Supporting Information for

Copper-catalyzed asymmetric allylic alkylation of racemic inert cyclic allylic ethers under batch and flow conditions

Jun Li ${ }^{a}$, Xiao Song ${ }^{a}$, Yan Wang ${ }^{a}$, Junrong Huang* ${ }^{* a, b}$, Hengzhi You* ${ }^{* a, b}$, Fen-Er Chen*ab,c
${ }^{\text {a }}$ School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China.
${ }^{\text {b }}$ Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan, District, Shenzhen, 518055, China.
${ }^{c}$ Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.

* Corresponding authors

E-mail: hjunrong@hit.edu.cn; youhengzhi@hit.edu.cn; rfchen@fudan.edu.cn

Table of Contents

1 General information 1
2 Substrate scope 1
3 Experimental parts 2
4 Experiments under flow 4
5 Mechanistic analysis 5
6 Number of equivalents of catalyst loading 7
7 References 7
8 Spectroscopic and Chromatographic datas 9

1 General information

All reactions were carried out under argon atmosphere with flame-dried glassware. Solvents were redistilled under nitrogen before use to remove water and oxygen. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR spectra were recorded on a Quantum-I 400 M in CDCl_{3}, and chemical shift (δ) are given in ppm relative to residual CHCl_{3}. Coupling constants (J) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ${ }^{1} \mathrm{H}$ NMR (chloroform $\delta 7.26$) and ${ }^{13} \mathrm{C}$ NMR (chloroform $\delta 77.0$). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $m=$ multiplet. Evolution of reaction was followed by GC-MS (EI mode) on an Agilent 7890B5977B. Optical rotations were recorded on an IP-digi300/2 polarimeter at $25^{\circ} \mathrm{C}$ in a 5 cm cell in the stated solvent. Enantiomeric ratio was determined by chiral GC measurement either on an Agilent 7890B with the stated column or UltiMate 3000 with the stated column using isopropanol and n-hexane as mobile phase. Temperature programs are described as follows: initial temperature $\left({ }^{\circ} \mathrm{C}\right)$ - initial time (min) - temperature gradient $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right)$ - final temperature $\left({ }^{\circ} \mathrm{C}\right)$; retention times (RT) are given in min. Column chromatography purifications were performed by flash chromatography on Santai Technologies Inc. SepaBean ${ }^{\circledR}$ machine T using Merck silica gel $60 \AA$ or neutral alumina. All substrates and ligands were prepared according to the published procedures. Other reagents were received from commercial sources. Microreactor was received from E-zheng. The absolute configuration was assigned according to the literature report. ${ }^{1-6}$

2 Substrate scope

2.1 (E)- allylic ether

Scheme S1 AAA reaction of (E) - allylic ether

2.2 3-methoxy-1-methylcyclohex-1-ene.

Scheme S2 AAA reaction of rac-3-methoxy-1-methylcyclohex-1-ene

3 Experimental parts

A) Procedure used in the synthesis of racemic products:

In a flame-dried Schlenk tube under argon atmosphere, $\mathrm{CuTc}(0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(0.055$ $\mathrm{mmol}, 11 \mathrm{~mol} \%)$ was dissolved in dry $\mathrm{DCM}(2 \mathrm{~mL})$ and the solution was stirred for 15 min at room temperature. Then, the cyclic allylic bromide (0.5 mmol) was added and the solution was cooled to -78 ${ }^{\circ} \mathrm{C}$. After 10 min at this temperature, the corresponding Grignard reagent ($0.75 \mathrm{mmol}, 1.5$ equiv.) was added dropwise to the reaction mixture under nitrogen. Once the addition was complete, the mixture was stirred for another 1 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched with an aqueous solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(2 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(15 \mathrm{~mL})$. Organic layer was washed with the saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL) and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated on vacuo. Crude mixture was purified on silica gel chromatography column (pentane). Desired product was recovered as a colorless liquid.

B) General procedure for copper catalyzed asymmetric allylic alkylation

In a flame-dried Schlenk tube under argon atmosphere, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and the appropriate ligand ($0.044 \mathrm{mmol}, 11 \mathrm{~mol} \%$) were dissolved in dry DCM (4 mL) and the solution was stirred for 15 min at room temperature. Then, the cyclic allylic ethers $(0.4 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.6$ mmol, 1.5 equiv.) was added at $-78^{\circ} \mathrm{C}$. After 10 min at this temperature, the corresponding Grignard reagent ($0.6 \mathrm{mmol}, 0.5$ or 1 M in $\mathrm{Et}_{2} \mathrm{O}, 1.5$ equiv.) was added dropwise to the reaction mixture. Once the addition was complete, the mixture was stirred for another 1 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched with an aqueous solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(2 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(15 \mathrm{~mL})$. Organic layer was washed with the saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL) and brine (15 mL) , dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated on vacuo. Crude mixture was purified on silica gel chromatography column (pentane). Desired product was recovered as a colorless liquid.

C) Derivatization of products to epoxides for ee determination:

A sample of the isolated product was treated with 2.0 equiv. m CPBA and 3.0 equiv. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ in DCM . After $2 \mathrm{~h}, \mathrm{DCM}(10 \mathrm{~mL})$ was added and the reaction was quenched with an aqueous solution of saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The organic layer was washed two times with an aqueous solution of 1 M NaOH , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated on vacuo. The crude mixture of two diastereoisomeric epoxides was directly analyzed in chiral GC.

D) General Procedure of Flow AAA reaction

The AAA reaction was conducted in an $18 \mu \mathrm{~L}$ microreactor made of stainless steel $\left(0.3^{*} 0.5 \mathrm{~mm}\right.$ inner diameter, 120 mm length $)$. The $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(0.7 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathbf{L} 2(0.77 \mathrm{mmol}, 11 \mathrm{~mol} \%)$ were dissolved in 70 mL DCM and the mixture was stirred at room temperature for 30 min . Then, the cyclic allylic methyl ether (7 mmol) was directly added to the mixture. After that, the solution of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$, $\mathbf{L} 2$ and cyclic allylic methyl ether was introduced at one inlet at a flow rate of $0.1 \mathrm{~mL} / \mathrm{min}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ $(10.5 \mathrm{mmol})$ in $\mathrm{DCM}(70 \mathrm{~mL})$ was introduced from other inlet at the $0.1 \mathrm{~mL} / \mathrm{min}$ flow rate. The two solutions were combined in a T-mixer and injected into the microreactor at $-78^{\circ} \mathrm{C}$ with sonication. Meanwhile, Grignard reagent ($10.5 \mathrm{mmol}, 0.15 \mathrm{M}, 1.5$ equiv.) was injected into the microreactor at the $0.1 \mathrm{~mL} / \mathrm{min}$ flow rate. The microreactor were cooled to $-78^{\circ} \mathrm{C}$ with sonication. Total output was 0.3 $\mathrm{mL} / \mathrm{min}$ (3.6 s of residence time). The reaction mixture was collected, quenched with EtOH or saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (0.5 mL) and extracted with $\mathrm{DCM}(15 \mathrm{~mL})$. Organic layer was washed with the saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL) and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in
vacuo. Crude mixture was purified on silica gel chromatography column (pentane). The desired product was recovered as a colorless liquid.

4 Experiments under flow

4.1 Selected optimization under continuous flow

Table S1. Selected optimization under continuous flow ${ }^{\text {a }}$

Entry	\mathbf{X}	ee	Yield
1	0.1	92%	95%
2	0.2	83%	86%
3	0.3	81%	85%
4	0.4	80%	68%
5	0.6	81%	65%
6	0.05	92%	95%
$7^{\text {b }}$	0.05	87%	60%
$8^{\text {b,c }}$	0.05	80%	92%

a: NMR yield. b: 5% catalyst loading. c: 3 eq. Grignard reagent and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

4.2 Substrate scope under continuous flow

Scheme S3 Substrate scope under continuous flow

5 Mechanistic analysis

5.1 GCMS traces of 3c in AAA reaction

In a flame-dried Schlenk tube under argon atmosphere, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and the appropriate ligand ($0.044 \mathrm{mmol}, 11 \mathrm{~mol} \%$) were dissolved in dry DCM (4 mL) and the solution was stirred for 15 min at room temperature. Then, 3-benzyloxycyclohexene $(0.4 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.6$ mmol, 1.5 equiv.) was added at $-78^{\circ} \mathrm{C}$. After 10 min at this temperature, the $\mathrm{MeMgBr}(0.6 \mathrm{mmol}, 0.5 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1.5$ equiv.) was added dropwise to the reaction mixture. Once the addition was complete, the mixture was stirred for another 1 h at $-78^{\circ} \mathrm{C}$ and quenched with EtOH $(0.2 \mathrm{~mL})$.

Fig. S1 GCMS traces of $\mathbf{3 c}$ in AAA reaction

Fig. S2 GCMS traces of 3c in AAA reaction for 1 h

5.2 GCMS traces of 3c in situ

In a flame-dried Schlenk tube under argon atmosphere, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and the appropriate ligand ($0.044 \mathrm{mmol}, 11 \mathrm{~mol} \%$) were dissolved in dry $\mathrm{DCM}(4 \mathrm{~mL})$ and the solution was stirred for 15 min at room temperature. Then, the cyclic allylic methyl ether (0.4 mmol) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($0.6 \mathrm{mmol}, 1.5$ equiv.) was added at $-78^{\circ} \mathrm{C}$. After 10 min at this temperature, the $\mathrm{MgBr}_{2}(0.6 \mathrm{mmol}, 1.5$ equiv.) was added to the reaction mixture. Once the addition was complete, the mixture was stirred for another 1 h at $-78^{\circ} \mathrm{C}$.

Fig. S3 GCMS traces of 3c in situ

6 Number of equivalents of catalyst loading

Table S2. Number of equivalents of catalyst loading

Entry	\mathbf{X}	ee	Time	Conversion
1	10	95%	1 h	100%
2	5	95%	1 h	92%
3	1	94%	4 h	78%

7 References

1. Langlois, J. B.; Alexakis, A., Dynamic kinetic asymmetric transformation in copper catalyzed allylic alkylation. Chem. Commun. 2009, (26), 3868-70.
2. Langlois, J.-B.; Alexakis, A., Copper-Catalyzed Asymmetric Allylic Alkylation of Racemic Cyclic Substrates: Application of Dynamic Kinetic Asymmetric Transformation (DYKAT). Adv. Synth. Catal. 2010, 352 (2-3), 447-457.
3. Langlois, J.-B.; Emery, D.; Mareda, J.; Alexakis, A., Mechanistic identification and improvement of a direct enantioconvergent transformation in copper-catalyzed asymmetric allylic alkylation. Chem. Sci. 2012, 3 (4), 1062-
4.
5. You, H.; Rideau, E.; Sidera, M.; Fletcher, S. P., Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation. Nature 2015, 517 (7534), 351-5.
6. Rideau, E.; You, H.; Sidera, M.; Claridge, T. D. W.; Fletcher, S. P., Mechanistic Studies on a Cu-Catalyzed Asymmetric Allylic Alkylation with Cyclic Racemic Starting Materials. J. Am. Chem. Soc. 2017, 139 (15), 5614-5624.
7. Li, J.; Song, X.; Wu, F.; You, H.; Chen, F.-E., Cu-Catalyzed Asymmetric Allylic Alkylation of Racemic Cyclic Allyl Bromides with Organolithium Compounds. Eur. J. Org. Chem. 2022, 2022 (34), e202200860.

8 Spectroscopic and Chromatographic datas

(S)-3-methylcyclohex-1-ene (3a)

Highly volatile colorless oil. 99% GC yield, $98 \% e e$. The enantiomeric excess was determined by GC on chiral stationary phase (Supelco γ-Dex-225 column, Method: 25-35-10-200-5, RT: 29.04 (R), 29.27 (S) min). The enantiomeric excess was also determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides. (CP-Chiralsil-Dex-CB column, Method: 60-0-1-170, RT: $17.27,17.81,19.30,20.00 \mathrm{~min}$) ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{\mathrm{H}} / \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.70-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.48(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.84-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 133.6,126.3,31.3,30.1,25.1,21.7,21.4$.

HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{13}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 97.1012$, found 97.1010.

GC traces

(S)-3-ethylcyclohex-1-ene (3b)

Volatile colorless oil. $31.2 \mathrm{mg}, 71 \%$ isolated yield, $91 \% \mathrm{ee}$. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (Hydrodex β-6 TBDM column, Method: 60-0-5-170-5, RT:11.67, 11.83, $12.73,13.11 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} / \mathrm{ppm} 5.73-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.53(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.45$ $(\mathrm{m}, 1 \mathrm{H}), 1.38-1.18(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm}$ 132.1, 126.7, 36.9, 29.0, 28.7, 25.4, 21.6, 11.4.
$[\alpha]^{25}{ }_{589}=-82.4\left(\mathrm{c}=0.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{15}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$111.1168, found 111.1172.

GC traces

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[p A *_{*} \text { s }\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.672	MF	0.0698	732.84210	174.98895	45.55416
2	11.831	FM	0.0674	37.66683	9.31460	2.34141
3	12.732	BB	0.0496	39.78463	12.61672	2.47305
4	13.108	BB	0.0645	798.43341	172.15292	49.63138

(S)-3-butylcyclohex-1-ene 3c

Volatile colorless oil. $45.9 \mathrm{mg}, 83 \%$ isolated yield, $96 \% \mathrm{ee}$. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (Hydrodex $\beta-6$ TBDM column, Method: $60-0-1-170-5$, RT: $47.21,48.36,53.26,55.15 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta_{\mathrm{H}} / \mathrm{ppm} 5.70-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.55(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.18(\mathrm{~m}, 7 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 132.3,126.5,36.2,35.2,29.3,29.2,25.4,23.0,21.6,14.1$.
$[\alpha]^{25}{ }_{589}=-62.3\left(\mathrm{c}=0.21\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{19}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$139.1481, found 139.1480.

GC traces

(R)-3-isobutylcyclohex-1-ene (3d)

Volatile colorless oil. $43.8 \mathrm{mg}, 79 \%$ isolated yield, $88 \% \mathrm{ee}$. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 60-0-1-120-0-10-200-5, RT: $51.14,51.75,53.80,54.65 \mathrm{~min}$) ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{\mathrm{H}} / \mathrm{ppm} 5.68-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.52(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.07(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 132.4,126.5,45.9,32.7,29.3,25.5,24.9,23.1,22.5,21.4$.
$[\alpha]^{25}{ }_{589}=-40.6\left(\mathrm{c}=0.14\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{19}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$139.1481, found 139.1482.

GC traces

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	51.139	MM	0.1727	144.70184	13.96224	46.08189
2	51.747	MM	0.1541	8.71458	9.42241e-1	2.77525
3	53.804	MM	0.1413	9.43801	1.11350	3.00564
4	54.646	BB	0.1584	151.15579	13.95419	48.13722

Colorless oil. $57.5 \mathrm{mg}, 80 \%$ isolated yield, 97% ee. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (Hydrodex $\beta-6$ TBDM column, Method: 60-0-1-140-0-20-170-5, RT: 81.84, 82,30, 83.40, 83.99 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta_{\mathrm{H}} / \mathrm{ppm} 5.70-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.54(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.55-$ $1.43(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 13 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) δ_{C} /ppm 132.4, 126.6, 36.4, 35.2, 31.9, 29.9, 29.4, 29.1, 27.0, 25.4, 22.7, 21.6, 14.1.
$[\alpha]^{25}{ }_{589}=-5.4\left(\mathrm{c}=0.18\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{25}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$181.1951, found 181.1948.

GC traces

Peak \#	RetTime [min]	Type	Width [min]	Area $\left[\mathrm{pA}^{*} \mathrm{~s}\right]$	Height [pA]	Area \%
1	81.837	BB	0.0753	184.42480	35.80082	46.45978
2	82.301	MM	0.0831	2.96039	$5.93749 \mathrm{e}-1$	0.74577
3	83.399	MM	0.0841	3.27483	$6.49026 \mathrm{e}-1$	0.82499
4	83.986	BB	0.0933	206.29578	34.74703	51.96946

Colorless oil. 95% NMR yield, 94% ee. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 50-0-1-170-30-10-200-5, RT: 81.84, 82,30, 83.40, 83.99 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ_{H} $/ \mathrm{ppm} 5.68-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.54(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.47(\mathrm{~m}$, $1 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 23 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 132.4$, 126.6, 36.4, 35.2, 31.9, 29.9, 29.7 (m, 5C), 29.4, 29.1, 27.0, 25.4, 22.7, 21.6, 14.1.
$[\alpha]^{25}{ }_{589}=-25.4\left(\mathrm{c}=0.45\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{35}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 251.2733$, found 251.2728.

GC traces

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area \%
1	136.439	MM	0.4558	2155.41577	78.81336	48.52590
2	137.690	MM	0.4272	51.98553	2.02816	1.17037
3	139.569	MM	0.4463	71.18447	2.65829	1.60261
4	140.741	MM	0.5426	2163.19849	66.44946	48.70112

(R)-3-(4-methylpent-3-en-1-yl)cyclohex-1-ene (3g)

Colorless oil. $51.3 \mathrm{mg}, 78 \%$ isolated yield, 97% ee. The enantiomeric excess was determined by GC on a chiral stationary phase (Hydrodex B3P column, Method: 40-0-1-110-0-5-170-5, RT: 61.86, 62.24 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} / \mathrm{ppm} 5.73-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.54$ - $1.45(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.13(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm}$ 132.2, 131.3, 126.7, 124.7, 36.4, 34.7, 29.0, 25.7, 25.4, 21.5, 17.6.
$[\alpha]^{25}{ }_{589}=-62.7\left(\mathrm{c}=0.35\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{21}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$165.1638, found 165.1637.

GC traces

(R)-(cyclohex-2-en-1-ylmethyl)benzene (3h)

Colorless oil. $62 \mathrm{mg}, 90 \%$ isolated yield, $65 \% \mathrm{ee}$. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 30-0-1-150-0-10-200-5, RT: 123.55, 123.79, 124.68, 124.93 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{\mathrm{H}} / \mathrm{ppm} 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.75-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.51(\mathrm{~m}$, $1 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.62(\mathrm{~m}$, 2H), $1.56-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.18(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta_{\mathrm{C}} / \mathrm{ppm} 140.8$, 131.3, 129.1, 128.1, 127.3, 125.7, 42.7, 37.2, 28.9, 25.4, 21.3.
$[\alpha]^{25}{ }_{589}=-18.5\left(\mathrm{c}=0.21\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$173.1325, found 173.1322 .

GC traces

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	123.548	BB	0.0561	80.21606	22.04475	50.99786
2	123.789	BB	0.0544	16.81706	4.80495	10.69155
3	124.679	BB	0.0475	10.46578	3.51617	6.65369
4	124.933	BB	0.0460	49.79411	17.06130	31.

(R)-(2-(cyclohex-2-en-1-yl)ethyl)benzene (3i)

Colorless oil. $64.5 \mathrm{mg}, 87 \%$ isolated yield, 95% ee. The enantiomeric excess was determined by GC on a chiral stationary phase (Hydrodex B3P column, Method: 60-30-1-150-0-20-170-5, RT: 110.69, 111.12 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} / \mathrm{ppm} 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 3 \mathrm{H}), 5.74-5.66$ $(\mathrm{m}, 1 \mathrm{H}), 5.66-5.59(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.88-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 142.8,131.7,128.4,128.3,127.1,125.6,38.2,34.7,33.3,29.0$, 25.4, 21.5 .
$[\alpha]^{25}{ }_{589}=-25.8\left(\mathrm{c}=0.36\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$187.1481, found 187.1480.

GC traces

(R)-1-(2-(cyclohex-2-en-1-yl)ethyl)-4-methoxybenzene (3j)

Colorless oil, $96 \% \mathrm{ee} .[\alpha]^{25}{ }_{589}=-49.3\left(\mathrm{c}=0.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 217.1587, found 217.1585. Colorless oil isolated after derivatisation in corresponding epoxides. After treatment with m CPBA, 2-(4-methoxyphenethyl)-7-oxabicyclo[4.1.0]heptane ($\mathbf{6 j}$) is isolated as a mixture of diastereoisomeric epoxides (1:1). $75.4 \mathrm{mg}, 81 \%$ isolated yield (after two steps). The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 80-0-1-200-10, RT: 100.04, 100.83, $101.88,102.50 \mathrm{~min}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} / \mathrm{ppm} \delta 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.80(\mathrm{~m}$, $2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.10(\mathrm{~m}, 1.5 \mathrm{H}), 2.92-2.89(\mathrm{~m}, 0.5 \mathrm{H}), 2.74-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.02(\mathrm{~m}$, $0.5 \mathrm{H}), 1.91-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 0.5 \mathrm{H}), 1.45-1.29(\mathrm{~m}, 1.5 \mathrm{H}), 1.25-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.95-$ $0.82(\mathrm{~m}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 157.7,157.6,134.5,143.1,129.2,113.8$, 113.7, 56.3, 55.5, 55.2, 52.9, 52.8, 36.1, 35.1, 34.1, 33.7, 32.4, 32.2, 27.2, 25.2, 24.8, 23.9, 19.8, 17.2. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$233.1536, found 233.1536.

GC traces

(R)-1-(2-(cyclohex-2-en-1-yl)ethyl)-4-(trifluoromethyl)benzene (3k)

Colorless oil. $65.7 \mathrm{mg}, 65 \%$ isolated yield, 97% ee. The enantiomeric excess was determined by GC on a chiral stationary phase (Hydrodex B3P column, Method: 60-30-1-170-5, RT: 113.87, 114.18 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} / \mathrm{ppm} \delta 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.68(\mathrm{~m}$, $1 \mathrm{H}), 5.67-5.58(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.80(\mathrm{~m}$, 1H), $1.80-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 147.0,131.3,128.6128 .0(\mathrm{q}, J=32.3 \mathrm{~Hz}), 127.5,125.2(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.4(\mathrm{q}, J=272.7 \mathrm{~Hz})$, 37.9, 34.7, 33.1, 29.0, 25.3, 21.4. ${ }^{19}$ F NMR (380 MHz , Chloroform- d) δ-62.2.
$[\alpha]^{25}{ }_{589}=-15.7\left(\mathrm{c}=0.25\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{3}^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 255.1355$, found 255.1355.

GC traces

(R)-3-isopropylcyclohex-1-ene (31)

Colorless oil. $41.1 \mathrm{mg}, 83 \%$ isolated yield, 82% ee. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 60-0-1-110-0-20-200-5, RT: 33.53, 34.11, 36.96, 37.65 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta_{\mathrm{H}} / \mathrm{ppm} 5.76-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.53(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.61-$ $1.43(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 130.9,127.4,41.7,32.2,25.6,25.4,22.2,19.7,19.4$.
$[\alpha]^{25}{ }_{589}=-25.2\left(\mathrm{c}=0.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{17}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$125.1325, found 125.1322.

GC traces

(R)-3-cyclopentylcyclohex-1-ene(3m)

Colorless oil. $56 \mathrm{mg}, 93 \%$ isolated yield, $90 \% \mathrm{ee}$. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 60-0-1-170-5, RT: 64.47, 68.02, 68.73 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta_{\mathrm{H}} / \mathrm{ppm} \delta$ $5.74-5.56(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.44(\mathrm{~m}, 6 \mathrm{H})$, 1.32 - $1.10(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 131.3,127.0,45.7,40.9,30.7,30.2$, 28.5, 25.4, 25.4, 25.3, 21.8.
$[\alpha]^{25}{ }_{589}=-97.2\left(\mathrm{c}=0.34\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$151.1481, found 151.1483.

GC traces

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area $\left[p A^{*} s\right]$	Height [pA]	Area \%
1	64.473	BB	0.1672	244.15001	18.16501	45.66834
2	68.020	MM	0.1744	15.03534	1.43679	2.81236
3	68.732	BB	0.1775	275.43008	20.93190	51.51929

(R)-3-cyclohexylcyclohex-1-ene (3n)

Colorless oil. 92% NMR yield, 88% ee. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (Hydrodex $\beta-6$ TBDM column, Method: $60-0-1-170-0-10-200-5$, RT: $93.40,93.83,99.53,100.26 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ_{H} /ppm $5.73-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.57(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 7 \mathrm{H}), 1.54-1.42$ $(\mathrm{m}, 1 \mathrm{H}), 1.23-0.95(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 131.1,127.2,42.7,40.9$, 30.3, 29.9, 26.8, 25.8, 25.5, 22.2.
$[\alpha]^{25}{ }_{589}=-52.0\left(\mathrm{c}=0.36\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{21}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$165.1638, found 165.1638.

GC traces

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	93.398	BB	0.1423	185.14151	16.08185	28.70292
2	93.830	MM	0.1692	10.12377	$9.97490 \mathrm{e}-1$	1.56951
3	99.530	MM	0.1750	27.69049	2.63781	4.29292
4	100.263	BB	0.1639	422.07104	33.48516	65.43465

(R)-3-cyclobutylcyclohex-1-ene (3o)

Colorless oil. $48.3 \mathrm{mg}, 89 \%$ isolated yield, 92% ee. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 60-0-1-170-5, RT: 49.01, 49.88, $52.20,53.06 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ_{H} /ppm $5.73-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.54(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.88-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.42$ (m, 1H), 1.16 - $1.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm}$ 129.2, 127.0, 41.8, 41.18, 26.7, 26.5, 26.4, 25.4, 21.3, 18.1.
$[\alpha]^{25}{ }_{589}=-43.4\left(\mathrm{c}=0.03\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{17}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$137.1325, found 137.1328.

GC traces

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area \%
1	49.008	BB	0.1950	448.72110	29.50691	45.84940
2	49.875	MM	0.1984	16.75086	1.40741	1.71157
3	52.204	MM	0.1817	21.33775	1.95689	2.18025
4	53.063	BB	0.2043	491.87497	30.60146	50.25878

(R)-cyclohex-2-en-1-ylcycloheptane (3p)

Colorless oil, $86 \% e e .[\alpha]^{25}{ }_{589}=-20.0\left(c=0.11\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{23}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 179.1794, found 179.1797. Colorless oil isolated after derivatisation in corresponding epoxides. After treatment with mCPBA, 2-cycloheptyl-7-oxabicyclo[4.1.0]heptane (6p) is isolated as a mixture of diastereoisomericepoxides ($82: 18$). $67.8 \mathrm{mg}, 87 \%$ isolated yield (after two steps). The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 80-0-1-155-0-10-170-5, RT: 67.00, 67.54, 70.07, 70.53 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{\mathrm{H}} / \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 3.15-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.05(\mathrm{~m}, 0.18 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 0.82 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 1 \mathrm{H})$, $1.74-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.15(\mathrm{~m}, 2 \mathrm{H})$, $0.98-0.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 55.9,55.2,53.0,51.6,43.0,42.9$, $42.0,41.2,31.9,31.8,31.7,31.4,28.4,28.3,28.1,27.9,27.6,27.5,26.9,26.8,25.2,23.8,23.7,22.1$, 21.1, 17.6. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$195.1743, found 195.1744 .

GC traces

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area \%
1	67.002	BB	0.1515	173.11807	14.00114	16.21157
2	67.539	MM	0.1964	13.39177	1.13656	1.25407
3	70.073	MM	0.1835	62.61515	5.68822	5.86357
4	70.530	BB	0.1930	818.74231	51.41635	76.67079

(R)-3-methylcyclohept-1-ene (4a)

Volatile colorless oil. $33.2 \mathrm{mg}, 75 \%$ isolated yield, $91 \% \mathrm{ee}$. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (Hydrodex $\beta-6$ TBDM column, Method: 50-30-1-120-5-10-180-9, RT: 75.04, 75.77, 82.36, 83.38 min). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{H} / \mathrm{ppm} 5.77-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.54-5.39(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.02(\mathrm{~m}$, $2 H), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.16(\mathrm{~m}$, $1 \mathrm{H}), 1.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, Chloroform-d) $\delta_{\mathrm{C}} / \mathrm{ppm} 139.4,130.6,35.9,34.5$, 30.6, 28.9, 27.0, 23.2.
$[\alpha]^{25}{ }_{589}=+9.9\left(\mathrm{c}=0.13\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{15}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 111.1168$, found 111.1169 .

GC traces

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area \%
1	75.037	MM	0.2047	7.00677	$5.70579 \mathrm{e}-1$	1.53833
2	75.767	MM	0.3069	193.27498	10.49551	42.43321
3	82.364	MF	0.3062	244.17232	13.29194	53.60764
4	83.378	FM	0.3157	11.02638	$5.82189 \mathrm{e}-1$	2.42082

(R)-(2-(cyclopent-2-en-1-yl)ethyl)benzene(5a)

Colorless oil. $56.7 \mathrm{mg}, 82 \%$ isolated yield, 83% ee. The enantiomeric excess was determined by GC on a chiral stationary phase after derivatisation in corresponding epoxides (CP-Chiralsil-Dex-CB column, Method: 80-0-1-120-30-1-150-0-20-200-5, RT: 85.67, 87.06, $92.41,94.08 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta_{\mathrm{H}} / \mathrm{ppm} 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 5.77-5.67(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.58(\mathrm{~m}$, $3 H), 2.42-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.40(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta_{\mathrm{C}} / \mathrm{ppm} 142.8,134.9,130.5,128.4,128.3,125.6,45.2,37.9$, 34.3, 32.0, 29.8.
$[\alpha]^{25}{ }_{589}=-82.1\left(\mathrm{c}=0.13\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{+}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$173.1325, found 173.1321.

GC traces

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area \%
1	85.665	BB	0.2943	687.93622	27.49742	59.42108
2	87.064	MM	0.3536	65.92777	3.10786	5.69457
3	92.406	MM	0.2712	34.97562	2.14926	3.02105
4	94.078	MM	0.3213	368.89133	19.13802	31.86330

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 a}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}
 Nール

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}

$$
\begin{array}{lc}
\underset{\sim}{c} & \stackrel{0}{0} \\
\underset{\sim}{1} & \stackrel{y}{\top}
\end{array}
$$

mo
Ne

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}

\cdots ¢		
$\stackrel{\sim}{\mathrm{m}} \stackrel{\text { N }}{ }$	ペツ	
I		

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{3 d}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 d}$ in CDCl_{3}

mo

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 e}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 e}$ in CDCl_{3}

MON
NN

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 f}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 f}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 g}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 g}$ in CDCl_{3}

NMN	\bigcirc	
ল゙ゥペ	No	$\bigcirc \rightarrow 0$ ¢
		m

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3} \mathbf{h}$ in CDCl_{3}

${ }^{13} \mathbf{C} \mathbf{N M R}$ spectrum of $\mathbf{3} \mathbf{h}$ in CDCl_{3}
か
MON

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 i}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 i}$ in CDCl_{3}

mon
NN

Ph

${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{6} \mathbf{j}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{6 j}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 k}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 k}$ in CDCl_{3}

${ }^{19} \mathbf{F}$ NMR spectrum of $\mathbf{3 k}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 1}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 1}$ in CDCl_{3}

MON
NN

150	140	130	120	110	100	90	80	70	60	50	40	30	20
10													

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ spectrum of $\mathbf{3 m}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 m}$ in CDCl_{3}
$\stackrel{m}{\underset{\sim}{\underset{1}{\sim}} \underset{\sim}{\sim}}$
mo
No

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 n}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 n}$ in CDCl_{3}
$\stackrel{\stackrel{N}{\Gamma}}{\stackrel{N}{N}}$
MON
NN

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{3 o}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 o}$ in CDCl_{3}
Nั
N゚

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ spectrum of $\mathbf{6 p}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{6 p}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 a}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 a}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{5 a}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{5 a}$ in CDCl_{3}

2										
20	200	180	160	140	120	100	80	60	40	20

