128.53,128.18,127.01,126.23,124.72,119.12,118.96,114.06,113.99,112.56,55.38,55.26$

HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 358.1438$, found 358.1438.


6-bromo-2-(m-tolyl)isoquinolin-1(2H)-one and 6-bromo-2-(p-tolyl)isoquinolin-1(2H)-one ( $11 \mathrm{~g}+11 \mathrm{~g}$ )

Following the general procedure C , the crude product was purified by silica gel chromatography (PE:DCM $=5: 1$ as the eluent) to give $\mathbf{1 1 g} \mathbf{+ 1 1 \mathbf { g }}$, as a yellow solid ( $46.5 \mathrm{mg}, 70 \%$ yield). $\mathrm{R}_{f}=0.4$ (PE:EA $=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36-8.32(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}$, 1H), $7.31(\mathrm{~s}, 4 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.60,161.55,140.88,139.35,138.47,138.47,138.42,138.17,133.65$, $133.57,130.30,130.26,130.09,130.09,129.86,129.86,129.11,129.04,128.29,127.60,127.56,127.32$, $126.37,125.15,125.15,123.61,104.87,104.87,21.28,21.10$.

HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$314.0175, found 314.0177.


2-(3-fluorophenyl)-4-(4-methoxyphenyl)isoquinolin-1(2H)-one (11h)
Following the general procedure C , the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give 11 h as a yellow solid $(43.9 \mathrm{mg}, 62 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.51$ (m, 2H), 7.50-7.42 (m, 2H), $7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.93(\mathrm{~d}, J=247.9 \mathrm{~Hz}), 161.62,159.32,137.19(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 136.78$, $132.53,131.02,130.62,128.70,128.61,128.15,127.25,126.22,124.90,119.51,116.17(\mathrm{~d}, J=22.9 \mathrm{~Hz})$, 114.11, 55.36.
${ }^{19}$ F NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-111.18,-113.30$.
HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 346.1238$, found 346.1237.


General procedure D: To a mixture of $\mathrm{KF}(1 \mathrm{mmol}, 58.1 \mathrm{mg}, 5.0$ equiv. $)$, 18-crown-6 ( $1 \mathrm{mmol}, 264.3$ $\mathrm{mg}, 5.0$ equiv.), phenylboronic acid ( $0.3 \mathrm{mmol}, 36.6 \mathrm{mg}, 3.0$ equiv.) and 4-chloroquinoline and 9chloroacridine ( 0.2 mmol , 1.0 equiv.) in anhydrous 1,4-dioxane ( 2 mL ) was added aryne precursor ( 0.6 mmol, $147 \mu \mathrm{~L}, 3.0$ equiv.) dropwise. The reaction mixture was kept stirring over 24 hours. After complete consumption of the quinolines indicated by TLC, the mixture was filtered through a pad of silica gel and washed with DCM. The filtrate was concentrated in vacuo, and the residue was further purified by silica gel flash chromatography to afford the target products.


1-phenylquinolin-4(1H)-one (8a) ${ }^{13}$
Following the general procedure D at $80^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=2: 3\right.$ as the eluent) to give $\mathbf{8 a}$ as a yellow solid ( $34.1 \mathrm{mg}, 77 \%$ yield). $\mathrm{R}_{f}=0.2$ ( $\mathrm{PE}: \mathrm{EA}=1: 1$ ). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H})$, 7.43-7.34 (m, 3H), 7.01 (dd, $J=8.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.26,142.67,141.35,141.33,131.81,130.28,129.47,127.54,126.56$, 123.86, 117.24, 110.21.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$222.0913, found 222.0913.


10-phenylacridin-9(10H)-one (8b) ${ }^{14}$
Following the general procedure D employing KF ( $1.2 \mathrm{mmol}, 70 \mathrm{mg}, 6$ equiv.), 18 -crown-6 ( 1.2 mmol , $422.4 \mathrm{mg}, 6$ equiv.) and aryne precursor ( $0.8 \mathrm{mmol}, 196 \mu \mathrm{~L}, 4$ equiv.) at $100^{\circ} \mathrm{C}$ for 48 h , the crude product was purified by silica gel chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ as the eluent) to give $\mathbf{8 b}$ as a yellow solid (33.0 $\mathrm{mg}, 61 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=5: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.52$ (ddd, $J=8.6,6.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.16,143.12,138.95,133.24,131.07,130.03,129.57,127.27,121.78$, 121.51, 116.77 .

HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$272.1070, found 272.1068.


General procedure E: To a mixture of $\mathrm{KF}(1.6 \mathrm{mmol}, 93 \mathrm{mg}, 8.0$ equiv.), 18-crown-6 ( $1.6 \mathrm{mmol}, 422.4$ mg , 8.0 equiv.), phenylboronic acid ( $0.3 \mathrm{mmol}, 36.6 \mathrm{mg}, 3.0$ equiv.) and substituted 2-fluoropyridines ( $0.2 \mathrm{mmol}, 1.0$ equiv.) in anhydrous 1,4 -dioxane ( 2 mL ) was added aryne precursor ( $1 \mathrm{mmol}, 245 \mu \mathrm{~L}$, 5.0 equiv.) dropwise. The mixture was kept stirring over 24 hours at certain temperature. After complete consumption of the pyridines indicated by TLC, the mixture was filtered through a pad of silica gel and washed with DCM. The filtrate was concentrated in vacuo, and the residue was further purified by silica gel flash chromatography to afford the target products.


Cis-10-phenyl-1,4-dihydro-1,4-(epiminomethano)naphthalen-9-one (10a)
Following the general procedure E at $40^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography (PE:EA $=20: 1$ as the eluent) to give $10 a$ as a yellow oil ( $26.0 \mathrm{mg}, 53 \%$ yield). $\mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=10: 1)$. ${ }^{1}$ H NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.10$ (m, 1H), $7.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 170.96,141.51,140.33,140.29,137.25,136.09,128.99,126.20,126.06$, $125.74,124.49,122.97,122.00,63.26,56.22$.

HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$248.1070, found 248.1069.


Cis-4-methyl-10-phenyl-1,4-dihydro-1,4-(epiminomethano)naphthalen-9-one (10b)
Following the general procedure E at $40^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography $\left(\mathrm{PE}: \mathrm{EA}=10: 1\right.$ as the eluent) to give $\mathbf{1 0 b}$ as a yellow solid ( $40.0 \mathrm{mg}, 77 \%$ yield). $\mathrm{R}_{f}=0.4$ (PE:EA $=10: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{dd}, J=$ $7.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=5.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.56,143.34,142.73,142.21,140.71,136.00,128.84,125.94,125.78$, 125.49, 122.81, 121.86, 121.72, 62.42, 55.31, 13.79.

HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$262.1226, found 262.1226.


Cis-2-methyl-10-phenyl-1,4-dihydro-1,4-(epiminomethano)naphthalen-9-one (10c)
Following the general procedure E at $60^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography ( $\mathrm{PE}: \mathrm{EA}=20: 1$ as the eluent) to give 10 c as a yellow solid ( $35.0 \mathrm{mg}, 67 \%$ yield). $\mathrm{R}_{f}=0.4$ ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{dt}, J=$ $5.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 171.27,146.32,141.41,140.93,140.30,129.07,128.91,126.26,125.75$, $125.56,124.02,123.11,121.82,68.03,55.49,18.35$.

HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$262.1226, found 262.1225.


Cis-2-bromo-10-phenyl-1,4-dihydro-1,4-(epiminomethano)naphthalen-9-one (10d)
Following the general procedure E at $100^{\circ} \mathrm{C}$, the crude product was purified by silica gel chromatography ( DCM as the eluent) to give $\mathbf{1 0 d}$ as a white solid ( $46.0 \mathrm{mg}, 71 \%$ yield). $\mathrm{R}_{f}=0.4$ ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{dd}, J=6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.54,140.47,139.54,138.75,134.72,129.11,127.03,126.51,126.39$, $126.11,124.54,123.31,122.47,71.12,57.25$.

HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$326.0175, found 326.0177.

### 4.3 Other Substrates



Failed fluorinated N -heterocycles


1-fluorophthalazine
 OTf

$+\mathrm{PhB}(\mathrm{OH})^{2}$ $\xrightarrow{\text { Standard condition }}$ Complex mixture

Figure S1. Other substrates.

For the ring-opening reaction of ethylene sulfide, the phenyl vinyl sulfide was obtained instead, which might be due to its strong ring strain that led to the fast intramolecular proton transfer and elimination. For the reaction with 1-fluorophthalazine, a complex mixture was obtained instead. Side reaction pathway might contain the previously reported [4+2] cycloaddition and extrusion of nitrogen cascade.

## 5. Synthetic Application

### 5.1 Scale-up Reaction



To a suspension of $\operatorname{CsF}$ ( $12 \mathrm{mmol}, 1.84 \mathrm{~g}, 3.0$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(8 \mathrm{mmol}, 2.61 \mathrm{~g}, 2.0$ equiv.), 18 -crown- 6 ( $8 \mathrm{mmol}, 2.11 \mathrm{~g}, 3.0$ equiv.) and phenylboronic acid ( $6 \mathrm{mmol}, 0.73 \mathrm{~g}, 1.5$ equiv.) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ $(40 \mathrm{~mL})$ was added aryne precursor $\mathbf{1 u}(4 \mathrm{mmol}, 1.37 \mathrm{~g}, 1.0$ equiv.) and thietane ( $8 \mathrm{mmol}, 0.64 \mathrm{~mL}, 2.0$ equiv.) at $-10^{\circ} \mathrm{C}$. The mixture was then kept stirring at $-10^{\circ} \mathrm{C}$ for 12 hours. After complete consumption of the aryne precursors indicated by TLC, the reaction mixture was quenched with $1 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$ and extracted with DCM ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. The residue was further purified by silica gel flash chromatography (PE:EA $=4: 1$ as the eluent) to give 4 u as a yellow oil $(0.69 \mathrm{~g}, 81 \%$ yield $)$.


To a mixture of KF ( $12 \mathrm{mmol}, 0.7 \mathrm{~g}, 5.0$ equiv.), 18 -crown- $6(12 \mathrm{mmol}, 3.17 \mathrm{~g}, 5.0$ equiv.), phenylboronic acid ( $3.6 \mathrm{mmol}, 0.44 \mathrm{~g}, 3.0$ equiv.) and 4-bromo-1-fluoroisoquinoline ( $2.4 \mathrm{mmol}, 0.54 \mathrm{~g}$, 1.0 equiv.) in anhydrous 1,4-dioxane ( 16 mL ) was added aryne precursor ( $7.2 \mathrm{mmol}, 1.76 \mathrm{~mL}, 3.0$ equiv.) dropwise. The mixture was kept stirring for 72 hours at $40^{\circ} \mathrm{C}$. After complete consumption of isoquinoline indicated by TLC, the mixture was filtrated through a pad of silica gel and washed with DCM. The filtrate was concentrated in vacuo, and the residue was further purified by silica gel flash chromatography ( $\mathrm{PE}: \mathrm{EA}=20: 1$ as the eluent) to give $\mathbf{6 c}$ as a pale yellow solid $(0.65 \mathrm{~g}, 91 \%$ yield $)$

### 5.2 Downstream Synthesis



To a stirred solution of 3-(benzo[d][1,3]dioxol-5-ylthio)propan-1-ol 4u ( $0.2 \mathrm{mmol}, 42.4 \mathrm{mg}, 1.0$ equiv.) in $\operatorname{DCM}(1 \mathrm{~mL})$ was added $m$ - $\mathrm{CPBA}(85 \%, 0.22 \mathrm{mmol}, 44.8 \mathrm{mg}, 1.1$ equiv. $)$ at $0^{\circ} \mathrm{C}$ under air. The reaction was kept stirring at $0^{\circ} \mathrm{C}$ for 30 minutes. The reaction was then quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution $(2 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 3 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was further purified by silica gel flash chromatography (EA as the eluent) to give $\mathbf{1 2}$ as a pale yellow oil ( $42.0 \mathrm{mg}, 92 \%$ yield). $\mathrm{R}_{f}=0.2$ (EA).
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 3.74-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{br}, 1 \mathrm{H}), 3.01-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.33,148.73,135.86,119.11,108.76,104.38,101.97,60.77,54.59$, 25.87.

HRMS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$229.0529; found 229.0529.


To a stirred solution of 3-(benzo[d][1,3]dioxol-5-ylthio)propan-1-ol 4u ( $0.2 \mathrm{mmol}, 42.4 \mathrm{mg}, 1.0$ equiv.) in DCM ( 2 mL ) was added $m$ - $\mathrm{CPBA}(85 \%, 0.64 \mathrm{mmol}, 130 \mathrm{mg}, 3.2$ equiv. $)$ at $0^{\circ} \mathrm{C}$ under air. The reaction was kept stirring at room temperature for 3 hours. The mixture was then quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (2 mL), extracted with DCM (3 x 3 mL ), and washed with $2 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was further purified by silica gel flash chromatography ( $\mathrm{PE}: \mathrm{EA}=1: 2$ as the eluent) to give $\mathbf{1 3}$ as a pale yellow oil ( 47.9 mg , $98 \%$ yield $) . \mathrm{R}_{f}=0.4$ (PE:EA $=1: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 3.70$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{br}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.31,148.40,132.17,124.01,108.58,108.00,102.53,60.39,53.54$, 25.90 .

HRMS (ESI): Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$245.0478; found 245.0479.


4j
14
To a suspension of $\mathrm{FeCl}_{3}$ ( $0.1 \mathrm{mmol}, 16.2 \mathrm{mg}, 1.0$ equiv.) in anhydrous DCE ( 2 mL ) was added 1-phenyl-3-(phenylthio)propan-1-ol $4 \mathbf{j}\left(0.1 \mathrm{mmol}, 24.4 \mathrm{mg}, 1.0\right.$ equiv.) in anhydrous DCE ( 2 mL ) dropwise at $0^{\circ} \mathrm{C}$. The reaction was kept stirring at $70^{\circ} \mathrm{C}$ for 12 hours. The reaction was quenched with water $(2 \mathrm{~mL})$ and extracted with DCM ( $3 \times 2 \mathrm{~mL}$ ). The combined organic layer was dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel flash chromatography (pentane as the eluent) to give $\mathbf{1 4}$ as a colorless oil ( $18.3 \mathrm{mg}, 81 \%$ yield). (Note: The temperature of water bath during solvent evaporation should be controlled under $10^{\circ} \mathrm{C}$.) $\mathrm{R}_{f}=0.3$ (PE).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{t}, 1 \mathrm{H})$, 2.99-2.84 (m, 2H), 2.39-2.31 (m, 2H).
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 145.09,135.31,133.49,131.24,128.55,128.43,126.86,126.41,126.36$, 123.96, 44.20, 30.66, 23.48 .

HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~S}[\mathrm{M}]^{+}$226.0816; found 226.0812.


To a solution of 5-bromo-2-phenylisoquinolin-1 $(2 H)$-one ( $\mathbf{6 g}, 0.2 \mathrm{mmol}, 60 \mathrm{mg}, 1.0$ equiv.) in toluene $(6 \mathrm{~mL})$ was added Lawesson's reagent ( $0.8 \mathrm{mmol}, 0.32 \mathrm{~g}, 4.0$ equiv.). The reaction was stirring at $120^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was filtered through a pad of celite and washed with DCM. The combined organic layer was concentrated in vacuo. The crude product was purified by silica gel flash chromatography ( $\mathrm{PE}: \mathrm{EA}=20: 1$ as the eluent) to give $\mathbf{1 5}$ as a yellow solid ( $56.0 \mathrm{mg}, 89 \%$ yield). $\mathrm{R}_{f}=0.4$ $(P E: E A=10: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H})$, 7.56-7.43 (m, 3H), $7.39(\mathrm{dd}, J=7.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.72,146.10,136.37,135.86,134.63,132.50,132.01,129.84,129.14$, $128.99,126.88,121.54,110.07$.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNS}^{+}[\mathrm{M}+\mathrm{H}]^{+} 315.9790$; found 315.9793 .


To a solution of 5-bromo-2-phenylisoquinolin-1 $(2 H)$-one ( $6 \mathbf{g}, 0.15 \mathrm{mmol}, 45 \mathrm{mg}, 1.0$ equiv. $), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ( $0.015 \mathrm{mmol}, 13.7 \mathrm{mg}, 0.1$ equiv.), BINAP ( $0.015 \mathrm{mmol}, 9.4 \mathrm{mg}, 0.1$ equiv.) and $t-\mathrm{BuOK}$ ( 0.45 mmol , $43 \mathrm{mg}, 3.0$ equiv.) in toluene ( 2 mL ) was added morpholine ( $0.4 \mathrm{mmol}, 39 \mu \mathrm{~L}, 3.0$ equiv.). The reaction was stirring at $110^{\circ} \mathrm{C}$ for 16 hours. The reaction was filtered through a pad of celite and washed with DCM. The combined organic layer was concentrated in vacuo. The crude product was purified by silica gel flash chromatography ( $\mathrm{PE}: \mathrm{EA}=3: 1$ as the eluent) to give 16 as a yellow solid ( $38.0 \mathrm{mg}, 83 \%$ yield). $\mathrm{R}_{f}=0.3(\mathrm{PE}: \mathrm{EA}=2: 1)$.
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{ddd}, J=12.9,7.2,3.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.50-7.39$ (m, 3H), $7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 4 \mathrm{H})$, 3.10-3.07 (m, 4H)
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.13,148.45,141.38,132.46,131.57,129.29,128.09,127.98,127.42$, 126.81, 123.42, 121.96, 102.05, 67.31, 53.21.

HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 307.1441$; found 307.1443


To a solution of $\mathrm{CuI}(0.4 \mathrm{mmol}, 76 \mathrm{mg}, 2.0$ equiv.) in anhydrous THF ( 0.5 mL ) was added $p-\mathrm{TolMgBr}$ ( 1 M in THF, $0.4 \mathrm{mmol}, 0.4 \mathrm{~mL}, 2.0$ equiv.) at $-78^{\circ} \mathrm{C}$, and the mixture was kept stirring at the same temperature for 5 minutes. Chlorotrimethylsilane ( $0.6 \mathrm{mmol}, 65.2 \mathrm{mg}, 3.0$ equiv.) was then added slowly, and the mixture was kept stirring for another 5 minutes. Next, a solution of 1-phenylquinolin- $4(1 \mathrm{H})$-one 8a ( $0.2 \mathrm{mmol}, 44.2 \mathrm{mg}, 1.0$ equiv.) in anhydrous THF $(0.5 \mathrm{~mL}) / \mathrm{DCM}(0.5 \mathrm{~mL})$ was added dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 hours, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 2 mL ) and extracted with DCM ( $3 \times 2 \mathrm{~mL}$ ). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by silica gel flash chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$
as the eluent) to give 1-phenyl-2-(p-tolyl)-2,3-dihydroquinolin-4(1H)-one $\mathbf{1 7}$ as a yellow solid ( 51.0 mg , $82 \%$ yield $) . \mathrm{R}_{f}=0.4(\mathrm{PE}: \mathrm{EA}=5: 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.20$ (m, 3H), $7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.37(\mathrm{dd}, J=16.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.41,150.21,145.34,137.24,136.93,135.21,129.67,129.42,127.59$, $126.89,125.84,125.74,120.82,118.21,116.33,64.09,44.98,21.04$.

HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 314.1539$; found 314.1539.


A solution of 1-phenylquinolin- $4(1 H)$-one ( $\mathbf{8 a}, 0.15 \mathrm{mmol}, 33.2 \mathrm{mg}, 1$ equiv.), $N$-iodosuccinimide ( 0.225 mmol, $51 \mathrm{mg}, 1.5$ equiv. $)$ in $\mathrm{AcOH}(2 \mathrm{~mL})$ was kept stirring at room temperature for 3 hours. The reaction was then quenched with water $(2 \mathrm{~mL})$ and extracted with DCM $(3 \times 2 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by silica gel flash chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ as the eluent) to give 3-iodo-1-phenylquinolin-4( $1 H$ )-one $\mathbf{1 8}$ as a yellow solid ( $51.0 \mathrm{mg}, 98 \%$ yield). $\mathrm{R}_{f}=0.5$ ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.46(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.51$ (ddd, $J=8.6,7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.06,147.31,140.87,140.52,132.03,130.46,129.92,127.51,127.33$, 124.77, 123.04, 117.41, 81.67.

HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{INO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$347.9880; found 347.9882.


To a mixture of $\mathrm{KF}(1 \mathrm{mmol}, 58.1 \mathrm{mg}, 5.0$ equiv.), 18 -crown-6 ( $1 \mathrm{mmol}, 264.3 \mathrm{mg}, 5.0$ equiv.), phenylboronic acid ( $0.3 \mathrm{mmol}, 36.6 \mathrm{mg}, 3.0$ equiv.) and tert-butyl 4-((1-fluoroisoquinolin-5-
yl)sulfonyl)-1,4-diazepane-1-carboxylate ( $\mathbf{5 0}, 0.2 \mathrm{mmol}, 82 \mathrm{mg}, 1.0$ equiv.) in anhydrous 1,4-dioxane (2 mL ) was added aryne precursor ( $0.6 \mathrm{mmol}, 147 \mu \mathrm{~L}, 3.0$ equiv.) dropwise. The mixture was kept stirring at $40^{\circ} \mathrm{C}$ for 3 days. After complete consumption of $\mathbf{5 0}$ indicated by TLC, the mixture was through a pad of silica gel and washed with DCM. The solvent was concentrated in vacuo, and the residue was further purified by silica gel flash chromatography ( $\mathrm{PE}: \mathrm{EA}=3: 1$ ) to afford $\mathbf{6 0}$ as pale yellow solid $(48.0 \mathrm{mg}$, $50 \%$ yield). $\mathrm{R}_{f}=0.3$ ( $\mathrm{PE}: \mathrm{EA}=2: 1$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.47-$ $7.41(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 160.94,155.09,154.70,140.49,134.27,134.21,133.69,133.52,129.41$, $128.55,128.49,126.52,125.93,102.36,79.93,79.85,50.10,49.73,49.19,47.67,47.42,45.91,45.44$, 28.49, 28.35.

HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$484.1901, found 484.1906.

## 6. Mechanistic Studies

### 6.1 Deuterium-labeling Study



Synthesis of 3a-D ${ }^{15}$ : A flame-dried Schlenk tube equipped with a magnetic bar was added triphenylboroxine $(0.50 \mathrm{mmol}, 156.0 \mathrm{mg})$ and $\mathrm{D}_{2} \mathrm{O}(1.8 \mathrm{~mL})$. The mixture was kept stirring at $75^{\circ} \mathrm{C}$ for 14 hours. The reaction was then filtered while it was still hot in order to remove excess amount of triphenylboroxines. The filtrate was cooled to room temperature, and a white solid was crashed out of the solution. The obtained solid was dried under vacuum to give 3a-D ( $73.0 \mathrm{mg}, 40 \%$ yield, $75 \% \mathrm{D}$ ) as a white solid, containing with $4 \%$ triphenylboroxine. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $8.02(\mathrm{~s}, 0.5 \mathrm{H})$, 7.92-7.73 (m, 2H), 7.44-7.24 (m, 3H).



To a suspension of CsF ( $0.6 \mathrm{mmol}, 92 \mathrm{mg}, 3.0$ equiv. $), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.4 \mathrm{mmol}, 130 \mathrm{mg}, 2.0$ equiv.), 18-crown-6 ( $0.4 \mathrm{mmol}, 106 \mathrm{mg}, 2.0$ equiv.) and 3a-D ( $0.3 \mathrm{mmol}, 36 \mathrm{mg}, 1.5$ equiv.) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ $(2 \mathrm{~mL})$ was added aryne precursor ( $0.2 \mathrm{mmol}, 49 \mu \mathrm{~L}, 1.0$ equiv.) and thietane ( $0.4 \mathrm{mmol}, 32 \mu \mathrm{~L}, 2.0$ equiv.) dropwise at $-10^{\circ} \mathrm{C}$. The mixture was then kept stirring for 12 hours at $-10^{\circ} \mathrm{C}$. After complete consumption of aryne precursors indicated by TLC, the reaction was quenched with $1 \mathrm{M} \mathrm{NaOH}(2 \mathrm{~mL})$ and extracted with DCM ( $3 \times 5 \mathrm{~mL}$ ). The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. The residue was further purified by silica gel flash chromatography (PE:EA=4:1) to afford 4a-D as a pale yellow oil ( $29.0 \mathrm{mg}, 85 \%$ yield, $68 \% \mathrm{D}$ ).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.35(\mathrm{~m}, 1.34 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.24,129.23,128.94,128.83,126.02,61.44,31.70,30.27$.
HRMS (EI): Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{OS}[\mathrm{M}]^{+}$169.0666; found 169.0671.

### 6.2 Control Experiment



A mixture of KF ( $1 \mathrm{mmol}, 58.1 \mathrm{mg}, 5.0$ equiv.), 18 -crown-6 ( $1 \mathrm{mmol}, 264.3 \mathrm{mg}, 5.0$ equiv.), phenylboronic acid ( $0.3 \mathrm{mmol}, 36.6 \mathrm{mg}, 3.0$ equiv.) and 1-fluoroisoquinoline in anhydrous 1,4-dioxane $(2 \mathrm{~mL})$ was kept stirring at $40^{\circ} \mathrm{C}$ for 24 hours. The analysis of the reaction mixture suggested that isoquinolin- $1(2 \mathrm{H})$-one was not formed.

This experiment indicated the reaction was initiated through the nucleophilic addition of aryne with 1fluoroisoquinoline.

### 6.3 Spectroscopic Studies

## ${ }^{11}$ B NMR Studies:

a) The ${ }^{11} \mathrm{~B}$ NMR of boronic acid was recorded.
b) A mixture of KF ( $1 \mathrm{mmol}, 58.1 \mathrm{mg}, 5.0$ equiv. $)$, 18 -crown-6 ( $1 \mathrm{mmol}, 264.3 \mathrm{mg}, 5.0$ equiv.) and phenylboronic acid ( $0.3 \mathrm{mmol}, 36.6 \mathrm{mg}, 3.0$ equiv.) in anhydrous 1,4 -dioxane ( 2 mL ) was stirred at $40^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was concentrated in vacuo and detected by ${ }^{11} \mathrm{~B}$ NMR. A new signal was observed at 5.0 ppm .
c) A suspension of $\operatorname{CsF}(0.6 \mathrm{mmol}, 91.1 \mathrm{mg}, 3.0$ equiv. $), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol}, 130.3 \mathrm{mg}, 2.0$ equiv. $)$, 18-crown-6 ( $0.4 \mathrm{mmol}, 105.6 \mathrm{mg}, 2.0$ equiv.) and phenylboronic acid ( $0.3 \mathrm{mmol}, 36.6 \mathrm{mg}, 1.5$ equiv.) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was stirred at $-10^{\circ} \mathrm{C}$ for 12 hours. The reaction mixture was concentrated in vacuo and detected by ${ }^{11} \mathrm{~B}$ NMR. A new signal was observed at 5.0 ppm .


Figure S2. ${ }^{11}$ B NMR spectrum of boronic acid with fluoride

These new peaks at 5.0 ppm should indicate the formation of fluorinated boronate complex.

## ${ }^{19}$ F NMR Studies:



Standard Condition Experiment (I): To a mixture of KF ( $1 \mathrm{mmol}, 58.1 \mathrm{mg}, 5.0$ equiv.), 18 -crown-6 (1 mmol, $264.3 \mathrm{mg}, 5.0$ equiv.), 4-fluorophenylboronic acid ( $\mathbf{3 f}, 0.3 \mathrm{mmol}, 41.7 \mathrm{mg}, 3.0$ equiv.) and 1fluoroisoquinoline ( $0.2 \mathrm{mmol}, 29.4 \mathrm{mg}, 1.0$ equiv.) in anhydrous 1,4-dioxane ( 2 mL ) was added aryne precursor ( $0.6 \mathrm{mmol}, 147 \mu \mathrm{~L}, 3.0$ equiv.) dropwise. The reaction mixture was kept stirring at $40^{\circ} \mathrm{C}$. A small portion of the mixture was transferred to the NMR tube and detected by ${ }^{19} \mathrm{~F}$ NMR at specific time point. The results were shown as follows.


Control Experiments (II): A mixture of KF ( $1 \mathrm{mmol}, 58.1 \mathrm{mg}, 5.0$ equiv.), 18-crown-6 ( $1 \mathrm{mmol}, 264.3$ $\mathrm{mg}, 5.0$ equiv.) and 4-fluorophenylboronic acid ( $\mathbf{3 f}, 0.3 \mathrm{mmol}, 41.7 \mathrm{mg}, 3.0$ equiv.) in anhydrous $1,4-$ dioxane $(2 \mathrm{~mL})$ was stirred at $40^{\circ} \mathrm{C}$. A small portion of the mixture was transferred to a NMR tube and detected by ${ }^{19} \mathrm{~F}$ NMR at specific time point shown as follows.

## Specific Time Point:

a) The reaction of Standard Condition Experiment (I) was stirred for 24 hours.
b) The reaction of Standard Condition Experiment (I) was stirred for 12 hours.
c) The reaction of Standard Condition Experiment (I) was stirred for 2 hours.
d) The reaction of Control Experiments (II) was stirred for 12 hours.
e) The reaction of Control Experiments (II) was stirred for 24 hours.


Figure S3. ${ }^{19} \mathrm{~F}$ NMR spectrum of 4-fluoroboronic acid under standard condition
${ }^{19}$ F NMR might indicate the formation of a series of hydroxylated/fluorinated boronate species. The peak of (trihydroxy)phenylborate ( $\delta \approx-120 \mathrm{ppm}$ ) was not observed.
f) To the NMR tube of a) was added 4-fluorophenyltrifluoroborate, and performed ${ }^{19} \mathrm{~F}$ NMR experiment


Figure S4. Evidence for the generation of 4-fluorophenyltrifluoroborate by ${ }^{19} \mathrm{~F}$ NMR
The observed intensity increase of peak $\mathbf{D}$ identified it as 4-fluorophenyl-trifluoroborate.

### 6.4 Control Experiments for 4a' Formation



Figure S5. Mechanistic study on the formation of side product 4a'.
Control experiments excluded the ether formation between two molecules of $4 \boldsymbol{a}$ or reaction of $4 \boldsymbol{a}$ with potential alkyl fluoride. At this stage, we tend to believe that it should be formed via the ring-opening between alkoide of $4 \boldsymbol{a}$ with cyclic sulfonium ion, which might be generated with moisture.

## 7. Density Functional Theory (DFT) Calculations

Computational Methods: All DFT calculations were carried out using Gaussian 09 program. ${ }^{16}$ All the geometry optimizations and frequency calculations in this paper were performed with B3LYP functional ${ }^{17}$ in implicit 1,4-dioxane or acetonitrile at def2-SVP basis set ${ }^{18}$ by using the Solvation Model based on Density (SMD) ${ }^{19}$ with keyword in the Gaussian code route section "SCRF $=(S M D$, Solvent $=$ 1,4-dioxane or acetonitrile)". The vibrational frequencies were computed at the same level of theory as for the geometry optimizations to confirm whether each optimized structure is an energy minimum or a transition state, and to evaluate the zero-point vibrational energy (ZPVE) and thermal corrections. Singlepoint energy calculations were also performed with M06 functional ${ }^{20}$ based on optimized geometry using a higher level basis set def2-TZVP ${ }^{18}$. The Gibbs free energies presented in this paper are the M06 calculated single-point energy in 1,4-dioxane or acetonitrile solvent with B3LYP calculated thermodynamic corrections in 1,4-dioxane or acetonitrile solvent.



Figure S6. Free energy profiles for the electrophilic substitution of Int-4 with 19.


Figure S7. Calculated Gibbs free energy for the fluoride dissociation of difluoro(hydroxy)(phenyl)boronate $\mathbf{1 9}$ or trifluoro(phenyl)boronate 21.



3


Int-4 $\xrightarrow[\text { Solvent }=1,4 \text {-dioxane }]{\Delta \mathrm{G}=88.9 \mathrm{kcal} / \mathrm{mol}}$


11


13

Figure S8. Calculated the relative free energy for the protonation of Int-1 and Int-4 using anionic species 3.

Calculated thermal corrections, and Gibbs free energies of all structures in acetonitrile solvent

| Geometry | Thermal Correction to <br> Free Energy | Thermal Correction to <br> Enthalpy | Electronic <br> Energy | Gibbs Free <br> Energy | IF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.047710 | 0.080522 | -230.814975 | -230.767265 |  |
| $\mathbf{2 a}$ | 0.056092 | 0.088893 | -516.041597 | -515.985505 |  |
| TS-1 | 0.116912 | 0.170435 | -746.858053 | -746.741141 | $25.15 i$ |
| $\mathbf{I n t - 1}$ | 0.125852 | 0.171910 | -746.887025 | -746.761173 |  |
| $\mathbf{3}$ | 0.090195 | 0.135467 | -508.183237 | -508.093042 |  |
| TS-2 | 0.237621 | 0.308624 | -1255.051188 | -1254.813567 | $451.24 i$ |
| F-3 | 0.079771 | 0.121132 | -432.209756 | -432.129985 |  |
| Int-2 | 0.138726 | 0.187000 | -822.895246 | -822.75652 |  |
| TS-3 | 0.136456 | 0.183500 | -822.894437 | -822.757981 | $521.78 i$ |
| Int-3 | 0.136918 | 0.187065 | -822.915852 | -822.778934 |  |
| F- | -0.014159 | 0.002360 | -99.981433 | -99.995592 |  |
| $\mathbf{3 a}$ | 0.091401 | 0.133436 | -408.171377 | -408.079976 |  |
| $\mathbf{1 1}$ | 0.078300 | 0.122096 | -507.631174 | -507.552874 |  |
| $\mathbf{1 2}$ | 0.142038 | -747.413472 | -747.271434 |  |  |

Calculated thermal corrections, and Gibbs free energies of all structures in 1,4-dioxane solvent

| Geometry | Thermal Correction to Free Energy | Thermal Correction to Enthalpy | Electronic Energy | Gibbs Free Energy | IF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.047960 | 0.080704 | -230.811080 | -230.76312 |  |
| 5a | 0.095890 | 0.136630 | -501.026445 | -500.930555 |  |
| TS-4 | 0.158718 | 0.218322 | -731.839323 | -731.680605 | $19.00 i$ |
| Int-4 | 0.168139 | 0.220416 | -731.859972 | -731.691833 |  |
| 3 | 0.090508 | 0.135483 | -508.140884 | -508.050376 |  |
| 3a | 0.091938 | 0.134067 | -408.165835 | -408.073897 |  |
| TS-5 | 0.280292 | 0.356601 | -1240.000640 | -1239.720348 | $246.26 i$ |
| F-3 | 0.080377 | 0.121530 | -432.204048 | -432.123671 |  |
| Int-5 | 0.180552 | 0.235507 | -807.816372 | -807.63582 |  |
| TS-6 | 0.181064 | 0.234612 | -807.815603 | -807.634539 | $68.04 i$ |
| Int-6 | 0.181138 | 0.235993 | -807.882918 | -807.70178 |  |
| F- | -0.014159 | 0.002360 | -99.917634 | -99.931793 |  |
| Int-7 | 0.294727 | 0.373302 | -1216.085161 | -1215.790434 |  |
| TS-7 | 0.294397 | 0.371267 | -1216.068190 | -1215.773793 | $142.31 i$ |
| 6a | 0.182127 | 0.234797 | -707.960269 | -707.778142 |  |
| 19 | 0.079338 | 0.123490 | -532.196764 | -532.117426 |  |
| TS-8 | 0.269675 | 0.344566 | -1264.052434 | -1263.782759 | $164.46 i$ |
| 22 | 0.068171 | 0.109088 | -456.239245 | -456.171074 |  |
| 21 | 0.068218 | 0.111518 | -556.252212 | -556.183994 |  |
| 11 | 0.077478 | 0.121321 | -507.482222 | -507.404744 |  |
| 13 | 0.182244 | 0.235060 | -732.378088 | -732.195844 |  |

B3LYP geometries for all the optimized compounds and transition states in acetonitrile solvent

| 1 |  |  |  | H | -3.58653200 | 1.53978300 | -1.10916100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 1.46769500 | -0.13368300 | 0.00000200 | H | -2.12451100 | 1.86066800 | -0.12147900 |
| C | 0.62714000 | -1.23977600 | 0.00000200 | S | -2.15830600 | -0.51318000 | -0.82414100 |
| C | -0.62741600 | -1.23973300 | -0.00000200 |  |  |  |  |
| C | -1.46772900 | -0.13337800 | -0.00000200 | Int-1 |  |  |  |
| C | -0.70491900 | 1.05887600 | 0.00000700 | C | -2.16694500 | 1.47377400 | 0.00007700 |
| C | 0.70516800 | 1.05877500 | -0.00000700 | C | -0.78596200 | 1.15067000 | -0.00000900 |
| H | 2.55963000 | -0.12994400 | 0.00000600 | C | -0.57064100 | -0.21965700 | -0.00005100 |
| H | -2.55966200 | -0.12957100 | -0.00000600 | C | -1.53315400 | -1.24547600 | -0.00002200 |
| H | -1.23477800 | 2.01661600 | 0.00000700 | C | -2.87447600 | -0.85848000 | 0.00004400 |
| H | 1.23518000 | 2.01641200 | -0.00000700 | C | -3.18709700 | 0.50965500 | 0.00009800 |
|  |  |  |  | H | -2.48283400 | 2.52788600 | 0.00008000 |
| 2a |  |  |  | H | -1.25804500 | -2.30522900 | -0.00006900 |
| C | -1.34437800 | 0.00000200 | -0.12682400 | H | -3.66492500 | -1.61391600 | 0.00005400 |
| C | -0.34803700 | 1.15401500 | 0.10622400 | H | -4.23776000 | 0.82046000 | 0.00014600 |
| C | -0.34803900 | -1.15401700 | 0.10622200 | C | 3.10542400 | 0.60703700 | 0.00009000 |
| H | -2.22000000 | 0.00000000 | 0.54197400 | C | 2.14402900 | 0.22849300 | -1.14116700 |
| H | -1.70659500 | 0.00000500 | -1.16598100 | C | 2.14403100 | 0.22812200 | 1.14122700 |
| H | -0.39755900 | 1.59155900 | 1.11530000 | H | 4.00307700 | -0.02731100 | -0.00000900 |
| H | -0.35500400 | 1.96367000 | -0.63815900 | H | 3.41441400 | 1.66261000 | 0.00025600 |
| H | -0.39755800 | -1.59155700 | 1.11530100 | H | 2.53432600 | -0.30661200 | -2.01622200 |
| H | -0.35500700 | -1.96367700 | -0.63815400 | H | 1.46552000 | 1.04794900 | -1.42437700 |
| S | 1.10465300 | 0.00000000 | -0.05275100 | H | 2.53433800 | -0.30728800 | 2.01609100 |
|  |  |  |  | H | 1.46553600 | 1.04748200 | 1.42474200 |
| TS-1 |  |  |  | S | 1.16094300 | -0.86192900 | $-0.00015100$ |
| C | 3.14731800 | -1.17060800 | 0.16555600 |  |  |  |  |
| C | 1.78503800 | -1.10634400 | -0.21249300 | 3 |  |  |  |
| C | 1.40510100 | 0.21740700 | -0.36119000 | C | 2.21995500 | -1.19385900 | -0.01714200 |
| C | 2.08612000 | 1.26193200 | -0.20833300 | C | 0.81905100 | -1.18578800 | -0.05817900 |
| C | 3.43014700 | 1.28921800 | 0.16160600 | C | 0.07012100 | 0.00925300 | -0.04389200 |
| C | 3.93832600 | -0.01732800 | 0.34589900 | C | 0.81390100 | 1.20712400 | -0.00249100 |
| H | 3.59928500 | -2.15513200 | 0.32251100 | C | 2.21392300 | 1.21937900 | 0.03587400 |
| H | 1.16818200 | -1.99535700 | -0.35450400 | C | 2.92677300 | 0.01348000 | 0.03156800 |
| H | 4.05106100 | 2.17710700 | 0.30201200 | H | 2.76371500 | -2.14432000 | -0.03023500 |
| H | 4.98624400 | -0.13527400 | 0.63896600 | H | 0.28958800 | -2.14344900 | -0.11217000 |
| C | -3.56593200 | 0.50456800 | 0.89957100 | H | 0.27076400 | 2.15803900 | -0.01234400 |
| C | -2.70601900 | -0.77422600 | 0.93716300 | H | 2.75434300 | 2.17142700 | 0.06601500 |
| C | -2.90870600 | 1.12376800 | -0.34969700 | H | 4.02060500 | 0.01514400 | 0.06065700 |
| H | -4.62039400 | 0.25871300 | 0.70203000 | B | -1.57570200 | 0.02428500 | -0.00854300 |
| H | -3.52103900 | 1.12594000 | 1.80837900 | O | -2.06398900 | 1.20278500 | -0.69499400 |
| H | -3.23766900 | -1.72257600 | 1.10262500 | H | -2.97506000 | 1.34748700 | -0.40718900 |
| H | -1.85009800 | -0.71331600 | 1.62638300 | O | -2.11913900 | 0.00312700 | 1.35087400 |


| H | -1.85680700 | -0.81675900 | 1.78777200 | C | -0.54757300 | 1.20074300 | 0.00005000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F | -2.03399500 | -1.19709300 | -0.69236100 | C | 0.18015100 | -0.00634000 | -0.00004400 |
|  |  |  |  | C | -0.54145000 | -1.21751100 | -0.00017300 |
| TS-2 |  |  |  | C | -1.93853800 | -1.22388300 | -0.00017600 |
| C | 3.09716800 | 2.27405400 | 0.52400000 | C | -2.64238400 | -0.01320000 | 0.00006700 |
| C | 2.45250800 | 1.23091400 | -0.18835700 | H | -2.49328000 | 2.14670100 | 0.00042100 |
| C | 3.19253700 | 0.04637600 | -0.19934800 | H | -0.01145900 | 2.15389900 | 0.00010100 |
| C | 4.44069400 | -0.15614700 | 0.41982600 | H | 0.00060500 | -2.16714200 | -0.00030200 |
| C | 5.01584900 | 0.90838600 | 1.11893300 | H | -2.48224300 | -2.17256900 | -0.00034000 |
| C | 4.33757200 | 2.13411700 | 1.16774100 | H | -3.73604000 | -0.01608200 | 0.00012700 |
| H | 2.61332500 | 3.26047900 | 0.59944000 | B | 1.74043000 | 0.00016200 | -0.00005300 |
| H | 4.96253600 | -1.11752100 | 0.35506900 | O | 2.45215200 | -1.14723900 | 0.00035000 |
| H | 5.98486000 | 0.78352700 | 1.61114200 | H | 3.41376300 | -1.00775000 | 0.00054600 |
| H | 4.77976200 | 2.97824300 | 1.70910100 | F | 2.39991000 | 1.17753300 | -0.00030000 |
| C | 0.05655200 | -1.48563900 | -1.73488800 |  |  |  |  |
| C | 0.38887900 | -1.79082500 | -0.28482300 | Int-2 |  |  |  |
| C | 1.33184900 | -0.81654000 | -2.24731300 | C | -1.91226000 | 1.60857200 | 0.17007700 |
| H | -0.16215100 | -2.41811500 | -2.27624100 | C | -0.70589900 | 0.90373800 | -0.04958200 |
| H | -0.82057700 | -0.82703400 | -1.81215400 | C | -0.86698200 | -0.49558100 | -0.14474600 |
| H | 0.52460400 | -2.80878200 | 0.07029100 | C | -2.11297100 | -1.14735000 | -0.05436900 |
| H | 0.44739400 | -0.98778800 | 0.44975300 | C | -3.27760300 | -0.39235900 | 0.12878600 |
| H | 1.61707000 | -1.04313000 | -3.28389300 | C | -3.17635900 | 0.99848400 | 0.24769900 |
| H | 1.32579600 | 0.27186000 | -2.06180000 | H | -1.88542600 | 2.70582300 | 0.26567400 |
| S | 2.56392300 | -1.46534600 | -1.04441900 | H | -2.17392600 | -2.23927600 | -0.11600400 |
| C | -4.83510200 | 1.25141000 | -0.68183900 | H | -4.25015300 | -0.89056400 | 0.19350000 |
| C | -4.24949500 | 0.24541600 | 0.09857000 | H | -4.07866900 | 1.60187700 | 0.39983200 |
| C | -2.87334300 | 0.23730400 | 0.40287900 | C | 2.95479000 | -0.16099400 | 0.31467000 |
| C | -2.10814800 | 1.30501600 | -0.11274200 | C | 2.62245600 | 1.33597500 | 0.20909200 |
| C | -2.67949400 | 2.31902400 | -0.89177000 | C | 1.82507900 | -1.09341300 | 0.76749400 |
| C | -4.04939600 | 2.29547300 | -1.18221300 | H | 3.35525300 | -0.50978100 | -0.65429400 |
| H | -5.90809100 | 1.22352700 | -0.89714100 | H | 3.77409900 | -0.27212700 | 1.05172200 |
| H | -4.88435100 | -0.55571800 | 0.49100800 | H | 2.22089900 | 1.65824800 | 1.20222100 |
| H | -1.03523200 | 1.34844900 | 0.10131500 | H | 3.58482400 | 1.87913900 | 0.09484200 |
| H | -2.05485500 | 3.13298800 | -1.27342600 | H | 2.25977500 | -2.05402400 | 1.08859400 |
| H | -4.49998300 | 3.08551400 | -1.79032800 | H | 1.29495800 | -0.67659800 | 1.63940900 |
| B | -2.19817800 | -0.96153700 | 1.28259100 | S | 0.54905500 | -1.59052600 | -0.46961800 |
| O | -1.16641200 | -0.44552100 | 2.14335900 | O | 1.77767300 | 1.68273100 | -0.83309400 |
| H | -0.78496800 | -1.17180800 | 2.65567100 | H | 0.79059000 | 1.44141200 | -0.52157600 |
| O | -1.58631300 | -2.03745800 | 0.40269900 |  |  |  |  |
| H | -2.18168700 | -2.29004600 | -0.31820100 | TS-3 |  |  |  |
| F | -3.22725800 | -1.63751400 | 2.03863800 | C | -1.88971000 | 1.60278600 | 0.12325800 |
|  |  |  |  | C | -0.69438000 | 0.88740700 | -0.10608800 |
| F-3 |  |  |  | C | -0.84510500 | -0.51436500 | -0.15746300 |
| C | -1.94519000 | 1.20056500 | 0.00021100 | C | $-2.08791000$ | -1.16186300 | -0.01712600 |


| C | -3.24783400 | -0.40229200 | 0.17613700 | C | -1.95259900 | -1.21096100 | 0.00090600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | -3.14816600 | 0.99162100 | 0.25365800 | C | -0.55443800 | -1.20637900 | 0.00082100 |
| H | -1.85568300 | 2.70133200 | 0.18429900 | C | 0.17416300 | 0.00006500 | 0.00000000 |
| H | -2.14880600 | -2.25476000 | -0.04921900 | C | -0.55449800 | 1.20642100 | -0.00081900 |
| H | -4.21727200 | -0.89977000 | 0.27963600 | C | -1.95269000 | 1.21092100 | -0.00090300 |
| H | -4.04781200 | 1.59636900 | 0.41360200 | C | -2.65515300 | -0.00002800 | 0.00000200 |
| C | 2.93857200 | -0.11293200 | 0.32013900 | H | -2.49749500 | -2.15928400 | 0.00166700 |
| C | 2.53509000 | 1.37195100 | 0.23862800 | H | -0.01460800 | -2.15736500 | 0.00147900 |
| C | 1.85150500 | -1.10626000 | 0.74547600 | H | -0.01476300 | 2.15746500 | -0.00147900 |
| H | 3.35895100 | -0.42086600 | -0.65447500 | H | -2.49759800 | 2.15923500 | -0.00166400 |
| H | 3.75661500 | -0.20684200 | 1.06169500 | H | -3.74891700 | -0.00008300 | 0.00000400 |
| H | 2.09254500 | 1.63852400 | 1.23704300 | B | 1.74902400 | 0.00002800 | 0.00001000 |
| H | 3.48220200 | 1.95921300 | 0.18877900 | O | 2.39244400 | 1.20634600 | 0.00179500 |
| H | 2.32427800 | -2.06529900 | 1.01362800 | H | 3.36058700 | 1.15212800 | 0.00165300 |
| H | 1.32411700 | -0.75093800 | 1.64618300 | O | 2.39236200 | -1.20639600 | -0.00183600 |
| S | 0.56988600 | -1.60294900 | -0.48699000 | H | 3.36050900 | -1.15206500 | -0.00142200 |
| O | 1.71133900 | 1.70035800 | -0.81126400 |  |  |  |  |
| H | 0.64960600 | 1.41103600 | -0.49893300 | 11 |  |  |  |
|  |  |  |  | C | 2.21868600 | -1.18065000 | 0.02212300 |
| Int-3 |  |  |  | C | 0.81723800 | -1.19258500 | -0.00735000 |
| C | $-2.56015100$ | 1.66234800 | 0.17757800 | C | 0.02998000 | -0.01511900 | -0.02449700 |
| C | -1.31874400 | 1.01483100 | 0.17278600 | C | 0.77529200 | 1.18895300 | -0.04750200 |
| C | -1.24948500 | -0.37841400 | -0.00856600 | C | 2.17536600 | 1.22908500 | -0.01816600 |
| C | -2.44769100 | -1.10165500 | -0.18531300 | C | 2.91364500 | 0.03703900 | 0.02140600 |
| C | -3.67912900 | -0.44528000 | -0.18145400 | H | 2.77638100 | -2.12465300 | 0.03550900 |
| C | -3.74512400 | 0.94249700 | 0.00107100 | H | 0.30526800 | -2.16359100 | -0.02671500 |
| H | -2.59381800 | 2.74626500 | 0.32088200 | H | 0.21079400 | 2.12762500 | -0.10671500 |
| H | -2.41153900 | -2.18607200 | -0.32584700 | H | 2.69980700 | 2.19199900 | -0.03819400 |
| H | -4.59618600 | -1.02474000 | -0.32115000 | H | 4.00793700 | 0.05653800 | 0.04046400 |
| H | -4.71060500 | 1.45474000 | 0.00589000 | B | -1.64869500 | -0.00064500 | 0.15027800 |
| C | 2.96233200 | -0.69774500 | 0.19267800 | O | -2.14186800 | 1.18453300 | -0.67227900 |
| C | 4.03990600 | 0.44841100 | 0.17916800 | H | -2.78833500 | 1.54493600 | -0.05081500 |
| C | 1.57635400 | -0.07572100 | 0.30221300 | O | -2.08917200 | -0.03971700 | 1.42117500 |
| H | 3.03700800 | -1.24124500 | -0.76825200 | F | -2.07792100 | -1.24316500 | -0.69690800 |
| H | 3.14893500 | -1.42469400 | 1.00680100 |  |  |  |  |
| H | 4.06981600 | 0.80100400 | 1.28668900 | 12 |  |  |  |
| H | 5.03847300 | -0.12949000 | 0.11573400 | C | 2.86727200 | -0.88930600 | -0.00004900 |
| H | 1.41396000 | 0.35096800 | 1.30681300 | C | 1.52128500 | -1.26504000 | 0.00010600 |
| H | 1.54657000 | 0.74111100 | -0.43631700 | C | 0.54017100 | -0.26305200 | 0.00013200 |
| S | 0.26675800 | -1.30883200 | -0.03807200 | C | 0.87510900 | 1.09847500 | -0.00008500 |
| O | 3.84119400 | 1.37945800 | -0.72378300 | C | 2.22409100 | 1.45354800 | -0.00013200 |
| H | -0.40989900 | 1.60218800 | 0.30720900 | C | 3.21627800 | 0.46409900 | -0.00011900 |
|  |  |  |  | H | 3.64155800 | -1.65990000 | -0.00002000 |
| 3a |  |  |  | H | 0.10536200 | 1.87313000 | -0.00005500 |


| H | 2.50136000 | 2.51013200 | -0.00019700 |
| :--- | ---: | ---: | ---: |
| H | 4.27001500 | 0.75335300 | -0.00020000 |
| C | -3.13710100 | 0.57246900 | -0.00031800 |
| C | -2.18700600 | 0.20334300 | 1.15544300 |
| C | -2.18693800 | 0.20229700 | -1.15569400 |
| H | -4.03288700 | -0.06326600 | -0.00003400 |
| H | -3.44722300 | 1.62625400 | -0.00082000 |


| H | -2.57905700 | -0.39995700 | 1.98416400 |
| :---: | :---: | :---: | :---: | :---: |
| H | -1.57191900 | 1.03112400 | 1.53210600 |
| H | -2.57888300 | -0.40172600 | -1.98394000 |
| H | -1.57180000 | 1.02976400 | -1.53298200 |
| S | -1.14864100 | -0.83989800 | 0.00037800 |
| H | 1.24276700 | -2.32153500 | 0.00023200 |
|  |  |  |  |

B3LYP geometries for all the optimized compounds and transition states in 1,4-dioxane solvent

| 1 |  |  |  | C | 0.90890500 | -0.48164300 | -0.14204200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 1.46483200 | $-0.13375600$ | 0.00000200 | C | 2.32705800 | -0.39999700 | -0.03173000 |
| C | 0.62693600 | -1.23981900 | 0.00000100 | C | 2.87034700 | 0.92344900 | 0.00991100 |
| C | -0.62705300 | -1.23982100 | -0.00000100 | C | 1.96266900 | 2.01977400 | -0.06127000 |
| C | -1.46482900 | -0.13364600 | -0.00000200 | C | 0.61372000 | 1.77241500 | -0.16478400 |
| C | -0.70460200 | 1.05919000 | 0.00000300 | H | 2.74807700 | -2.53072900 | 0.00167600 |
| C | 0.70468900 | 1.05914200 | -0.00000300 | C | 3.18195000 | -1.52997800 | 0.03523400 |
| H | 2.55683600 | -0.13099700 | 0.00000300 | C | 4.27976600 | 1.06990000 | 0.12099100 |
| H | -2.55683500 | -0.13081200 | -0.00000300 | H | 2.33776000 | 3.04513900 | -0.03225400 |
| H | -1.23401200 | 2.01707900 | 0.00000300 | H | -0.11084100 | 2.59028700 | -0.21887500 |
| H | 1.23417000 | 2.01699100 | -0.00000300 | C | 5.09452900 | -0.04257400 | 0.18577200 |
|  |  |  |  | C | 4.54593500 | -1.34919500 | 0.14261800 |
| 5a |  |  |  | H | 4.70720700 | 2.07516200 | 0.15393300 |
| C | 1.36255700 | -0.74622500 | -0.00005000 | H | 6.17717200 | 0.08153100 | 0.27108700 |
| C | -0.03059200 | -0.44103100 | -0.00004800 | H | 5.21020500 | -2.21518900 | 0.19508500 |
| C | -0.36302500 | 0.95071900 | 0.00009400 | F | 0.36734900 | -1.71273200 | -0.18256600 |
| C | 0.70783100 | 1.89080100 | 0.00021800 | N | 0.09254200 | 0.51554000 | -0.20448200 |
| C | 2.00470400 | 1.43338700 | 0.00019700 |  |  |  |  |
| H | -0.78207600 | -2.47949300 | -0.00028100 | Int-4 |  |  |  |
| C | -1.05447600 | -1.42269800 | -0.00017600 | C | -2.54663200 | -0.96949400 | 0.64377400 |
| C | -1.73642500 | 1.31651000 | 0.00010500 | C | -1.99500700 | 0.16438100 | 0.01989400 |
| H | 0.49687800 | 2.96246500 | 0.00032500 | C | -2.68042100 | 1.18553000 | -0.63190200 |
| H | 2.84748100 | 2.13179300 | 0.00028900 | C | -4.07809500 | 0.96040600 | -0.66706400 |
| C | -2.71766000 | 0.34545900 | -0.00001600 | C | -4.69826700 | -0.15069700 | -0.08335600 |
| C | -2.37790000 | -1.03078900 | -0.00015600 | C | -3.93054200 | -1.11799000 | 0.58478600 |
| H | -2.00318800 | 2.37640300 | 0.00021200 | H | -1.94290200 | -1.71065200 | 1.17364900 |
| H | -3.77106200 | 0.63745600 | -0.00000400 | H | -4.73147900 | 1.69078300 | -1.16720100 |
| H | -3.17081400 | -1.78270000 | -0.00024700 | H | -5.78677400 | -0.26832500 | -0.13261700 |
| F | 1.70205500 | $-2.04431200$ | -0.00019600 | H | $-4.40783300$ | -1.97836800 | 1.06163400 |
| N | 2.32774400 | 0.11087000 | 0.00006500 | C | 0.38056700 | -0.61604500 | -0.07356800 |
|  |  |  |  | C | 1.78083400 | -0.40898200 | -0.06196800 |
| TS-4 |  |  |  | C | 2.24669200 | 0.92779600 | 0.14072400 |
| C | -3.18451100 | -0.74880500 | -0.06795700 | C | 1.26923200 | 1.95104800 | 0.30443800 |
| C | -3.32044700 | 0.62725600 | -0.02235600 | C | -0.06141300 | 1.65069200 | 0.26842700 |
| C | -4.35996600 | 1.32192600 | 0.07816200 | H | 2.33018400 | -2.48732200 | -0.40802800 |
| C | -5.65260600 | 0.81286300 | 0.16843000 | C | 2.70183500 | -1.47396200 | -0.24951200 |
| C | -5.64917100 | -0.60033400 | 0.13218000 | C | 3.64481600 | 1.15899400 | 0.16151100 |
| C | -4.46152100 | -1.35189500 | 0.01846700 | H | 1.57655600 | 2.98633400 | 0.46246900 |
| H | -2.25544200 | -1.31302900 | -0.15522100 | H | -0.88074700 | 2.36956300 | 0.31979400 |
| H | -6.57745100 | 1.38784000 | 0.25742900 | C | 4.52649300 | 0.11018000 | -0.01741300 |
| H | -6.60509200 | -1.12973800 | 0.19551300 | C | 4.05574600 | -1.21011200 | -0.22508000 |
| H | -4.52548000 | $-2.44443300$ | -0.00366400 | H | 4.01174900 | 2.17606100 | 0.31685800 |


| H | 5.60279000 | 0.29862900 | -0.00107300 | C | -2.90972400 | -0.76713000 | -0.02679700 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | 4.77172900 | -2.02297600 | -0.36510600 | C | -2.39782200 | -2.04073100 | -0.32573900 |
| F | -0.07404200 | -1.83344900 | -0.28857400 | C | -3.29872500 | -3.06118400 | -0.64180600 |
| N | -0.51027400 | 0.35383600 | 0.09351900 | C | -4.67186400 | -2.78880300 | -0.61394900 |
|  |  |  |  | C | -5.11896200 | -1.51109900 | $-0.24504500$ |
| 3 |  |  |  | H | -2.92831200 | -4.06232900 | -0.88301200 |
| C | 2.21942800 | -1.19354600 | -0.01335300 | H | -5.38871600 | -3.58196900 | -0.86194200 |
| C | 0.81974900 | -1.18538700 | -0.06075300 | H | -6.21210000 | $-1.36878400$ | -0.20188000 |
| C | 0.07107500 | 0.00840600 | -0.04750200 | C | -0.92127600 | 0.63789500 | -0.58760900 |
| C | 0.81387500 | 1.20494300 | -0.00412400 | C | -0.31539100 | 1.97510000 | -0.46011300 |
| C | 2.21271500 | 1.21716400 | 0.03713800 | C | -0.59620800 | 2.76075800 | 0.68568300 |
| C | 2.92685000 | 0.01271200 | 0.03736800 | C | -1.53288000 | 2.25349700 | 1.64534400 |
| H | 2.76328700 | -2.14495700 | -0.02469900 | C | -2.18222800 | 1.08924700 | 1.38784600 |
| H | 0.28654600 | -2.14067000 | -0.12267400 | H | 0.73061600 | 1.84219300 | -2.34777800 |
| H | 0.26291500 | 2.15071600 | -0.01690300 | C | 0.53706200 | 2.45968500 | -1.46884000 |
| H | 2.75265800 | 2.17047200 | 0.06589600 | C | 0.03217200 | 4.02535400 | 0.79725700 |
| H | 4.02127600 | 0.01460400 | 0.06989900 | H | -1.76056300 | 2.81619600 | 2.55142900 |
| B | -1.57645800 | 0.02311400 | -0.01684600 | H | -2.97453000 | 0.69076800 | 2.01893600 |
| O | -2.05887000 | 1.24192000 | -0.63458200 | C | 0.88200400 | 4.48813300 | -0.19587900 |
| H | -2.95978600 | 1.36359600 | -0.30990800 | C | 1.13338800 | 3.70813600 | -1.34175400 |
| O | -2.11153800 | -0.05731600 | 1.35042700 | H | -0.17178700 | 4.63864600 | 1.67925600 |
| H | -1.94482500 | -0.94790500 | 1.68061200 | H | 1.35629300 | 5.46827900 | -0.09228300 |
| F | -2.03540700 | -1.16044500 | -0.74193300 | H | 1.79826100 | 4.08033200 | -2.12515900 |
|  |  |  |  | F | -1.18894500 | 0.28496000 | -1.87294400 |
| 3a |  |  |  | N | -1.93900800 | 0.31794300 | 0.26767500 |
| C | -1.96091000 | 1.19849100 | -0.00026600 | C | 4.62301200 | -2.80997400 | 0.22099000 |
| C | -0.56383400 | 1.20589900 | -0.00036400 | C | 3.32440900 | -2.49171800 | 0.63455700 |
| C | 0.18040100 | 0.01059000 | 0.00001300 | C | 2.73455700 | -1.24924800 | 0.33741400 |
| C | -0.53722000 | -1.20230000 | 0.00008300 | C | 3.50872400 | -0.33714700 | -0.40676600 |
| C | -1.93369600 | -1.22056600 | 0.00030600 | C | 4.80876300 | -0.64137400 | -0.82434500 |
| C | -2.64929600 | -0.01854200 | 0.00012600 | C | 5.37240400 | -1.88321700 | -0.51072200 |
| H | -2.51372900 | 2.14180400 | -0.00050100 | H | 5.05261300 | -3.78573700 | 0.46939400 |
| H | -0.05432600 | 2.17623500 | -0.00081300 | H | 2.74532800 | -3.22417200 | 1.20468000 |
| H | 0.01509300 | -2.14538600 | 0.00016600 | H | 3.08255000 | 0.63637800 | -0.67367100 |
| H | -2.46819400 | -2.17454800 | 0.00049200 | H | 5.38417200 | 0.08945600 | -1.40151300 |
| H | -3.74279500 | -0.02982300 | 0.00020200 | H | 6.38769100 | -2.12745900 | -0.83741900 |
| B | 1.75555300 | -0.00255500 | 0.00001200 | B | 1.24431500 | -0.88200300 | 0.87636900 |
| O | 2.39474600 | -1.20797700 | -0.00044900 | O | 0.42566700 | -0.43808900 | -0.44683800 |
| H | 3.35691200 | -1.10541500 | -0.00055400 | H | 0.25284500 | -1.19717600 | -1.02696100 |
| O | 2.52892100 | 1.12753700 | 0.00050700 | O | 1.15025200 | 0.18359600 | 1.80485100 |
| H | 2.02726300 | 1.95199200 | 0.00109900 | H | 1.88476600 | 0.79874800 | 1.71081300 |
|  |  |  |  | F | 0.56302100 | $-2.01827900$ | 1.34427400 |
| TS-5 |  |  |  | H | -1.33093700 | $-2.26372000$ | $-0.26578200$ |


| F-3 |  |  |  | N | 0.54485700 | 0.47464900 | 0.19422000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $-1.94495800$ | -1.19977800 | -0.00001900 | O | 0.08822000 | -1.61283600 | -0.77480500 |
| C | -0.54837700 | -1.20098500 | -0.00003800 | H | 1.05908300 | -1.66989700 | -0.72209300 |
| C | 0.17906200 | 0.00531100 | -0.00011700 |  |  |  |  |
| C | -0.54074700 | 1.21652400 | -0.00004400 | TS-6 |  |  |  |
| C | -1.93678900 | 1.22341900 | 0.00005100 | C | 2.65246200 | -0.48076500 | 0.95845000 |
| C | -2.64057900 | 0.01381900 | 0.00005200 | C | 1.98511400 | 0.32171500 | 0.00708400 |
| H | -2.49393000 | -2.14530600 | 0.00004700 | C | 2.58615600 | 0.95907200 | -1.09726800 |
| H | -0.01040900 | -2.15295400 | -0.00002100 | C | 3.98255400 | 0.70223000 | -1.16443200 |
| H | 0.00462900 | 2.16398200 | -0.00003700 | C | 4.69344400 | -0.09930000 | -0.26022900 |
| H | -2.48014200 | 2.17221800 | 0.00010300 | C | 4.02325500 | -0.69888000 | 0.81537700 |
| H | -3.73420200 | 0.01738000 | 0.00014200 | H | 2.10142500 | -0.92586400 | 1.79080200 |
| B | 1.73699600 | -0.00236900 | -0.00019400 | H | 4.57135200 | 1.15038300 | -1.98338400 |
| O | 2.45052700 | 1.14694300 | 0.00003900 | H | 5.77216300 | -0.26094300 | -0.38544400 |
| H | 3.40778600 | 1.00081700 | 0.00018600 | H | 4.56160500 | -1.32066900 | 1.53783800 |
| F | 2.40126800 | $-1.17441100$ | 0.00010300 | C | -0.30644700 | -0.65170400 | 0.03872400 |
|  |  |  |  | C | -1.77624200 | -0.32962400 | -0.08553300 |
| Int-5 |  |  |  | C | -2.25836100 | 0.97415400 | 0.18810700 |
| C | 2.59857700 | -0.82774500 | 0.56708800 | C | -1.30761400 | 2.02136700 | 0.46504000 |
| C | 1.99260000 | 0.32481900 | 0.01838400 | C | 0.02492400 | 1.73844000 | 0.41854800 |
| C | 2.68142300 | 1.34545100 | -0.66788300 | H | -2.26839600 | -2.34714700 | -0.65369200 |
| C | 4.06164000 | 1.07532400 | -0.81007100 | C | -2.66614500 | -1.35406000 | -0.43357700 |
| C | 4.70010700 | -0.09586700 | -0.36450900 | C | -3.65558300 | 1.19393200 | 0.12427300 |
| C | 3.96389400 | $-1.04915500$ | 0.34350900 | H | $-1.64376500$ | 3.04198200 | 0.65313500 |
| H | 2.03396400 | -1.52263600 | 1.19562500 | H | 0.78539800 | 2.51291900 | 0.53272300 |
| H | 4.70478600 | 1.81676300 | -1.31517400 | C | -4.53062300 | 0.16654800 | -0.20819000 |
| H | 5.77013800 | -0.25668400 | -0.54824400 | C | -4.03878000 | -1.11702400 | -0.49557900 |
| H | 4.44405900 | -1.94625000 | 0.74757500 | H | -4.04013400 | 2.19670400 | 0.33332700 |
| C | -0.32227100 | -0.66821000 | 0.12954500 | H | -5.60642000 | 0.36202200 | -0.25163000 |
| C | -1.77552400 | -0.32822200 | -0.09148300 | H | -4.72488000 | -1.92521600 | -0.76260700 |
| C | -2.25071700 | 0.98002700 | 0.17208800 | F | -0.18665300 | -1.45267300 | 1.24077000 |
| C | -1.29312900 | 2.00892200 | 0.48451200 | N | 0.53674500 | 0.49288000 | 0.20764700 |
| C | 0.03768000 | 1.72216400 | 0.43316100 | O | 0.11345300 | -1.45846000 | -0.98964900 |
| H | -2.26963300 | -2.33301200 | -0.69834800 | H | 1.05801100 | -1.26920600 | -1.13911500 |
| C | -2.66308400 | -1.33671600 | -0.48805500 |  |  |  |  |
| C | -3.64048200 | 1.22051600 | 0.05468400 | Int-6 |  |  |  |
| H | -1.62224300 | 3.02905700 | 0.68865400 | C | -2.72623300 | 1.24971600 | -0.56231700 |
| H | 0.81294100 | 2.48344600 | 0.53035000 | C | -1.93380000 | 0.25880500 | 0.05747300 |
| C | -4.51482800 | 0.20828100 | -0.32347900 | C | -2.56912200 | -0.93262000 | 0.47797500 |
| C | -4.02868400 | -1.07863400 | -0.60524000 | C | -3.93668000 | -1.10813700 | 0.28427500 |
| H | -4.01873000 | 2.22736200 | 0.25533000 | C | -4.72147900 | -0.11119200 | -0.31222200 |
| H | $-5.58530400$ | 0.41884100 | -0.40836600 | C | -4.10157300 | 1.06815500 | -0.73185900 |
| H | -4.71417100 | -1.87461600 | -0.90812100 | H | $-2.25437300$ | 2.15720300 | -0.94492200 |
| F | -0.26865100 | -1.31088500 | 1.43424500 | H | -4.40386300 | -2.03914300 | 0.62064400 |


| H | -5.79645800 | -0.25589800 | -0.45124100 | C | -1.30370200 | -4.09305400 | -0.26740700 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -4.68785700 | 1.85406500 | -1.21840700 | H | -4.69720700 | -3.80914800 | -0.04451100 |
| C | 0.38469000 | -0.79488900 | 0.34636800 | H | -2.92662000 | $-5.52949200$ | -0.34587100 |
| C | 1.81202600 | -0.35935200 | -0.00693600 | H | -0.51987100 | -4.84158900 | -0.41286500 |
| C | 2.25593700 | 0.97287000 | 0.17794500 | N | -2.64004100 | 0.61296600 | 0.08052300 |
| C | 1.27771100 | 1.98852600 | 0.50328700 | O | -0.38482900 | 0.04166100 | -0.13345500 |
| C | -0.05318000 | 1.69415800 | 0.49080000 | H | -0.89141800 | 2.09369100 | 1.45956000 |
| H | 2.36636800 | -2.36539800 | -0.52661200 | C | 6.33941600 | -0.88299700 | -0.99591900 |
| C | 2.73154000 | -1.34591900 | -0.38206200 | C | 4.94201500 | -0.83976200 | $-1.01710500$ |
| C | 3.63015600 | 1.26205300 | 0.00985100 | C | 4.21582000 | -0.07594500 | $-0.08387800$ |
| H | 1.59984600 | 3.00407600 | 0.74322500 | C | 4.94946900 | 0.64768700 | 0.87534700 |
| H | -0.79016900 | 2.47202200 | 0.71552600 | C | 6.34678600 | 0.61310200 | 0.90483500 |
| C | 4.53432100 | 0.26790000 | -0.35510400 | C | 7.04650600 | -0.15469800 | -0.03277700 |
| C | 4.08348600 | -1.04463400 | -0.56207400 | H | 6.88113600 | -1.48578000 | -1.73138300 |
| H | 3.97688900 | 2.28957600 | 0.16225000 | H | 4.39222500 | -1.41040000 | -1.77085800 |
| H | 5.59336900 | 0.51288700 | -0.48375500 | H | 4.40425300 | 1.24741100 | 1.60964000 |
| H | 4.78701000 | -1.82909800 | -0.85693800 | H | 6.89423900 | 1.18479500 | 1.66060600 |
| F | -0.05952700 | -1.53327500 | -0.89825600 | H | 8.14017600 | -0.18566000 | -0.01264900 |
| N | -0.55849800 | 0.44926500 | 0.24365500 | B | 2.62962700 | -0.03500900 | -0.10424500 |
| O | 0.25003500 | -1.48150800 | 1.37999700 | O | 1.96630900 | -0.72304100 | -1.08207200 |
| H | -1.95261400 | $-1.68625900$ | 0.96658400 | H | 0.99201500 | -0.58878000 | -0.95053900 |
|  |  |  |  | F | -1.43664200 | -0.29153300 | 1.85859600 |
| Int-7 |  |  |  | O | 1.97548400 | 0.67838400 | 0.85199500 |
| C | -3.05843300 | 2.71762300 | -1.08954500 | H | 0.99634900 | 0.57494000 | 0.70089900 |
| C | -2.36143500 | 1.98581900 | -0.11202000 |  |  |  |  |
| C | -1.40921300 | 2.65270100 | 0.68249500 | TS-7 |  |  |  |
| C | -1.16583900 | 4.01212300 | 0.49302400 | C | -4.27124500 | -0.99097000 | -0.35474600 |
| C | -1.87106700 | 4.73994500 | -0.47371600 | C | -2.87195900 | -0.92792400 | -0.25961200 |
| C | -2.82301600 | 4.08520100 | -1.25875600 | C | -2.13596400 | -2.11219700 | -0.08445100 |
| H | -3.77518400 | 2.20356900 | -1.73430200 | C | -2.80521100 | -3.33328000 | -0.00313700 |
| H | -0.42176700 | 4.51253800 | 1.11929000 | C | -4.20026000 | -3.40049200 | -0.10970900 |
| H | -1.67685000 | 5.80686700 | -0.61312100 | C | -4.92979600 | -2.22324000 | -0.29161700 |
| H | -3.37695700 | 4.63548300 | -2.02499100 | H | -4.84627400 | -0.06776800 | -0.46116200 |
| C | -1.50774800 | -0.33297500 | 0.36337100 | H | -2.22232200 | -4.24823100 | 0.13783600 |
| C | -1.94715100 | -1.77284300 | 0.08532200 | H | -4.71387200 | -4.36413000 | -0.04822600 |
| C | -3.31233800 | -2.15059900 | 0.09855600 | H | -6.02063000 | $-2.25641000$ | $-0.36788200$ |
| C | $-4.31483100$ | -1.11421500 | 0.21364800 | C | -1.11744900 | 0.62682900 | 0.54074300 |
| C | -3.94502300 | 0.19211800 | 0.16130300 | C | -0.68158200 | 2.06620400 | 0.47627800 |
| H | 0.08161200 | -2.43441600 | -0.14238600 | C | $-1.08241700$ | 2.91985200 | $-0.58076300$ |
| C | -0.96348500 | -2.74701900 | -0.11304300 | C | -1.99109300 | 2.39756800 | $-1.57483200$ |
| C | -3.64292500 | -3.51485600 | -0.05485300 | C | $-2.51397500$ | 1.15504500 | $-1.42238100$ |
| H | $-5.37207200$ | -1.37389300 | 0.29239100 | H | 0.45495000 | 1.87818600 | 2.28314600 |
| H | -4.69365400 | 0.98854800 | 0.18515800 | C | 0.15591700 | 2.55799500 | 1.48436300 |
| C | -2.65116800 | -4.47679600 | -0.22981700 | C | -0.60299400 | 4.24749600 | -0.60459700 |


| H | -2.27128400 | 3.00031200 | -2.44066500 | H | 2.34127700 | -2.47302200 | -0.48280700 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -3.21905100 | 0.74349800 | -2.14767800 | C | 2.72977800 | -1.47027700 | -0.29601600 |
| C | 0.24072600 | 4.71928900 | 0.39693400 | C | 3.66408900 | 1.12696600 | 0.18942500 |
| C | 0.62037400 | 3.87290000 | 1.44965100 | H | 1.61315600 | 2.95197500 | 0.58993600 |
| H | -0.90800300 | 4.90718000 | -1.42305400 | H | -0.79544900 | 2.37796400 | 0.52914600 |
| H | 0.60537000 | 5.75045800 | 0.36267100 | C | 4.56004400 | 0.08884200 | -0.02502700 |
| H | 1.28434700 | 4.23930800 | 2.23764200 | C | 4.09464300 | -1.21707400 | -0.26949600 |
| N | -2.21150500 | 0.32628600 | -0.36513300 | H | 4.02808400 | 2.14022000 | 0.37908900 |
| O | -1.05758300 | -0.01746900 | 1.60537800 | H | 5.63505200 | 0.28728800 | -0.00425400 |
| H | -1.04951400 | -2.05621400 | -0.02759100 | H | 4.80685200 | -2.02863300 | -0.43747900 |
| C | 4.52237100 | 0.11529200 | -1.39497100 | N | -0.49911100 | 0.34818500 | 0.10763300 |
| C | 3.33368100 | -0.11316100 | -0.69569500 | O | -0.07907500 | -1.86448700 | $-0.34200500$ |
| C | 3.18054900 | $-1.24753700$ | 0.12600100 | H | -2.20046700 | 1.62473100 | -1.50181100 |
| C | 4.25973600 | $-2.14755500$ | 0.20829400 |  |  |  |  |
| C | 5.45718400 | -1.91851900 | -0.48030400 | 19 |  |  |  |
| C | 5.59089900 | -0.78299200 | -1.28484000 | C | -2.20984000 | -1.19982900 | -0.02514400 |
| H | 4.61765600 | 0.99946200 | -2.03311900 | C | -0.80986800 | -1.18752400 | -0.04579600 |
| H | 2.47991100 | 0.56192100 | -0.79577300 | C | -0.07070600 | 0.00967600 | -0.02549400 |
| H | 4.16849000 | -3.04453000 | 0.83101400 | C | -0.81365600 | 1.20570100 | 0.00456800 |
| H | 6.28611500 | -2.62782900 | -0.39045900 | C | -2.21304200 | 1.21215900 | 0.02172800 |
| H | 6.52288400 | -0.60082200 | -1.82890400 | C | -2.92110800 | 0.00443700 | 0.00962500 |
| B | 1.81684800 | $-1.49209300$ | 0.91389800 | H | -2.75023300 | -2.15286300 | $-0.04053100$ |
| O | 1.47180300 | -0.69338500 | 1.94819900 | H | -0.26381500 | -2.13504200 | $-0.08667600$ |
| H | 0.48608600 | -0.55919200 | 1.98734000 | H | -0.27386500 | 2.15829300 | 0.00315500 |
| O | 1.10638100 | -2.65716600 | 0.66164200 | H | -2.75714700 | 2.16295300 | 0.04162700 |
| H | 1.41828900 | -3.07576800 | -0.14997400 | H | -4.01586100 | 0.00258200 | 0.02319000 |
| F | 0.24593000 | 0.00639900 | -0.52268100 | B | 1.56478200 | 0.00852000 | -0.00950600 |
|  |  |  |  | O | 2.06439600 | 1.05949500 | -0.86528400 |
| 6 a |  |  |  | H | 3.02790700 | 1.04934700 | -0.79761000 |
| C | -2.53945500 | -0.80136500 | 0.87646200 | F | 2.04923900 | 0.18254100 | 1.33636000 |
| C | -1.92109000 | 0.14193100 | 0.04593500 | F | 2.05334500 | -1.27938100 | -0.42639000 |
| C | -2.69013200 | 0.90699700 | -0.83954500 |  |  |  |  |
| C | -4.07712700 | 0.73966300 | -0.88346000 | 22 |  |  |  |
| C | -4.69690000 | -0.19975500 | -0.05612800 | C | -1.92511000 | -1.21279800 | 0.00008500 |
| C | -3.92368600 | -0.96968900 | 0.81951700 | C | -0.52958100 | -1.21165200 | -0.00009500 |
| H | -1.93701300 | -1.40029200 | 1.55975300 | C | 0.19155000 | -0.00060500 | -0.00003400 |
| H | -4.67148400 | 1.34068300 | -1.57635600 | C | -0.52877600 | 1.21092800 | 0.00003200 |
| H | $-5.78065500$ | -0.33548600 | -0.09463500 | C | -1.92438000 | 1.21302300 | -0.00007500 |
| H | -4.40235200 | -1.70716500 | 1.46883100 | C | -2.62267100 | 0.00038000 | 0.00003000 |
| C | 0.36425200 | -0.74764700 | -0.12074500 | H | -2.47267200 | -2.15885500 | 0.00011500 |
| C | 1.80735500 | -0.42882200 | -0.07995500 | H | 0.01137200 | -2.16178200 | -0.00006700 |
| C | 2.27052200 | 0.89043300 | 0.16541700 | H | 0.01286300 | 2.16063500 | -0.00007100 |
| C | 1.29701700 | 1.92857900 | 0.38316000 | H | -2.47127100 | 2.15947600 | -0.00007100 |
| C | -0.02441300 | 1.62794400 | 0.34932200 | H | -3.71621200 | 0.00075300 | 0.00007800 |


| B | 1.73915300 | -0.00025000 | 0.00001600 | H | 2.49241500 | 4.80719600 | -0.26701900 |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| F | 2.44215800 | 1.12754800 | 0.00004800 | H | 2.71004000 | 3.17774200 | -2.15302100 |
| F | 2.44383800 | -1.12695100 | -0.00001700 | F | -1.19241400 | 0.31748400 | -1.87177400 |
|  |  |  |  | N | -1.90321600 | 0.56849700 | 0.27152700 |
| 21 |  |  | C | 4.20578800 | -2.96493800 | -0.51986800 |  |
| C | -2.19947300 | -1.20657700 | 0.00266700 | C | 2.90206100 | -2.71660100 | -0.07778100 |
| C | -0.80004800 | -1.19743400 | -0.01757600 | C | 2.50919800 | -1.44923000 | 0.39006200 |
| C | -0.06049100 | 0.00010300 | -0.02238500 | C | 3.48568900 | -0.43605400 | 0.40498400 |
| C | -0.80017700 | 1.19753300 | -0.01756100 | C | 4.79313400 | -0.67331300 | -0.03215000 |
| C | -2.19961900 | 1.20651500 | 0.00269400 | C | 5.15783600 | -1.94058000 | -0.49897500 |
| C | -2.90834500 | -0.00007200 | 0.01451200 | H | 4.48256600 | -3.96177800 | -0.87694000 |
| H | -2.74171200 | -2.15837300 | 0.00495700 | H | 2.17216200 | -3.53219400 | -0.08743600 |
| H | -0.25910100 | -2.14909800 | -0.03901400 | H | 3.21790200 | 0.55885000 | 0.77203100 |
| H | -0.25934000 | 2.14926800 | -0.03893200 | H | 5.53279500 | 0.13301400 | -0.00701300 |
| H | -2.74196600 | 2.15825400 | 0.00503100 | H | 6.17979700 | -2.13002500 | -0.84092800 |
| H | -4.00293300 | -0.00013900 | 0.02871400 | B | 1.00145700 | -1.17282300 | 0.88258000 |
| B | 1.57311300 | 0.00005400 | -0.00022100 | O | 0.13423200 | -0.72729100 | -0.41309100 |
| F | 2.08007800 | 1.15304700 | -0.65127200 | H | -0.37079700 | -1.48698300 | -0.75376300 |
| F | 2.07995400 | -1.15220900 | -0.65273400 | F | 0.34563900 | -2.32787300 | 1.31255100 |
|  | 2.05645700 | -0.00090400 | 1.33358900 | H | -1.88741900 | -2.12442600 | 0.40785200 |
|  |  |  |  | F | 0.86718700 | -0.12977200 | 1.77756700 |

## TS-8

| C | -4.29250200 | 0.31255400 | -0.25219000 |
| :--- | ---: | ---: | :---: |
| C | -3.06488600 | -0.31717900 | 0.00489200 |
| C | -2.84240500 | -1.70475000 | 0.07765400 |
| C | -3.90643700 | -2.56570100 | -0.21004700 |
| C | -5.15645700 | -2.01665000 | -0.51929200 |
| C | -5.32746800 | -0.62378800 | -0.50523400 |
| H | -3.76221300 | -3.64969400 | -0.16636700 |
| H | -5.99946200 | -2.68099800 | -0.74858600 |
| H | -6.34676200 | -0.25559800 | -0.71218900 |
| C | -0.82294700 | 0.59643200 | -0.58482300 |
| C | 0.08098400 | 1.76547200 | -0.49284200 |
| C | -0.06525200 | 2.68688800 | 0.57310000 |
| C | -1.13667800 | 2.49021600 | 1.50865000 |
| C | -2.01666600 | 1.47723200 | 1.30196800 |
| H | 1.16628700 | 1.23072300 | -2.28366900 |
| C | 1.07313400 | 1.95250700 | -1.47038200 |
| C | 0.82973400 | 3.78196000 | 0.63309700 |
| H | -1.27568900 | 3.17268300 | 2.34773300 |
| H | -2.90219800 | 1.32202200 | 1.91688700 |
| C | 1.81159000 | 3.95359600 | -0.33171900 |
| H | 1.93553800 | 3.03944600 | -1.39481300 |
|  | 0.73030300 | 4.49874200 | 1.45273200 |


| 11 |  |  |  |
| :---: | :---: | :---: | :---: |
| C | 2.21822900 | -1.17418700 | 0.03164900 |
| C | 0.81881800 | -1.19645900 | -0.00259800 |
| C | 0.02390900 | -0.02359600 | -0.03862100 |
| C | 0.76251300 | 1.18553500 | -0.06431600 |
| C | 2.16031200 | 1.23386100 | -0.03186100 |
| C | 2.91076800 | 0.04753200 | 0.02010000 |
| H | 2.78282400 | -2.11715200 | 0.05273000 |
| H | 0.30048300 | -2.16462900 | -0.02111600 |
| H | 0.17753100 | 2.11043100 | -0.13908900 |
| H | 2.67970100 | 2.20237300 | -0.06517600 |
| H | 4.00674700 | 0.07413100 | 0.03653200 |
| B | -1.65356000 | -0.02720700 | 0.13526500 |
| O | -2.16909500 | 1.21168600 | -0.61678700 |
| H | -2.70306900 | 1.54692000 | 0.11689600 |
| O | -2.03176100 | -0.07852000 | 1.42586000 |
| F | -2.08187400 | -1.22416500 | -0.73509000 |
| C |  |  |  |
| C | 2.51354100 | -0.63665700 | 1.01452400 |
| C | 1.92114900 | 0.16966500 | 0.03967000 |
| P | 2.67147300 | 0.78307000 | -0.96664400 |


| C | 4.05315000 | 0.57984500 | -0.99191900 |
| :--- | ---: | ---: | ---: |
| C | 4.66301800 | -0.22640200 | -0.02612400 |
| C | 3.89516500 | -0.83290400 | 0.97294800 |
| H | 1.90753100 | -1.09858900 | 1.79638200 |
| H | 4.65193300 | 1.05059700 | -1.77463800 |
| H | 5.74365700 | -0.38375400 | -0.05195800 |
| H | 4.37229900 | -1.45924800 | 1.72981500 |
| C | -0.38554900 | -0.59585500 | -0.10734000 |
| C | -1.78235500 | -0.41977600 | -0.07855000 |
| C | -2.27508800 | 0.90644600 | 0.15773900 |
| C | -1.32520100 | 1.95283000 | 0.34621000 |
| C | 0.01151700 | 1.68985800 | 0.30893000 |
| H | -2.28855200 | -2.50536300 | -0.46338000 |


| C | -2.67960700 | -1.50333100 | -0.28114800 |
| :---: | :---: | :---: | :---: |
| C | -3.67466700 | 1.10859700 | 0.19117800 |
| H | -1.66030000 | 2.97494300 | 0.53040100 |
| H | 0.78451100 | 2.44187300 | 0.46007600 |
| C | -4.53250400 | 0.04192700 | -0.00504800 |
| C | -4.03681000 | -1.26483000 | -0.24200300 |
| H | -4.06462800 | 2.11253000 | 0.37103800 |
| H | -5.61219000 | 0.20644800 | 0.02144500 |
| H | -4.73846700 | -2.08750500 | -0.39417300 |
| F | 0.12495800 | -1.77737200 | -0.34002500 |
| N | 0.48188300 | 0.40401700 | 0.08055900 |
| H | 2.18301800 | 1.40139600 | -1.72323000 |

## 8. Crystal Data

## X-ray structure of $\mathbf{6 d}$



CCDC 2064724
Table S1. Crystal data and structure refinement for 6d

| Identification code | 6d |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}$ |
| Formula weight | 327.37 |
| Temperature / K | 109(3) |
| Crystal system | monoclinic |
| Space group | $\mathrm{P} 2_{1} / \mathrm{n}$ |
| $\mathrm{a} / \AA$ | 8.9864(4) |
| $\mathrm{b} / \AA$ | 15.1402(11) |
| $\mathrm{c} / \AA$ | 24.1044(11) |
| $\alpha /{ }^{\circ}$ | 90.00 |
| $\beta /{ }^{\circ}$ | 95.057(4) |
| $\gamma^{\circ}$ | 90.00 |
| Volume / $\AA^{3}$ | 3266.8(3) |
| Z | 8 |
| $\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$ | 1.313 |
| $\mu / \mathrm{mm}^{-1}$ | 0.085 |
| F(000) | 1376 |
| Crystal size / mm ${ }^{3}$ | $0.30 \times 0.25 \times 0.23$ |
| $2 \Theta$ range for data collection/ ${ }^{\circ}$ | 6.36 to 52 |
| Index ranges | $-11 \leq \mathrm{h} \leq 10,-18 \leq \mathrm{k} \leq 18,-26 \leq 1 \leq 29$ |
| Reflections collected | 19832 |
| Independent reflections | $6401\left[\mathrm{R}(\right.$ int $)=0.0420$ (inf-0.9 ${ }^{\text {a }}$ ) ] |
| Data/restraints/parameters | 6401/0/453 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.042 |
| Final R indexes [ $\mathrm{I}>2 \sigma$ ( I ] $]$ | $\mathrm{R}_{1}=0.0465, \mathrm{wR}_{2}=0.0920$ |
| Final R indexes [all data] | $\mathrm{R}_{1}=0.0648, \mathrm{wR}_{2}=0.1014$ |
| Largest diff. peak/hole / e $\AA^{-3}$ | 0.212/-0.202 |

## X-ray structure of 10b



CCDC 2087612
Table S2. Crystal data and structure refinement for 10b
Identification code
Empirical formula
Formula weight
10b

Temperature / K
Crystal system
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}$
261.31

Space group
112.15(10)
monoclinic
a / $\AA$
P2 $1_{1} / \mathrm{n}$
14.8247(4)
b / $\AA$
11.5912(3)
c / $\AA$
15.5420(4)
$\alpha /{ }^{\circ}$
90.00
$\beta /{ }^{\circ} \quad 97.987(3)$
$\gamma^{\circ}{ }^{\circ} 90.00$
Volume / $\AA^{3}$
2644.75(11)

Z
8
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$
1.313
$\mu / \mathrm{mm}^{-1} \quad 0.081$
$\mathrm{F}(000) \quad 1104$
Crystal size / mm ${ }^{3}$
$0.40 \times 0.37 \times 0.35$
$2 \Theta$ range for data collection $/{ }^{\circ}$
Index ranges
6.36 to 52

Reflections collected
$-18 \leq \mathrm{h} \leq 18,-14 \leq \mathrm{k} \leq 13,-19 \leq 1 \leq 19$

Independent reflections
Data/restraints/parameters
14473
$5185[\mathrm{R}(\mathrm{int})=0.0335($ inf- $0.9 \AA)]$

Goodness-of-fit on $\mathrm{F}^{2}$
5185/0/363

Final R indexes $[\mathrm{I}>2 \sigma(\mathrm{I})]$
Final R indexes [all data]
1.032

Largest diff. peak/hole /e $\AA^{-3}$
$\mathrm{R}_{1}=0.0446, \mathrm{wR}_{2}=0.0980$
$\mathrm{R}_{1}=0.0643, \mathrm{wR}_{2}=0.1104$
0.233/-0.248

## 9. References

1 M. Zhou, C. Ni, Y. Zeng and J. Hu, J. Am. Chem. Soc., 2018, 140, 6801-6805. b) D. Peña, D. Pérez, E. Guitían and L. Castedo, J. Org. Chem., 2000, 65, 6944-6950.

2 a) T. Zheng, J. Tan, R. Fan, S. Su, B. Liu, C. Tan and K. Xu, Chem. Commun., 2018, 54, 1303-1306. b) R. Fan, B. Liu, T. Zheng, K. Xu, C. Tan, T. Zeng, S. Su and J. Tan, Chem. Commun., 2018, 54, 7081-7084. c) H. Seo, M. H. Katcher and T. F. Jamison. Nature Chem., 2017, 9, 453-456.

3 a) N. Ríos-Lombardía, E. Busto, E. García-Urdiales, V. Gotor-Fernández and V. Gotor, J. Org. Chem., 2009, 74, 2571-2574. b) G. Tanabe, M. Sakano, T. Minematsu, H. Matusda, M. Yoshikawa and O. Muraoka, Tetrahedron, 2008, 64, 10080-10086.

4 a) D. Wang, H. Jia, W. Wang and Z. Wang, Tetrahedron Lett., 2014, 55, 7130-7132. b) T. Luo, K. Masson, J. D. Jaffe, W. Silkworth, N. T. Ross, C. A. Scherer, C. Scholl, S. Fröhling, S. A. Carr, A. M. Stern, S. L. Schreiber and T. R. Golub, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 2860-2865.

5 M. A. Cismesia, S. J. Ryan, D. C. Bland and M. S. Sanford, J. Org. Chem., 2017, 82, 5020-5026.

6 Y. Fang, T. Rogge, L. Ackermann, S.-Y. Wang and S.-J. Ji, Nat. Commun., 2018, 9, 2240.

7 B. J. Groendyke, A. Modak and S. P. Cook, J. Org. Chem., 2019, 84, 13073-13091.
8 J.-S. Matsuo, T. Kozai and H. Ishibashi, Org. Lett., 2006, 8, 6095-6098.

9 J. Lee, H. Y. Kim and K. Oh, Org. Lett., 2020, 22, 474-478

10 A. H. Bansode and G. Suryavanshi, Adv. Synth. Catal., 2021, 363, 1390-1400.

12 A. Kehl, V. M. Breising, D. Schollmeyer and S. R. Waldvogel, Chem. - Eur. J., 2018, 24, 17230-17233.

14 S. Zeghada, G. Bentabed-Ababsa, O. Mongin, W. Erb, L. Picot, V. Thiéry, T. Roisnel, V. Dorcet and F. Mongin, Tetrahedron, 2020, 76, 131435.
Y. Long, Z. Su, Y. Zheng, S. He, J. Zhong, H. Xiang and X. Zhou, ACS Catal., 2020, 10, 3398-3403.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Jr., Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision D.01, Gaussian, Inc.: Wallingford, CT, 2013.
a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652. b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.

## 10. Spectra



2d
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



2d
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





2e
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


| $\cdots$ | ¢ ¢ |
| :---: | :---: |
| $\stackrel{\infty}{\infty}$ | -్ల్ల |
| T | 1 |



2 e
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



$\underbrace{n \prime m}$

$2 f$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$2 f$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$2 f$
${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^0]
##  <br> NTNNNNNNNNNNNNNNO © © © © © O <br> 



2 g
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



2 g
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## - ©


$\sum_{\mathrm{OBn}}^{\mathrm{S}}$

2h
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




2h
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$2 i$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\sum_{\mathrm{OC}_{8} \mathrm{H}_{17}}^{\mathrm{S}}$
$2 i$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


膏
$\stackrel{1}{1}$


2p
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$$
\sum_{\mathrm{Bn}}^{\mathrm{s}}
$$

2p
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


##  <br> 



5a
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



5a
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\stackrel{\sim}{i}$


5a
${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



```
<<\infty
```



5b
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


|  |  |
| :---: | :---: |
|  |  |
|  | Y ¢Y/V |



5b
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



5b
${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\qquad$

## 



5c
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$\stackrel{\text { Q }}{\stackrel{\circ}{i}}$


5c
${ }^{19} \mathbf{F} \mathbf{N M R}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



* N-NNNNNNNNNN
* N-NNNNNNNNNN

5d
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


©
$\circ$
$\stackrel{\circ}{4}$
$\stackrel{0}{6}$




5e
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



5e
${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



$5 f$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




$5 f$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## 



5g
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


##  <br> -



5h
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

 - $\overbrace{}^{\circ}$


5h
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\qquad$




##  <br> 



5j
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$$
{ }^{19} \mathbf{F} \mathbf{N M R}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$


$\qquad$




5k
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



$\stackrel{\circ}{\stackrel{\circ}{\circ}}$


5k
${ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


\inftyNNNNNNNNNNNN
\inftyNNNNNNNNNNNN

51
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\stackrel{\text { ® }}{\stackrel{\circ}{\oplus}}$


51
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\qquad$

##  <br> $\underbrace{\infty}$



5n
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



5n
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



5n
${ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$\underbrace{\text { ºn }}$


50
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{19} \mathbf{F} \mathbf{N M R}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\qquad$

|  |  |  | -70 |  |  |  |  |  | 10 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -55 | -60 | -65 | -70 | -75 | -80 | -85 | $-90$ | -95 | -100 | -105 | -110 | -115 | -120 | -125 | -130 | -135 | -140 | -145 |


${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$\stackrel{m}{\stackrel{m}{0}}$



4a
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ )





4b
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ )



## 





4c
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






4c
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## 



4d
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



4d
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## 

##  



4e
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$4 e$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


##  


$4 f$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




## 4f

${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



4 g
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



4h
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


4h
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$4 i$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



4i
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



4j
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


4j
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



```
\NNNNNNNNNNNN
```




4k
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




4k
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




41
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$\stackrel{\text { ®ion }}{\stackrel{0}{0}}$



41
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


パ ㅊ․igiaig

4m
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\left.\mathrm{CDCl}_{3}\right)
$$




4m
${ }^{13} \mathbf{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）





4n
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


| $\bar{m}$ | ¢冂\% | $\bar{\square}$ | \% |  |
| :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { ¢ }}{\sim}$ | Nั~ | $\bar{\square}$ | - | ¢ |
|  | -j | - |  |  |



4n
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ )


40
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


ボ


40
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$4 p$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




4p
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



$4 q$
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$4 q$
${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


```
\N⿱一⿻口⿰丨丨⿱二小欠
```



4r
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



4r
${ }^{13} \mathbf{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

충․
$\stackrel{\circ}{\circ} \stackrel{\sim}{\sim} \stackrel{\circ}{\sim}$

N


4s
${ }^{13}$ C NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


```
N~N山心N⿱一⿻口⿰丨丨⿱二小
NNNNNNNNNNNNNNNNNNNNNNNNTNN


4t
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\(4 t\)
\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




4v
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



4w
\({ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


4w
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



4x
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


4x
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




4y
\({ }^{19} \mathbf{F}\) NMR \(\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\section*{ \\ }



4z
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




4z
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\qquad\)




4aa+4aa'



4aa+4aa'
\({ }^{13} \mathbf{C}\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\) )



4aa+4aa'
\({ }^{19}\) F NMR \(\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\(\mathbf{4 a b}+\mathbf{4 a b}{ }^{\prime}\)
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )







4ab+4ab,
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\(6 \mathbf{a}\)
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\(6 \mathbf{a}\)
\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)





6b
\({ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




6b
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\(6 c\)
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(6 \mathbf{6}\)
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




6d
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{} &  \\
\hline &  \\
\hline & \\
\hline
\end{tabular}

N


6d
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\section*{
}

\(6 e\)
\({ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)






6 e
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\({ }^{19}\) F NMR ( \(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\qquad\)

\section*{ \\ }

\(6 f\)
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




6 g
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\qquad\)


\(6 h\)
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\section*{}

\(6 i\)
\({ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\section*{}

\section*{ \\ }


6j
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




6k
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\section*{}


6n
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




6n
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





11a
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



11a
\({ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


11b
\({ }^{\mathbf{1}} \mathbf{H}\) NMR (400 MHz, \(\mathrm{CDCl}_{3}\) )



11b
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\section*{
}


11c
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



11c
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\section*{
}


11e
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)







11e
\({ }^{19} \mathbf{F}\) NMR ( \(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





11f
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



๗ö


11f



11g+11g'
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(\stackrel{\sim}{n}\)

\(11 \mathrm{~g}+11 \mathrm{~g}\),
\({ }^{13} \mathbf{C}\) NMR (100 MHz, \(\mathrm{CDCl}_{3}\) )



11h
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



11h
\({ }^{19} \mathbf{F}\) NMR ( \(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




10a
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\({ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\(\stackrel{\text { ®. }}{\stackrel{\text { ®n }}{1}}\)


10b
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)






10c
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



10c


10d
\({ }^{1} \mathbf{H}\) NMR (400 MHz, \(\mathrm{CDCl}_{3}\) )



10d
\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\section*{}

\section*{
}

\(8 \mathbf{a}\)
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\(8 \mathbf{a}\)
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\section*{ \\ }


8b
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



O-

12
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




12
\({ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




13
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




14
\({ }^{\mathbf{1}} \mathbf{H}\) NMR (400 MHz, \(\mathrm{CDCl}_{3}\) )

~ั
Ph
14
\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\section*{}



15
\({ }^{1} \mathbf{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



15
\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)






16
\({ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




\section*{
}


17
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



17
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





18
\({ }^{1} \mathbf{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \stackrel{\circ}{+} \\
& \stackrel{\text { IN }}{1}
\end{aligned}
\] &  \\
\hline
\end{tabular}


18
\({ }^{13} \mathbf{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)





60
\({ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



60
\({ }^{13} \mathbf{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
```


[^0]:    $\begin{array}{llllllllllllllllllllllllll}-55 & -60 & -65 & -70 & -75 & -80 & -85 & -90 & -95 & -100 & -105 & -110 & -115 & -120 & -125 & -130 & -135 & -140 & -145\end{array}$

