Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2023

Electronic supplementary information for

Trimethylaluminum-Mediated One-Pot Peptide Elongation

Tomohiro Hattori*, Hisashi Yamamoto*

Correspondence to: thattori@isc.chubu.ac.jp; hyamamoto@isc.chubu.ac.jp;

Contents

1.	General Inf	formation	S3
2.	Neutralization of Amino Acid tert-Butyl Ester HCl Salts		
3.	Preparation of Fmoc-L-Ala-Cl and Fmoc-L-Val-Cl		
4.	Optimization for Dipeptide Synthesis		
5.	General Procedure of One-Pot Tripeptide Synthesis		
6.	General Procedure of One-Pot Tetrapeptide Synthesis		
7.	Procedure for Pentapeptide Synthesis		S44
	7.1	Pentapeptide Synthesis	S44
	7.2	One-Pot Pentapeptide Synthesis	S45
8.	Procedure for Time Course of Gas Generation		S51
9.	HPLC DataS52		
10.	NMR DataS56		

1. General Information

NMR spectra were recorded on a JEOL 400SS spectrometer operating at 400 MHz and 100 MHz for 1 H and 13 C acquisitions, respectively. Chemical shifts are reported in ppm with a solvent resonance as an internal standard (1 H NMR; tetramethylsilane as internal standard, indicating 0 ppm, 13 C NMR; chloroform as internal standard, indicating 77.0 ppm). Data is reported as follows: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet; coupling constants in Hz; integration. FT-IR spectra were recorded with a Bruker ALPHA (Eco-ATR) spectrometer. Specific rotation was measured with an ATAGO AP-300 digital polarimeter. MS spectra were recorded with a Bruker micrOTOF-12 mass spectrometer with electrospray ionization time-of flight (ESI-TOF) for HRMS measurements. TLC analysis was performed on commercial glass plates bearing a 0.25 mm layer of Merck KGaA TLC silica gel 60 F₂₅₄. Silica gel chromatography was conducted with silica gel 60N (KANTO CHEMICAL, spherical, neutral, 40-50 or 63-210 μ m).

Solvent; Anhydrous CH₂Cl₂ was dried with Glass Contour solvent purification system.

Chemical; Amino acids and their derivatives were purchased from Watanabe Chemical Ind., Ltd. and Tokyo Chemical Industry Co. Ltd (TCI) and Sigma-Aldrich. Trimethylaluminum 2M in Hexane (Sigma-Aldrich), Trifluoromethanesulfonic Acid (TCI), Thionyl Chloride (Fujifilm Wako Pure Chemical Corporation).

Caution

Although trimethylaluminum is a pyrophoric combustible reagent, it is hardly hazardous because of the hexane solution was used.

While, close attention should be paid for using in plants scale.

2. Neutralization of Amino Acid tert-Butyl Ester HCl Salts

A flame-dried 300 mL round-bottom flask with a magnetic stirring bar was charged with amino acid *tert*-butyl ester HCl salt (5 g), Amberlyst A21 (10 g), and dichloromethane. The resulting mixture was stirred at room temperature for 4 h, and filtered through a glass filter with dichloromethane. Then the filtrate was concentrated in *vacuo* in a water bath (>70 Torr, without heating), and the residue was transferred into 30 mL vials using a pipette, and further concentrated in *vacuo* at ambient temperature for 4 h. The free amines were stored in a freezer.

3. Preparation of Fmoc-L-Ala-Cl and Fmoc-L-Val-Cl

To a solution of Fmoc-L-Ala-OH (311 mg, 1.00 mmol) or Fmoc-L-Val-OH (339 mg, 1.00 mmol) in DCM (7.00 mL), SOCl₂ (0.58 mL, 8.00 mmol) was added slowly under N_2 atmosphere at 0 °C. Then, the mixture was vigorously stirred at room temperature. After 3 h, the solvent and excess SOCl₂ were removed under vacuum. DCM (10 mL) was added again and evaporated to completely remove SOCl₂. The crude product was washed with DCM to give the Fmoc-L-Ala-Cl or Fmoc-L-Val-OH as a white solid, which was used directly without further purification.

The product was too unstable to be stored for more than 12 h.

4. Optimization for Dipeptide Synthesis

Table S: Effects of Additives for Dipeptide Synthesis

Metal (2 equiv)	Temp. (°C)	Yield (%)
ZnMe ₂	r.t.	trace
Ti(O <i>i</i> -Pr) ₄	r.t.	trace
11(0 <i>t</i> -F1) ₄	1.1.	H-Phe-Oi-Pr was observed
TiCl ₄	r.t.	trace
$MgCl_2$	r.t.	trace
ZrCl ₄	r.t.	trace
DIBAL	r.t.	trace
Et ₂ AlCl	r.t.	trace
AlMe ₃	r.t.	67%
AlEt ₃	r.t.	55%
Al(i-Bu) ₃	r.t.	12%
AlMe ₃	50 °C	57%
AlMe ₃	0 °C	77%

5. General Procedure for One-Pot Tripeptide Synthesis

General procedure 1: A mixture of L-amino acid (0.250 mmol), trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), and dry DCM (1 mL) in a flame-dried 20 mL test tube equipped with a magnetic stirring bar was stirred vigorously for 1 h at 0 °C under N₂ atmosphere. Then, L-amino acid *tert*-butyl ester (0.500 mmol) was added to the above reaction solution, and t mixture was allowed to stir vigorously under N₂ atmosphere at room temperature. After 24 h, Fmoc-L-amino acid chloride and pivalic acid (2.55 mg, 0.025 mmol) were added to the reaction solution, and stirring was continued under N₂ atmosphere at room temperature for another 24 h. The reaction mixture was then diluted with CHCl₃ (4.50 mL) and transferred to a SiO₂ column using a pipette; the used test tube and pipette were washed with CHCl₃ (2 x 4.00 mL). The reaction mixture was purified by flash column chromatography (50–100% EtOAc in hexane) to provide the corresponding tripeptide as a white solid.

Fmoc-L-Ala-L-Val-Ot-Bu (5a) was prepared following General Procedure 1 using H-L-Ala-OH (22.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (56% AcOEt in hexane) to provide the title

compound as a white solid in 93% yield with >20:1 dr (125 mg).

Gram-scale synthesis;

A mixture of H-L-Ala-OH (265 mg, 3.00 mmol), trimethylaluminum 2M in hexane (3.00 mL, 6.00 mmol), and dry DCM (10 mL) in a flame-dried 50 mL flask equipped with a magnetic stirring bar was stirred vigorously for 1 h at 0 °C under N_2 atmosphere. Then, L-Val-Ot-Bu (1.04 g, 6.00 mmol) was added to the above reaction solution. The mixture was allowed to stir vigorously under N_2 atmosphere at room temperature. After 24 h, Fmoc-L-Ala-Cl (2.96 g, 9.00 mmol) and pivalic acid (30.6 mg, 0.300 mmol) were added to the reaction solution, and stirring was continued under N_2 atmosphere at room temperature for 24 h. The reaction mixture was then diluted with CHCl₃ (7.50 mL), transferred onto SiO₂ column using a pipette, and the used test tube and pipette were washed with CHCl₃ (2 x 4.00 mL). The reaction mixture was purified by flash column chromatography (56% AcOEt in hexane) to provide the title compound as a white solid in 81% yield with >20:1 dr (1.31 g).

R_f = 0.35 (50% AcOEt in hexane). M.p. 175–180 °C. [α]_D²² = -32.4 (c 1.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.58 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.31–7.26 (m, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 6.93 (br d, J = 6.9 Hz, 1H, N \underline{H}), 6.85 (br d, J = 8.2 Hz, 1H, N \underline{H}), 5.74 (br d, J = 7.3 Hz, 1H, N \underline{H}), 4.63 (quin, J = 7.1 Hz, 1H, C \underline{H} CH₃), 4.43–4.36 (m, 4H, C \underline{H} CH₃ and C \underline{H} CH(CH₃)₂ and C₁₂H₈CHC \underline{H} 2OCONHCHCH₃), 4.20 (t, J = 7.1 Hz, 1H, C₁₂H₈C \underline{H} CH₂OCONH), 2.18–2.10 (m, 1H, CHC \underline{H} (CH₃)₂), 1.45 (s, 9H, CO₂C(C $\underline{H}_{\underline{3}}$)₃), 1.40–1.38 (m, 6H, CHC $\underline{H}_{\underline{3}}$) and CHC $\underline{H}_{\underline{3}}$), 0.89 (d, J = 8.0 Hz, 3H, CHCH(C $\underline{H}_{\underline{3}}$)₂), 0.87 (d, J = 8.0 Hz, 3H, CHCH(C $\underline{H}_{\underline{3}}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.7, 170.7, 155.9, 143.8(2C), 141.3(2C), 127.7(2C), 127.0(2C), 125.1(2C), 119.9(2C), 82.0, 67.1, 57.5, 50.4, 48.9, 47.1, 31.3, 28.0 (3C), 19.1, 18.8, 18.3, 17.6. IR (thin film, cm⁻¹) 3304, 3066, 2974, 2934, 1732, 1703, 1674, 1637, 1516, 1449, 1393, 1369, 1310, 1253, 1218, 1149, 1108, 1049, 756. HRMS (ESI) calculated for C₃₀H₃₉N₃O₆Na [M+Na]⁺ m/z 560.2691, found 560.2736.

Fmoc-L-Ala-L-Val-L-Val-Ot-Bu (5b) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After

24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N_2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (35% AcOEt in hexane) to provide the title compound as a white solid in 88% yield with >20:1 dr (124 mg).

R_f = 0.49 (40% AcOEt in hexane). M.p. 165–170 °C. $[\alpha]_D^{22} = -35.4$ (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.4 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.58 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.36 (t, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.28–7.24 (m, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.19 (br d, J = 8.7 Hz, 1H, N \underline{H}), 7.10 (br d, J = 8.7 Hz, 1H, N \underline{H}), 6.19 (br d, J = 8.0 Hz, 1H, N \underline{H}), 4.55–4.47 (m, 3H, C \underline{H} CH₃ and C \underline{H} CH(CH₃)₂ and C \underline{H} CH(CH₃)₂), 4.39–4.29 (m, 2H, C₁₂H₈CHC $\underline{H}_{\underline{d}}$ OCONH), 4.19 (t, J = 7.4 Hz, 1H, C₁₂H₈C \underline{H} CH₂OCONH), 2.19–2.00 (m, 2H, CHC \underline{H} (CH₃)₂ and CHC \underline{H} (CH₃)₂), 1.43 (s, 9H, CO₂C(C $\underline{H}_{\underline{d}}$)₃), 1.36 (d, J = 6.9 Hz, 3H, CHC $\underline{H}_{\underline{d}}$), 0.96 (d, J = 6.6 Hz, 3H, CHCH(C $\underline{H}_{\underline{d}}$)₂), 0.93 (d, J = 6.6 Hz, 3H, CHCH(C $\underline{H}_{\underline{d}}$)₂), 0.87 (d, J = 6.6 Hz, 3H, CHCH(C $\underline{H}_{\underline{d}}$)₂), 0.85 (d, J = 6.6 Hz, 3H, CHCH(C $\underline{H}_{\underline{d}}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 171.2, 170.8, 156.0, 143.8(2C), 141.2(2C), 127.6(2C), 127.0(2C), 125.2, 125.1, 119.8(2C), 81.8, 67.1, 58.7, 57.4, 50.3, 47.0, 31.3, 31.1, 27.9(3C), 19.1, 18.9, 18.8, 18.4, 17.6. IR (thin film, cm⁻¹) 3301, 3054, 2971, 2931, 1731, 1703, 1674, 1635, 1515, 1444, 1390, 1361, 1301, 1241, 1218, 1149, 1108, 1049, 753. HRMS (ESI) calculated for C₃₂H₄₃N₃O₆Na [M+Na]⁺ m/z 588.3049, found 588.3059.

Fmoc-L-Ala-L-Leu-L-Val-Ot-Bu (5c) was prepared following General Procedure 1 using H-L-Leu-OH (32.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 91% yield with >20:1 dr (132 mg).

R_f = 0.66 (50% AcOEt in hexane). M.p. 85–90 °C. $[\alpha]_D^{20}$ = +56.8 (c 1.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.59 (d, J = 7.6 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.39–7.25 (m, 5H, C₁₂<u>H</u>₈CHCH₂OCONH and N<u>H</u>), 7.09 (br d, J = 8.0 Hz, 1H, N<u>H</u>), 6.18 (br d, J = 8.2 Hz, 1H, N<u>H</u>), 4.70 (quin, J = 6.9 Hz, 1H, C<u>H</u>CH₃), 4.51–4.37 (m, 3H, C<u>H</u>CH(CH₃)₂ and C₁₂H₈CHC<u>H</u>₂OCONHCHCH₃), 4.30 (t, J = 7.3 Hz, 1H, C<u>H</u>CH₂CH(CH₃)₂), 4.19 (t, J = 7.1 Hz, 1H, C₁₂H₈C<u>H</u>CH₂OCONH), 2.17–2.08 (m, 1H, CHC<u>H</u>(CH₃)₂), 1.72–1.48 (m, 3H,

CHC \underline{H}_2 CH(CH₃)₂ and CHCH₂C \underline{H} (CH₃)₂), 1.43 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.35 (d, J=6.9 Hz, 3H, CHC \underline{H}_3), 0.89–0.84 (m, 12H, CHCH(C \underline{H}_3)₂ and CHCH₂CH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 172.1, 170.9, 156.0, 143.9, 143.8, 141.2, 141.1, 127.5(2C), 127.0(2C), 125.3, 125.2, 119.8(2C), 81.7, 67.1, 57.3, 51.8, 50.1, 47.0, 41.2, 31.5, 27.9(3C), 24.6, 22.5, 22.3, 19.1, 18.8, 17.5. IR (thin film, cm⁻¹) 3286, 3065, 2962, 2933, 2873, 1705, 1645, 1530, 1449, 1392, 1368, 1312, 1226, 1150, 1109, 1078, 1042, 755. HRMS (ESI) calculated for C₃₃H₄₅N₃O₆Na [M+Na]⁺ m/z 602.3162, found 602.3206.

Fmoc-L-Ala-L-Ile-L-Val-Ot-Bu (5d) was prepared following General Procedure 1 using H-L-Ile-OH (32.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (33% AcOEt in hexane) to provide the title compound as a white solid in 86% yield with >20:1 dr (125 mg).

 $R_f = 0.29$ (33% AcOEt in hexane). M.p. 95–100 °C. $[\alpha]_D^{20} = -50.0$ (c 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.59 (d, J = 7.6 Hz, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH), 7.49 (br d, J = 8.9 Hz, 1H, $N\underline{H}$), 7.44 (br d, J = 8.7 Hz, 1H, $N\underline{H}$), 7.34 (t, J =7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.26–7.21 (m, 2H, $C_{12}H_8$ CHCH₂OCONH), 6.50 (br d, J = 8.3Hz, 1H, N<u>H</u>), 4.66–4.57 (m, 2H, C<u>H</u>CH(CH₃)CH₂CH₃ and C<u>H</u>CH₃), 4.52 (dd, J = 5.0 Hz and 8.9 Hz, 1H, $C\underline{H}CH(CH_3)_2$), 4.38–4.27 (m, 2H, $C_{12}H_8CHC\underline{H}_2OCONHCHCH_3$), 4.18 (t, J = 7.4 Hz, 1H, 2.15-2.04 C₁₂H₈CHCH₂OCONH), (m, 1H, $CHCH(CH_3)_2),$ 1.86 - 1.77 $CHC\underline{H}(CH_3)CH_2CH_3)$, 1.61–1.52 (m, 1H, $CHCH(CH_3)C\underline{H}_2CH_3)$, 1.40 (s, 9H, $CO_2C(C\underline{H}_3)_3$), 1.35 (d, $J = 7.1 \text{ Hz}, 3H, \text{CHC}\underline{H}_3$, 1.17–1.06 (m, 1H, CHCH(CH₃)C \underline{H}_2 CH₃), 0.94 (d, J = 6.6 Hz, 3H, $CHCH(CH_3)CH_2CH_3$), 0.88–0.81 (m, 9H, $CHCH(CH_3)_2$ and $CHCH(CH_3)CH_2CH_3$). ¹³C NMR (100) MHz, CDCl₃) δ 172.7, 171.5, 170.8, 156.1, 143.9, 143.8, 141.1 (2C), 127.5(2C), 126.9(2C), 125.2, 125.1, 119.8(2C), 81.6, 67.1, 57.8, 57.4, 50.2, 47.0, 37.3, 31.3, 27.9(3C), 25.1, 19.2, 18.8, 17.6, 15.2, 11.2. IR (thin film, cm⁻¹) 3285, 3064, 2965, 2876, 1727, 1703, 1642, 1526, 1449, 1392, 1368, 1252, 1220, 1150, 1109, 1043, 756. HRMS (ESI) calculated for $C_{33}H_{45}N_3O_6Na$ [M+Na]⁺ m/z 602.3158, found 602.3206.

Fmoc-L-Ala-L-Tle-L-Val-Ot-Bu (5e) was prepared following General Procedure 1 using H-L-Tle-OH (32.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (33% AcOEt in hexane) to provide the title compound as a white solid in 84% yield with >20:1 dr (122 mg).

R_f = 0.31 (33% AcOEt in hexane). M.p. 205–210 °C. [α]_D¹⁸ = –30.9 (c 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.61 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.57 (br d, J = 8.9 Hz, 1H, N \underline{H}), 7.37–7.33 (m, 3H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH and N \underline{H}), 7.24 (br t, J = 7.3 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 6.72 (br d, J = 8.7 Hz, 1H, N \underline{H}), 4.78 (d, J = 8.7 Hz, 1H, C \underline{H} (CH₃)₃), 4.67 (quin, J = 7.8 Hz, 1H, C \underline{H} CH₃), 4.50 (dd, J = 5.0 Hz and 8.7 Hz, C \underline{H} CH(CH₃)₂), 4.38–4.28 (m, 2H, C₁₂H₈CHC $\underline{H}_{\underline{\theta}}$ COCONHCHCH₃), 4.20 (t, J = 7.6 Hz, 1H, C₁₂H₈C \underline{H} CH₂OCONH), 2.10–2.02 (m, 1H, CHC \underline{H} (CH₃)₂), 1.38 (s, 9H, CO₂C(C $\underline{H}_{\underline{\theta}}$)₃), 1.35 (d, J = 7.8 Hz, 3H, CHC $\underline{H}_{\underline{\theta}}$), 1.03 (s, 9H, CH(C $\underline{H}_{\underline{\theta}}$)₃), 0.84 (d, J = 6.8 Hz, 3H, CHCH(C $\underline{H}_{\underline{\theta}}$)₂), 0.79 (d, J = 6.8 Hz, 3H, CHCH(C $\underline{H}_{\underline{\theta}}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 170.9, 170.6, 156.2, 143.9, 143.8, 141.1(2C), 127.5(2C), 126.9(2C), 125.2(2C), 119.7(2C), 81.5, 67.0, 60.3, 57.4, 50.2, 47.0, 34.3, 31.4, 27.9(3C), 26.6(3C), 19.1, 18.8, 17.7. IR (thin film, cm⁻¹) 3300, 2966, 1703, 1643, 1523, 1449, 1368, 1252, 1217, 1144, 1078, 753. HRMS (ESI) calculated for C₃₃H₄₅N₃O₆Na [M+Na]⁺ m/z 602.3174, found 602.3206.

Fmoc-L-Ala-L-Gly(*c*-Pent)-L-Val-O*t*-Bu (5f) was prepared following General Procedure 1 using H-L-Gly(*c*-Pent)-OH (35.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-O*t*-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature

for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 86% yield with >20:1 dr (127 mg).

R_f = 0.45 (50% AcOEt in hexane). M.p. 200–205 °C. [α]_D¹⁸ = -35.9 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.4 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.59 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.44 (br d, J = 8.7 Hz, 1H, N \underline{H}), 7.36 (t, J = 7.3 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.28–7.23 (m, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.18 (br d, J = 8.2 Hz, 1H, N \underline{H}), 6.32 (br d, J = 8.2 Hz, 1H, N \underline{H}), 4.62–4.58 (m, 1H, C \underline{H} CH₂CH₂CH₂)₂), 4.53–4.48 (m, 2H, C \underline{H} CH₃ and C \underline{H} CH(CH₃)₂), 4.39–4.27 (m, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH $\underline{H}_{\underline{\theta}}$ OCONH), 4.18 (t, J = 7.3 Hz, 1H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 2.30–2.09 (m, 2H, CHC \underline{H} (CH₂CH₂)₂ and CHC \underline{H} (CH₃)₂), 1.72–1.66 (m, 2H, CHCH(C $\underline{H}_{\underline{\theta}}$ CH₂CH₂)₂), 1.61–1.20 (m, 6H, CHCH(C $\underline{H}_{\underline{\theta}}$ CH₂CH₂)₂ and CHCH(CH₂CH₂)₂), 1.43 (s, 9H, CO₂C(C $\underline{H}_{\underline{\theta}}$)₃), 1.35 (d, J = 6.8 Hz, 3H, CHC \underline{H} (3), 0.87 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{\theta}}$)₂), 0.84 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{\theta}}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 171.6, 170.9, 156.1, 143.9, 143.8, 141.2(2C), 127.6(2C), 127.0(2C), 125.3, 125.2, 119.8(2C), 81.7, 67.1, 57.3(2C), 50.2, 47.0, 42.3, 31.4, 29.3, 29.1, 27.9(3C), 25.3, 25.0, 19.0, 18.8, 17.5. IR (thin film, cm⁻¹) 3229, 2961, 1705, 1644, 1524, 1444, 1361, 1221, 1217, 1141, 1075, 756. HRMS (ESI) calculated for C₃₄H₄₅N₃O₆Na [M+Na]⁺ m/z 614.3206, found 614.3208.

Fmoc-L-Val-L-Val-L-Val-Ot-Bu (5g) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Val-Cl (268 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (35% AcOEt in hexane) to provide the title compound as a white solid in 83% yield with >20:1 dr (123 mg).

R_f = 0.39 (33% AcOEt in hexane). M.p. 195–200 °C. [α]_D²² = –39.4 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.61–7.51 (m, 3H, C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 7.36–7.19 (m, 5H, C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 6.45 (br d, J = 9.4 Hz, 1H, N \underline{H}), 4.60 (t, J = 8.7 Hz, 1H, C \underline{H} CH(CH₃)₂), 4.52 (dd, J = 5.0 Hz and 9.0 Hz, 1H, C \underline{H} CH(CH₃)₂), 4.40 (dd, J = 7.3 Hz and 9.4 Hz, 1H, C \underline{H} CH(CH₃)₂), 4.25–4.14 (m, 3H, C₁₂H₈CHC \underline{H}_2 OCONH and C₁₂H₈C \underline{H} CH₂OCONH), 2.15–1.99 (m, 3H, CHC \underline{H} (CH₃)₂ and CHC \underline{H} (CH₃)₂), 1.43 (s, 9H, CO₂C(C \underline{H}_3)₃), 0.96–0.83 (m, 18H, CHCH(C \underline{H}_3)₂ and

CHCH($C\underline{H}_3$)₂ and CHCH($C\underline{H}_3$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.4, 171.0, 156.6, 144.0 143.9, 141.2, 141.1, 127.5(2C), 127.0(2C), 125.3, 125.2, 119.8(2C), 81.6, 67.0, 60.4, 58.6, 57.3, 47.1, 31.5, 31.3, 30.9, 28.0(3C), 19.1(2C), 18.9, 18.8, 18.4, 17.6. IR (thin film, cm⁻¹) 3294, 3061, 2975, 2931, 1735, 1701, 1676, 1634, 1515, 1448, 1393, 1361, 1315, 1255, 1215, 1149, 1105, 1045, 756. HRMS (ESI) calculated for $C_{34}H_{47}N_3O_6Na$ [M+Na]⁺ m/z 616.3363, found 616.3398.

Fmoc-L-Val-L-Leu-L-Val-Ot-Bu (5h) was prepared following General Procedure 1 using H-L-Leu-OH (32.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Val-Cl (268 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (30% AcOEt in hexane) to provide the title compound as a white solid in 84% yield with >20:1 dr (128 mg).

R_f = 0.39 (33% AcOEt in hexane). M.p. 205–210 °C. [α]_D²² = –35.4 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.62 (m, 5H, C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 7.38–7.23 (m, 5H, C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 6.60 (br d, J = 9.4 Hz, 1H, N \underline{H}), 4.79 (dd., J = 7.4 Hz and 15 Hz, C \underline{H} CH₂CH(CH₃)₂), 4.56 (dd, J = 4.8 Hz and 9.2 Hz, 1H, C \underline{H} CH(CH₃)₂), 4.50 (dd, J = 5.0 Hz and 8.2 Hz, 1H, C \underline{H} CH(CH₃)₂), 4.22–4.11 (m, 3H, C₁₂H₈CHC \underline{H}_2 OCONH and C₁₂H₈C \underline{H} CH₂OCONH), 2.15–1.99 (m, 2H, CHC \underline{H} (CH₃)₂ and CHC \underline{H} (CH₃)₂), 1.73–1.58 (m, 2H, CHC \underline{H}_2 CH(CH₃)₂),1.49–1.40 (m, 1H, CHCH₂C \underline{H} (CH₃)₂), 1.40 (s, 9H, CO₂C(C \underline{H}_3)₃), 0.98–0.79 (m, 18H, CHCH(C \underline{H}_3)₂ and CHCH(C \underline{H}_3)₂ and CHCH₂CH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 171.8, 171.2, 156.6, 144.1 143.8, 141.1(2C), 127.5(2C), 127.0(2C), 125.5, 125.3, 119.7(2C), 81.5, 67.1, 60.2, 57.2, 51.8, 47.1, 41.4, 31.6, 31.4, 27.9(3C), 24.5, 22.7, 22.3, 19.1, 19.0, 18.6, 17.5. IR (thin film, cm⁻¹) 3309, 3055, 2971, 1731, 1701, 1673, 1633, 1515, 1445, 1391, 1361, 1310, 1253, 1215, 1144, 1108, 1049, 756. HRMS (ESI) calculated for C₃₅H₄₉N₃O₆Na [M+Na]⁺ m/z 630.3519, found 630.3493.

Fmoc-L-Ala-L-Cha-L-Val-Ot-Bu (5i) was prepared following General Procedure 1 using H-L-Cha-OH (42.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 84% yield with >20:1 dr (130 mg).

 $R_f = 0.63$ (50% AcOEt in hexane). M.p. 205–210 °C. [α]_D¹⁸ = -35.9 (c 1.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 6.9 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.61–7.58 (m, 2H, $C_{12}H_{\delta}CHCH_{2}OCONH)$, 7.37 (t, J = 7.3 Hz, 2H, $C_{12}H_{\delta}CHCH_{2}OCONH)$, 7.29–7.26 (m, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH), 7.18 (br d, J = 8.9 Hz, 1H, N \underline{H}), 7.00 (br d, J = 7.8 Hz, 1H, N \underline{H}), 6.07 (d, J= 8.0 Hz, 1H, N<u>H</u>), 4.69 (quin., J = 7.3 Hz, 1H, C<u>H</u>CH₃), 4.50–4.39 (m, 3H, C₁₂H₈CHC<u>H</u>₂OCONH and $C\underline{H}CH(CH_3)_2$), 4.32–4.27 (m, 1H, $C\underline{H}CH_2CH_2CH_2CH_2CH_2CH_2CH_2$), 4.20 (t, J = 7.3 Hz, 1H, $C_{12}H_8CHCH_2OCONH)$, 2.15 - 2.101H, $CHCH(CH_3)_2),$ 1.71 - 1.00(m, (m, 11H, $CHCH_2CH(CH_2CH_2CH_2CH_2CH_2)$ and CHCH₂CH(CH₂CH₂CH₂CH₂CH₂) and $CHCH_2CH(C\underline{H}_2CH_2CH_2CH_2CH_2)$ and CHCH₂CH(CH₂CH₂CH₂CH₂CH₂CH₂) and $CHCH_2CH(CH_2CH_2CH_2CH_2CH_2)$ $CHCH_2CH(CH_2CH_2CH_2CH_2CH_2)$), 9H, and $CO_2C(CH_3)_3$, 1.36 (d, J = 7.3 Hz, 3H, $CHCH_3$), 0.89–0.79 (m, 8H, $CHCH(CH_3)_2$ and CHCH₂CH₂CH₂CH₂CH₂CH₂CH₂)). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 172.0, 170.8, 156.0, 143.8(2C), 141.1(2C), 127.6(2C), 127.0(2C), 125.2, 125.1, 119.8(2C), 81.7, 67.2, 57.3, 51.2, 50.2, 47.0, 39.8, 33.9, 33.2, 32.8, 31.5, 27.9(3C), 26.3, 26.0(2C), 19.1, 18.8, 17.5. IR (thin film, cm⁻¹) 3301, 2965, 1705, 1644, 1521, 1449, 1367, 1251, 1215, 1141, 1075, 753. HRMS (ESI) calculated for C₃₆H₄₉N₃O₆Na [M+Na]⁺ *m/z* 642.3519, found 642.3492.

Fmoc-L-Ala-Aib-L-Val-Ot-Bu (5j) was prepared following General Procedure 1 using H-Aib-OH (25.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N_2 atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N_2 atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N_2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (50% AcOEt in hexane) to provide the title compound as a white solid in 90% yield with >20:1 dr (124 mg).

R_f = 0.35 (50% AcOEt in hexane). M.p. 95–100 °C. $[\alpha]_D^{23} = -105.0$ (c 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.74 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.59–7.56 (m, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.39 (t, J = 7.3 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.31–7.27 (m, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 6.82–6.79 (m, 2H, N \underline{H} and N \underline{H}), 5.51 (d, J = 7.1 Hz, 1H, N \underline{H}), 4.41–4.37 (m, 3H, C \underline{H} CH₃ and C₁₂ \underline{H}_8 CHC \underline{H}_2 OCONH), 4.22–4.18 (m, 2H, C \underline{H} CH(CH₃)₂ and C₁₂ \underline{H}_8 C \underline{H} CH₂OCONH), 2.22–2.12 (m, 1H, CHC \underline{H} (CH₃)₂), 1.59 (s, 3H, C(C \underline{H}_3)₂), 1.56 (s, 3H, C(C \underline{H}_3)₂), 1.44 (s, 9H, CO₂C(C(\underline{H}_3)₃), 1.38 (d, J = 6.9 Hz, 3H, CHC \underline{H}_3), 0.91 (d, J = 6.8 Hz, 3H, CHCH(C(\underline{H}_3)₂), 0.87 (d, J = 6.8 Hz, 3H, CHCH(C(\underline{H}_3)₂)). ¹³C NMR (100 MHz, CDCl₃) & 173.8, 171.8, 170.9, 156.0, 143.7, 143.6, 141.2(2C), 127.7(2C), 127.0(2C), 125.0(2C), 119.9(2C), 81.8, 67.1, 57.6, 57.3, 50.9, 47.0, 31.3, 27.9(3C), 25.5, 24.7, 18.8, 18.5, 17.5. IR (thin film, cm⁻¹) 3313, 2973, 2937, 1716, 1668, 1511, 1450, 1390, 1368, 1315, 1245, 1157, 1117, 1077, 1033, 982, 755. HRMS (ESI) calculated for C₃₁H₄₁N₃O₆Na [M+Na]⁺ m/z 574.2893, found 574.2880.

Fmoc-L-Ala-L-(Me)Val-L-Val-Ot-Bu (5k) was prepared following General Procedure 1 using H-L-(Me)Val-OH (32.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 81% yield with >20:1 dr (117 mg).

R_f = 0.59 (50% AcOEt in hexane). M.p. 205–210 °C. [α]_D²² = -36.4 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.56 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.31–7.27 (m, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.09 (br d, J = 8.5 Hz, 1H, N \underline{H}), 6.71 (br s, 1H, N \underline{H}), 5.55 (d, J = 7.4 Hz, 1H, N \underline{H}), 4.41–4.18 (m, 5H, C \underline{H} CH₃ and C \underline{H} CH(CH₃)₂ and C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH and C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 2.55–2.46 (m, 1H, C(CH₃)C \underline{H} (CH₃)₂), 2.24–2.12 (m, 1H, CHC \underline{H} (CH₃)₂), 1.47 (s, 3H, C(C $\underline{H}_{\underline{g}}$)CH(CH₃)₂), 1.44 (s, 9H, CO₂C(C $\underline{H}_{\underline{g}}$)₃), 0.96–0.89 (m, 12H, C(CH₃)CH(C $\underline{H}_{\underline{g}}$)₂ and CHCH(C $\underline{H}_{\underline{g}}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 172.1, 170.8, 156.0, 143.7, 143.6, 141.2(2C), 127.7(2C), 127.0(2C), 125.0(2C), 119.9(2C), 81.7, 67.1, 64.2, 57.8, 50.9, 47.0, 33.5, 31.2, 27.9(3C), 18.9, 18.3, 18.0, 17.6, 17.1, 17.0. IR (thin film, cm⁻¹) 3301, 3065, 2971, 2944, 1721, 1703, 1676, 1635, 1515, 1441, 1393, 1360, 1311, 1251, 1218, 1149, 1107, 1049, 753. HRMS (ESI)

calculated for $C_{33}H_{45}N_3O_6Na [M+Na]^+ m/z 602.3174$, found 602.3186.

Fmoc-L-Ala-L-Val-L-Ala-Ot-Bu (5l) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Ala-Ot-Bu (72.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 92% yield with >20:1 dr (124 mg).

R_f = 0.46 (50% AcOEt in hexane). M.p. 170–175 °C. $[\alpha]_D^{22} = -31.4$ (c 1.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.57 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.30–7.26 (m, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 6.84 (br d, J = 8.3 Hz, 1H, N \underline{H}), 6.70 (br d, J = 6.6 Hz, 1H, N \underline{H}), 5.70 (d, J = 7.3 Hz, 1H, N \underline{H}), 4.48–4.35 (m, 5H, C \underline{H} CH₃ and C \underline{H} CH₂OCONH), 2.17–2.04 (m, 1H, CH₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONHCHCH₃), 4.20 (t, J = 7.1 Hz, 1H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 2.17–2.04 (m, 1H, CHC \underline{H} (CH₃)₂), 1.44 (s, 9H, CO₂C(C $\underline{H}_{\underline{\theta}}$)₃), 1.39 (d, J = 6.8 Hz, 3H, CHC $\underline{H}_{\underline{\theta}}$), 1.33 (d, J = 7.1 Hz, 3H, CHC $\underline{H}_{\underline{\theta}}$), 0.95 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{\theta}}$)₂), 0.92 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{\theta}}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 171.8, 170.2, 156.0, 143.8, 143.7, 141.2(2C), 127.7(2C), 127.0(2C), 125.1(2C), 120.0(2C), 82.0, 67.1, 58.3, 50.5, 48.7, 47.1, 31.3, 27.9(3C), 19.1, 18.7, 18.4, 18.0. IR (thin film, cm⁻¹) 3301, 3065, 2974, 1731, 1705, 1664, 1633, 1515, 1449, 1399, 1369, 1311, 1251, 1212, 1145, 1107, 1045, 756. HRMS (ESI) calculated for C₃₀H₃₉N₃O₆Na [M+Na]⁺ m/z 560.2691, found 560.2639.

Fmoc-L-Ala-L-Val-L-Leu-Ot-Bu (5m) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Leu-Ot-Bu (93.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were

added into the reaction solution and stirring under N_2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 84% yield with >20:1 dr (122 mg).

R_f = 0.27 (33% AcOEt in hexane). M.p. 110–115 °C. [α]_D²³ = –38.9 (c 1.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.56 (dd, J = 2.5 Hz and 7.6 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.40 (br d, J = 8.9 Hz, 1H, N \underline{H}), 7.36–7.21 (m, 5H, C₁₂ \underline{H}_{δ} CHCH₂OCONH and N \underline{H}), 6.37 (d, J = 8.2 Hz, 1H, N \underline{H}), 4.60–4.51 (m, 3H, C \underline{H} CH₂CH(CH₃)₂ and C \underline{H} CH₃), 4.32–4.30 (m, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 4.17 (t, J = 7.3 Hz, 1H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 2.14–2.02 (m, 1H, CHC \underline{H} (CH₃)₂), 1.62–1.40 (m, 3H, CHC \underline{H} ₂CH(CH₃)₂ and CHCH₂C \underline{H} (CH₃)₂), 1.40 (s, 9H, CO₂C(C \underline{H} ₃)₃), 1.37 (d, J = 6.8 Hz, 3H, CHC \underline{H} ₃), 0.95 (d, J = 6.6 Hz, 3H, CHCH(C \underline{H} ₃)₂), 0.86–0.83 (m, 6H, CHCH₂CH(C \underline{H} ₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 171.8, 170.9, 156.1, 143.8, 143.7, 141.1 (2C), 127.5 (2C), 126.9 (2C), 125.2 (2C), 119.8 (2C), 81.6, 67.1, 58.4, 51.4, 50.3, 47.0, 41.3, 31.3, 27.8 (3C), 24.8, 22.6, 22.0, 19.0 (2C), 18.4. IR (thin film, cm⁻¹) 3291, 3066, 2961, 2934, 2877, 1725, 1703, 1643, 1528, 1450, 1361, 1301, 1252, 1227, 1151, 1107, 1075, 1041, 753. HRMS (ESI) calculated for C₃₃H₄₅N₃O₆Na [M+Na]⁺ m/z 602.3175, found 602.3184.

Fmoc-L-Ala-L-Val-L-Ile-Ot-Bu (5n) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Ile-Ot-Bu (93.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 78% yield with >20:1 dr (113 mg).

R_f = 0.35 (30% AcOEt in hexane). M.p. 90–95 °C. [α]_D²³ = -34.9 (c 1.09, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.58 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.35 (t, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.27–7.18 (m, 3H, C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 6.25 (d, J = 8.0 Hz, 1H, N \underline{H}), 4.57–4.51 (m, 3H, C \underline{H} CHCH(CH₃)CH₂CH₃ and C \underline{H} CH(CH₃)₂ and C \underline{H} CH₃, 4.38–4.29 (m, 2H, C₁₂ \underline{H}_8 CHC \underline{H}_2 OCONH), 4.19 (t, J = 7.3 Hz, 1H, C₁₂ \underline{H}_8 C \underline{H} CH₂OCONH), 2.11–2.01 (m, 1H, CHC \underline{H} (CH₃)₂), 1.88–1.78 (m, 1H, CHC \underline{H} (CH₃)CH₂CH₃), 1.42 (s, 9H, CO₂C(C(\underline{H}_3)₃), 1.36 (d, J = 6.8 Hz, 3H, CHC \underline{H}_3), 1.19–1.08

(m, 1H, CHCH(CH₃)C \underline{H}_2 CH₃), 0.97–0.93 (m, 7H, CHCH(CH₃)C \underline{H}_2 CH₃ and CHCH(C \underline{H}_3)CH₂CH₃ and CHCH(CH₃)CH₂CH₃), 0.86–0.82 (m, 6H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 171.0, 170.7, 156.1, 143.8(2C), 141.2(2C), 127.6(2C), 127.0(2C), 125.2, 125.1, 119.8(2C), 81.8, 67.1, 58.6, 56.8, 50.3, 47.0, 38.0, 31.2, 27.9(3C), 25.1, 19.1, 19.0, 18.4, 15.2, 11.6. IR (thin film, cm⁻¹) 3293, 3069, 2965, 2933, 2875, 1728, 1703, 1643, 1526, 1450, 1368, 1301, 1252, 1227, 1151, 1107, 1078, 1043, 756. HRMS (ESI) calculated for C₃₃H₄₅N₃O₆Na [M+Na]⁺ m/z 602.3175, found 602.3206.

Fmoc-L-Ala-L-Val-L-Tle-Ot-Bu (50) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Tle-Ot-Bu (93.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 85% yield with >20:1 dr (123 mg).

R_f = 0.61 (50% AcOEt in hexane). M.p. 195–200 °C. [α]_D²⁰ = -39.0 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.59–5.57 (m, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.42 (br d, J = 9.2 Hz, 1H, N \underline{H}), 7.36 (t, J = 7.4 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.27–7.23 (m, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.13 (br d, J = 8.7 Hz, 1H, N \underline{H}), 6.36 (d, J = 8.3 Hz, 1H, N \underline{H}), 4.64–4.28 (m, 5H, C \underline{H} C(CH₃)₃ and C \underline{H} CH(CH₃)₂ and C \underline{H} CH₃ and C₁₂H₈CHC \underline{H}_{δ} OCONH), 4.19 (t, J = 7.3 Hz, 1H, C₁₂H₈C \underline{H} CH₂OCONH), 2.08–1.98 (m, 1H, CHC \underline{H} (CH₃)₂), 1.42 (s, 9H, CO₂C(C \underline{H}_{δ})₃), 1.36 (d, J = 7.1 Hz, 3H, CHC \underline{H}_{δ}), 0.94–0.93 (m, 15H, CHC(C \underline{H}_{δ})) and CHCH(C \underline{H}_{δ})₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 170.8, 170.3, 156.0, 143.8(2C), 141.2(2C), 127.6(2C), 127.0(2C), 125.1(2C), 119.9(2C), 82.0, 67.1, 60.5, 58.7, 50.4, 47.1, 34.9, 31.1, 28.0(3C), 26.6(3C), 19.0, 18.8, 18.4. IR (thin film, cm⁻¹) 3277, 3065, 2966, 2875, 1725, 1707, 1644, 1525, 1449, 1391, 1366, 1251, 1221, 1150, 1109, 1043, 756. HRMS (ESI) calculated for C₃₃H₄₅N₃O₆Na [M+Na]⁺ m/z 602.3206, found 602.3217.

Fmoc-L-Ala-L-Val-Aib-Ot-Bu (5p) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, Aib-Ot-Bu (79.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 90% yield with >20:1 dr (124 mg).

R_f = 0.43 (50% AcOEt in hexane). M.p. 125–130 °C. $[\alpha]_D^{23} = -89.0$ (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.58–7.55 (m, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.38 (t, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.30–7.26 (m, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 6.93 (br d, J = 8.5 Hz, 1H, N \underline{H}), 6.77 (br s, 1H, N \underline{H}), 5.75 (br d, J = 7.3 Hz, 1H, N \underline{H}), 4.41–4.32 (m, 3H, C \underline{H} CH₃ and C₁₂ \underline{H}_8 CHC \underline{H}_2 OCONH), 4.28–4.25 (m, 1H, C \underline{H} CH(CH₃)₂), 4.20 (t, J = 7.4 Hz, 1H, C₁₂ \underline{H}_8 C \underline{H} CH₂OCONH), 2.16–2.07 (m, 1H, CHC \underline{H} (CH₃)₂), 1.43 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.38 (d, J = 6.9 Hz, 3H, CHC \underline{H}_3), 0.96–0.91 (m, 6H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 172.4, 169.6, 156.0, 143.8, 143.7, 141.2 (2C), 127.6 (2C), 127.1 (2C), 125.0 (2C), 119.9 (2C), 81.6, 67.1, 58.5, 56.9, 50.5, 47.0, 31.1, 27.8 (3C), 24.5, 24.2, 19.1, 18.8, 18.0. IR (thin film, cm⁻¹) 3297, 2975, 2931, 1715, 1666, 1513, 1450, 1393, 1369, 1315, 1244, 1155, 1117, 1075, 1033, 982, 755. HRMS (ESI) calculated for C₃₁H₄₁N₃O₆Na [M+Na]⁺ m/z 574.2893, found 574.2921.

Fmoc-L-Val-Aib-L-Val-Ot-Bu (5q) was prepared following General Procedure 1 using H-Aib-OH (25.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N_2 atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N_2 atmosphere at ambient temperature. After 24 h, Fmoc-L-Val-Cl (268 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N_2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (33% AcOEt in hexane) to provide the title compound as a white solid in 91% yield with >20:1 dr (132 mg).

R_f = 0.31 (33% AcOEt in hexane). M.p. 135–140 °C. [α]_D²² = –45.4 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.3 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.57 (d, J = 7.4 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.38 (t, J = 7.6 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.31–7.26 (m, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 6.81–7.76 (m, 2H, N<u>H</u> and N<u>H</u>), 5.50 (d, J = 8.2 Hz, 1H, N<u>H</u>), 4.45–4.29

(m, 3H, $C_{12}H_8CHC\underline{H_2}OCONH$ and $C\underline{H}CH(CH_3)_2$), 4.20 (dd, J=6.9 Hz and 7.1 Hz, 1H, $C\underline{H}CH(CH_3)_2$), 3.96 (t, J=7.3 Hz, 1H, $C_{12}H_8C\underline{H}CH_2OCONH$), 2.21–2.08 (m, 2H, $CHC\underline{H}(CH_3)_2$) and $CHC\underline{H}(CH_3)_2$), 1.61 (s, 3H, $C(CH_3)_2$), 1.57 (s, 3H, $C(CH_3)_2$), 1.43 (s, 9H, $CO_2C(C\underline{H_3})_3$), 0.98–0.85 (m, 12H, $CHCH(C\underline{H_3})_2$) and $CHCH(C\underline{H_3})_2$). ¹³C NMR (100 MHz, $CDCI_3$) δ 173.7, 170.8, 170.7, 156.4, 143.7(2C), 141.2(2C), 127.6(2C), 127.0(2C), 125.0, 124.9, 119.8(2C), 81.8, 67.0, 60.7, 57.6, 57.4, 47.1, 31.3, 31.0, 27.9(3C), 25.7, 24.4, 19.1, 18.8, 17.9, 17.5. IR (thin film, cm⁻¹) 3294, 3065, 2969, 2934, 1703, 1674, 1647, 1530, 1449, 1393, 1310, 1253, 1221, 1149, 1108, 1049, 756. HRMS (ESI) calculated for $C_{33}H_{45}N_3O_6Na$ [M+Na]⁺ m/z 602.3206, found 602.3213.

Fmoc-L-Ala-L-Val-L-Pro-Ot-Bu (5r) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Pro-Ot-Bu (85.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (50% AcOEt in hexane) to provide the title compound as a white solid in 68% yield with >20:1 dr (95.8 mg).

R_f = 0.35 (50% AcOEt in hexane). M.p. 80–85 °C. [α]_D²³ = -45.7 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.58 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.31–7.27 (m, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 6.98 (br d, J = 8.7 Hz, 1H, N \underline{H}), 5.65 (br d, J = 7.6 Hz, 1H, N \underline{H}), 4.64 (dd, J = 5.8 Hz and 8.7 Hz, 1H, NCHCO₂C(CH₃)₃), 4.39–4.32 (m, 4H, C \underline{H} CH(CH₃)₂ and C \underline{H} CH₃ and C₁₂H₈CHC \underline{H} 2OCONH), 4.20 (t, J = 7.1 Hz, 1H, C₁₂H₈C \underline{H} CH₂OCONH), 3.78–3.61 (m, 2H, N(C \underline{H} 2CH₂CH₂C)), 2.24–1.87 (m, 5H, CHC \underline{H} (CH₃)₂ and N(CH₂C \underline{H} 2CH₂C) and N(CH₂CH₂C \underline{H} 2C)), 1.44 (s, 9H, CO₂C(C \underline{H} 3)₃), 1.36 (d, J = 7.1 Hz, 3H, CHC \underline{H} 3), 1.03 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H} 3)₂), 0.93 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H} 3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 171.0, 170.1, 155.6, 143.8, 143.7, 141.2 (2C), 127.6 (2C), 127.0 (2C), 125.1 (2C), 119.8 (2C), 81.3, 66.9, 59.7, 55.4, 50.4, 47.3, 47.0, 31.3, 29.0, 28.0 (3C), 24.8, 19.4, 18.9, 17.5. IR (thin film, cm⁻¹) 3301, 2967, 2935, 2875, 1725, 1703, 1645, 1525, 1441, 1371, 1305, 1241, 1225, 1150, 1107, 1078, 1043, 756. HRMS (ESI) calculated for C₃₂H₄₁N₃O₆Na [M+Na]⁺ m/z 586.2893, found 586.2889.

Fmoc-L-Ala-L-Phe-L-Val-Ot-Bu (5s) was prepared following General Procedure 1 using H-L-Phe-OH (41.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (35% AcOEt in hexane) to provide the title compound as a white solid in 94% yield with >20:1 dr (144 mg).

R_f = 0.29 (33% AcOEt in hexane). M.p. 170–175 °C. [α]_D²⁰ = -70.0 (c 1.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.58 (t, J = 8.9 Hz, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.46 (br d, J = 7.8 Hz, 1H, N \underline{H}), 7.38–7.32 (m, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.27–7.23 (m, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.17–7.05 (m, 5H, CHCH₂C₆ $\underline{H}_{\underline{g}}$), 7.07 (br d, J = 6.9 Hz, 1H, N \underline{H}), 6.17 (d, J = 8.0 Hz, 1H, N \underline{H}), 4.98 (dd, J = 6.9 Hz and 14 Hz 1H, C \underline{H} CH₂Ph), 4.51 (quin, J = 7.3 Hz 1H, C \underline{H} CH₃), 4.44–4.27 (m, 3H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH, C \underline{H} CH(CH₃)₂), 4.18 (t, J = 7.1 Hz, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 3.08 (dd, J = 6.9 Hz and 14 Hz, 1H, CHC $\underline{H}_{\underline{g}}$ Ph), 2.99 (dd, J = 6.9 Hz and 14 Hz, 1H, CHC $\underline{H}_{\underline{g}}$ Ph), 2.09–2.03 (m, 1H, CHC \underline{H} (CH₃)₂), 1.41 (s, 9H, CO₂C(C $\underline{H}_{\underline{g}}$)₃), 1.32 (d, J = 7.3 Hz, 3H, CHC $\underline{H}_{\underline{g}}$), 0.84 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{g}}$)₂). 0.81 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{g}}$)₂). 13C NMR (100 MHz, CDCl₃) δ 172.5, 170.7, 170.4, 155.9, 143.8(2C), 141.1(2C), 136.3, 129.2(2C), 128.3(2C), 127.5(2C), 126.9 (2C), 126.7, 125.1 (2C), 119.8 (2C), 81.7, 67.1, 57.4, 54.3, 50.2, 46.9, 38.4, 31.4, 27.9 (3C), 19.0, 18.7, 17.6. IR (thin film, cm⁻¹) 3293, 3064, 2969, 2933, 1706, 1645, 1530, 1477, 1450, 1393, 1313, 1221, 1143, 1110, 1078, 1045, 757. HRMS (ESI) calculated for C₃₆H₄₃N₃O₆Na [M+Na]⁺ m/z 636.3022, found 636.3049.

Fmoc-L-Ala-L-Ala(1-Naph)-L-Val-Ot-Bu (5t) was prepared following General Procedure 1 using H-L-Ala(1-Naph)-OH (53.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-

Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 86% yield with >20:1 dr (143 mg). $R_f = 0.68$ (50% AcOEt in hexane). M.p. 210–215 °C. $[\alpha]_D^{20} = -79.0$ (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 1H, CHCH₂NaphH), 7.78–7.74 (m, 3H, C₁₂ H_8 CHCH₂OCONH and CHCH₂Naph<u>H</u>), 7.66-7.37 (m, 7H, C₁₂<u>H</u>₈CHCH₂OCONH and CHCH₂Naph<u>H</u>), 7.32-7.25 (m, 4H, $C_{12}H_8$ CHCH₂OCONH and CHCH₂Naph \underline{H}), 6.94 (br d, J = 7.1 Hz, 1H, N \underline{H}), 6.46 (br d, J = 7.8Hz, 1H, NH), 5.47 (d, J = 7.8 Hz, 1H, NH), 4.88 (quin., J = 7.1 Hz, 1H, CHCH₃), 4.40–4.26 (m, 4H, $C\underline{H}CH_2Naph$ and $C_{12}H_8CHC\underline{H}_2OCONH$ and $C\underline{H}CH(CH_3)_2)$, 4.17 (t, J=6.9 Hz, $C_{12}H_8C\underline{H}CH_2OCONH$), 3.50 (d, J = 6.9 Hz, 2H, $CHC\underline{H}_2Naph$), 2.06–2.02 (m, 1H, $CHC\underline{H}(CH_3)_2$), 1.39 (s, 9H, $CO_2C(CH_3)_3$), 1.27 (d, J = 7.1 Hz, 3H, $CHCH_3$), 0.80 (d, J = 6.2 Hz, 3H, $CHCH(CH_3)_2$), 0.78 (d, J = 6.2 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 170.6, 170.0, 155.8, 143.8, 143.7, 141.2(2C), 134.0, 132.4, 132.0, 128.7, 127.7(2C), 127.6(2C), 127.0(2C), 125.8(2C), 125.4, 125.2, 125.1, 123.5, 119.9(2C), 81.8, 67.0, 57.5, 54.1, 50.3, 47.0, 35.3, 31.4, 27.9(3C), 18.8, 18.6, 17.7. IR (thin film, cm⁻¹) 3290, 3061, 2966, 2931, 1705, 1644, 1531, 1475, 1453, 1391, 1313, 1221, 1143, 1110, 1078, 1045, 757. HRMS (ESI) calculated for $C_{40}H_{45}N_3O_6Na$ [M+Na]⁺ m/z686.3206, found 686.3221.

Fmoc-L-Ala(2-Naph)-L-Val-Ot-Bu (5u) was prepared following General Procedure 1 using H-L-Ala(2-Naph)-OH (53.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N_2 atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N_2 atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N_2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (35% AcOEt in hexane) to provide the title compound as a white solid in 87% yield with >20:1 dr (144 mg). $R_f = 0.58$ (50% AcOEt in hexane). M.p. 180–185 °C. [α]_D²⁰ = -73.3 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.64 (m, 5H, $C_{12}H_8$ CHCH₂OCONH and CHCH₂Naph H_1), 7.58–7.51 (m, 3H,

C₁₂ \underline{H}_8 CHCH₂OCONH and CHCH₂Naph \underline{H}), 7.39–7.23 (m, 7H, C₁₂ \underline{H}_8 CHCH₂OCONH and CHCH₂Naph \underline{H}), 7.14 (br d, J = 7.6 Hz, 1H, N \underline{H}), 6.88 (br d, J = 8.3 Hz, 1H, N \underline{H}), 5.76 (d, J = 7.8 Hz, 1H, N \underline{H}), 4.94 (quin., J = 7.3 Hz, 1H, C \underline{H} CH₃), 4.41–4.31 (m, 3H, C₁₂H₈CHC \underline{H}_2 OCONH and C \underline{H} CH(CH₃)₂), 4.21 (t, J = 7.1 Hz, 1H, C \underline{H} CH₂Naph), 4.12 (t, J = 7.1 Hz, C₁₂H₈C \underline{H} CH₂OCONH), 3.24 (dd, J = 6.9 Hz and 14 Hz, 1H, CHC \underline{H}_2 Naph), 3.15 (dd, J = 6.9 Hz and 14 Hz, 1H, CHC \underline{H}_2 Naph), 2.10–2.03 (m, 1H, CHC \underline{H} (CH₃)₂), 1.35 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.30 (d, J = 7.3 Hz, 3H, CHC \underline{H}_3), 0.83 (d, J = 6.6 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.79 (d, J = 6.6 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 170.5, 170.3, 155.9, 143.8, 143.7, 141.2(2C), 133.7, 133.3, 132.3, 128.1, 128.0, 127.6, 127.5(2C), 127.4(2C), 127.3, 127.0(2C), 125.9, 125.5, 125.1, 119.9(2C), 81.8, 67.0, 57.5, 54.4, 50.4, 47.0, 38.3, 31.3, 27.9(3C), 18.7(2C), 17.6. IR (thin film, cm⁻¹) 3293, 3061, 2966, 2931, 1705, 1645, 1531, 1478, 1451, 1391, 1313, 1221, 1143, 1109, 1078, 1044, 757. HRMS (ESI) calculated for C₄₀H₄₅N₃O₆Na [M+Na]⁺ m/z 686.3206, found 686.3182.

Fmoc-L-Ala-L-Phg-L-Val-Ot-Bu (5v) was prepared following General Procedure 1 using H-L-Tyr(t-Bu)-OH (37.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 93% yield with >20:1 dr (139 mg).

R_f = 0.41 (50% AcOEt in hexane). M.p. 120–125 °C. [α]_D²² = –25.7 (c 1.13, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.69 (m, 3H, C₁₂ \underline{H}_{δ} CHCH₂OCONH and N \underline{H}), 7.55 (d, J = 7.3 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.37–7.22 (m, 10H, C₁₂ \underline{H}_{δ} CHCH₂OCONH and CHC₆ \underline{H}_{5} and N \underline{H}), 6.85 (br d, J = 8.5 Hz, 1H, N \underline{H}), 5.97 (br d, J = 7.6 Hz, 1H, N \underline{H}), 5.71 (d, J = 7.4 Hz, 1H, C \underline{H} Ph), 4.52 (quin., J = 6.7 Hz, 1H, C \underline{H} CH₃), 4.38–4.29 (m, 3H, C₁₂H₈CHC \underline{H}_{2} OCONH and C \underline{H} CH(CH₃)₂), 4.16 (t, J = 7.1 Hz, C₁₂H₈C \underline{H} CH₂OCONH), 2.11–2.05 (m, 1H, CHC \underline{H} (CH₃)₂), 1.36 (d, J = 7.1 Hz, 3H, CHC \underline{H}_{3}), 1.30 (s, 9H, CO₂C(C \underline{H}_{3})₃), 0.89 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_{3})₂), 0.86 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_{3})₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 170.1, 169.5, 155.9, 143.9, 143.7, 141.1 (2C), 137.4 (2C), 128.8 (2C), 128.2, 127.6 (2C), 126.9 (3C), 125.0 (2C), 119.8 (2C), 81.9, 67.0, 58.1, 56.9, 50.3, 47.0, 31.4, 27.8 (3C), 19.1, 18.7, 17.8. IR (thin film, cm⁻¹) 3296, 3064, 2968, 1726, 1702, 1641, 1521, 1449, 1391, 1367, 1312, 1252, 1217, 1143, 1108, 1078, 1042, 754. HRMS (ESI) calculated for C₃₅H₄₁N₃O₆Na [M+Na]⁺ m/z 622.2867, found 622.2893.

Fmoc-L-Ala-L-Tyr(t-Bu)-L-Val-Ot-Bu (5w) was prepared following General Procedure 1 using H-L-Tyr(t-Bu)-OH (59.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μ L, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (35% AcOEt in hexane) to provide the title compound as a white solid in 91% yield with >20:1 dr (156 mg).

R_f = 0.29 (33% AcOEt in hexane). M.p. 90–95 °C. $[\alpha]_D^{19} = -58.2$ (c 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 6.9 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.59 (t, J = 6.2 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.32–7.29 (m, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.32–7.29 (m, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.07 (d, J = 8.5 Hz, 2H, CHCH₂C₆ \underline{H}_4 OC(CH₃)₃), 6.90 (br d, J = 7.1 Hz, 1H, N \underline{H}), 6.84 (d, J = 8.5 Hz, 2H, CHCH₂C₆ \underline{H}_4 OC(CH₃)₃), 6.66 (br d, J = 8.0 Hz, 1H, N \underline{H}), 5.60 (d, J = 7.6 Hz, 1H, C₁₂H₈CHCH₂OCON \underline{H}), 4.74 (quin, J = 7.1 Hz 1H, C \underline{H} CH₃), 4.41–4.31 (m, 4H, C₁₂H₈CHC \underline{H}_2 OCONH, C \underline{H} CH(CH₃)₂, C \underline{H} CH₂C₆H₄OC(CH₃)₃), 4.20 (t, J = 7.1 Hz, C₁₂H₈C \underline{H} CH₂OCONH), 3.03 (d quin., J = 6.6 Hz and 14 Hz, 2H, CHC \underline{H}_2 C₆H₄OC(CH₃)₃), 2.11–2.03 (m, 1H, CHC \underline{H} (CH₃)₂), 1.44 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.32 (d, J = 6.6 Hz, 3H, CHC \underline{H}_3), 1.26 (s, 9H, CHCH₂C₆H₄OC(C \underline{H}_3)₃), 0.84 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.81 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 170.5, 170.3, 155.9, 154.2, 143.8, 143.7, 141.2(2C), 131.1, 129.7(2C), 127.6(2C), 127.0(2C), 125.1(2C), 124.1(2C), 119.8(2C), 81.8, 78.1, 67.0, 57.6, 54.4, 50.4, 47.0, 37.4, 31.2, 28.7(3C), 27.9(3C), 18.8, 18.7, 17.6. IR (thin film, cm⁻¹) 3292, 2975, 2932, 1704, 1644, 1530, 1506, 1391, 1312, 1235, 1160, 1078, 1044, 755. HRMS (ESI) calculated for C₄₀H₅₁N₃O₇Na [M+Na]⁺ m/z 708.3613, found 708.3625.

Fmoc-L-Ala-L-Phe(4-CF₃)-L-Val-Ot-Bu (5x) was prepared following General Procedure 1 using

H-L-Phe(4-CF₃)-OH (58.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 89% yield with >20:1 dr (152 mg). R_f = 0.42 (50% AcOEt in hexane). M.p. 125–130 °C. [α]_D²¹ = –53.9 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 2H, C₁₂H₂CHCH₂OCONH), 7.59–7.55 (m, 2H, C₁₂H₂CHCH₂OCONH), 7.44 (d, J = 8.0 Hz, 2H, CHCH₂C₆H₂CF₃), 7.39–7.34 (m, 2H, C₁₂H₂CHCH₂OCONH), 7.28–7.24 (m, 5H, CHCH₂C₆H₂CF₃ and C₁₂H₂CHCH₂OCONH and NH), 6.99 (br d, J = 8.5 Hz, 1H, NH), 5.95 (br d, J = 7.8 Hz, 1H, NH), 4.93 (quin, J = 6.9 Hz 1H, CHCH₃), 4.45–4.28 (m, 4H, C₁₂H₃CHCH₂OCONH and CHCH(CH₃)₂ and CHCH₂C₆H₄CF₃), 4.19 (t, J = 7.1 Hz, C₁₂H₃CHCH₂OCONH), 3.13 (dd, J = 6.6 Hz and 14 Hz, 1H, CHCH₂C₆H₄CF₃), 3.02 (dd, J = 6.9 Hz and 14 Hz, 1H, CHCH₂C₆H₄CF₃), 2.10–2.04 (m, 1H, CHCH(CH₃)₂), 1.41 (s, 9H,

 $CO_2C(C\underline{H_3})_3)$, 1.31 (d, J = 6.9 Hz, 3H, $CHC\underline{H_3}$), 0.84 (d, J = 6.6 Hz, 3H, $CHCH(C\underline{H_3})_2)$, 0.81 (d, J = 6.6 Hz, 3H, $CHCH(C\underline{H_3})_2)$. ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 170.4, 170.0, 156.0, 143.8, 143.7, 141.2 (2C), 140.4, 129.7 (2C), 129.1 ($J_{FC} = 32.4$ Hz), 127.7 (2C), 127.0 (2C), 125.3–125.0, 123.0 ($J_{FC} = 270.8$ Hz), 119.9 (2C), 82.1, 67.2, 57.5, 54.0, 50.4, 47.0, 38.1, 31.3, 27.9 (3C), 18.7, 17.6 IR (thin film, cm⁻¹) 3291, 2966, 1705, 1644, 1507, 1449, 1391, 1313, 1215, 1113, 1075, 1042, 755.

HRMS (ESI) calculated for $C_{37}H_{42}F_3N_3O_6Na$ [M+Na]⁺ m/z 704.2923, found 704.2911.

Fmoc-L-Ala-L-Phe(4-F)-L-Val-Ot-Bu (5y) was prepared following General Procedure 1 using H-L-Phe(4-F)-OH (45.5 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 93% yield with >20:1 dr (147 mg).

 $R_f = 0.62$ (50% AcOEt in hexane). M.p. 170–175 °C. $[\alpha]_D^{21} = -34.9$ (c 1.03, CHCl₃). ¹H NMR (400)

MHz, CDCl₃) δ 7.72 (d, J = 6.9 Hz, 2H, $C_{12}\underline{H_8}$ CHCH₂OCONH), 7.58 (t, J = 8.7 Hz, 2H, $C_{12}\underline{H_8}$ CHCH₂OCONH), 7.39–7.25 (m, 5H, $C_{12}\underline{H_8}$ CHCH₂OCONH and $N\underline{H}$), 7.10–7.06 (m, 3H, CHCH₂C₆ $\underline{H_4}$ F and $N\underline{H}$), 6.88–6.85 (m, 2H, CHCH₂C₆ $\underline{H_4}$ F), 6.08 (br d, J = 8.0 Hz, 1H, $N\underline{H}$), 4.91 (quin, J = 6.9 Hz 1H, $C\underline{H}$ CH₃), 4.50–4.30 (m, 4H, C_{12} H₈CHC $\underline{H_2}$ OCONH, $C\underline{H}$ CH(CH₃)₂, $C\underline{H}$ CH₂C₆H₄F), 4.19 (t, J = 7.3 Hz, C_{12} H₈ $C\underline{H}$ CH₂OCONH), 2.99 (d quin., J = 6.9 Hz and 17 Hz, 2H, CHC $\underline{H_2}$ C₆H₄F), 2.11–2.04 (m, 1H, CHC \underline{H} (CH₃)₂), 1.41 (s, 9H, C_{12} C(C_{12} C)₃), 1.33 (d, J = 6.9 Hz, 3H, CHC $\underline{H_2}$ C₆H₄F), 0.84 (d, J = 6.6 Hz, 3H, CHCH(C_{13} C), 0.81 (d, J = 6.6 Hz, 3H, CHCH(C_{13} C)). 13 C NMR (100 MHz, CDCl₃) δ 172.7, 170.5, 170.4, 161.7 ($J_{FC} = 243.1$ Hz), 156.1, 143.9, 143.7, 141.2 (2C), 131.9, 130.8 ($J_{FC} = 7.6$ Hz, 2C), 127.6 (2C), 127.0 (2C), 125.1 (2C), 119.8 (2C), 115.1 ($J_{FC} = 21.0$ Hz, 2C), 81.9, 67.2, 57.3, 54.3, 50.2, 47.0, 37.8, 31.5, 27.9 (3C), 19.0, 18.7, 17.6. IR (thin film, cm⁻¹) 3294, 2969, 1704, 1643, 1509, 1449, 1393, 1313, 1218, 1113, 1078, 1042, 755. HRMS (ESI) calculated for C_{36} H₄₂FN₃O₆Na [M+Na]+ m/z 654.2955, found 654.2938.

Fmoc-L-Ala-L-Phe(F₅)-L-Val-Ot-Bu (5z) was prepared following General Procedure 1 using H-L-Phe(F5)-OH (63.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (33% AcOEt in hexane) to provide the title compound as a white solid in 89% yield with >20:1 dr (156 mg).

R_f = 0.65 (50% AcOEt in hexane). M.p. 190–195 °C. [α]_D²¹ = –94.1 (c 1.01, CHCl₃). ¹H NMR (400 MHz, DMSO-d₆) δ 8.11 (t, J = 8.7 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.86 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.54 (d, J = 7.4 Hz, 1H, N \underline{H}), 7.42–7.29 (m, 4H, C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 4.71 (quin, J = 7.6 Hz 1H, C \underline{H} CH₃), 4.24–3.97 (m, 5H, C₁₂ \underline{H}_8 CHCH₂OCONH, C₁₂ \underline{H}_8 CHCH₂OCONH, C \underline{H} CH(CH₃)₂, C \underline{H} CH₂C₆F₅), 3.06 (dd, J = 7.1 Hz and 13.7 Hz, 1H, CHC \underline{H}_2 C₆F₅), 2.92 (dd, J = 7.6 Hz and 13.7 Hz, 1H, CHC \underline{H}_2 C₆F₅), 2.92 (dd, J = 7.6 Hz and 13.7 Hz, 1H, CHC \underline{H}_2 C₆F₅), 2.03–1.90 (m, 1H, CHC \underline{H} (CH₃)₂), 1.38 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.14 (d, J = 7.6 Hz, 3H, CHC \underline{H}_3), 0.82 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.81 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, DMSO-d₆) δ 173.2, 170.8, 170.5, 156.4, 146.0 (J_{FC} = 244.1 Hz), 144.6, 144.5, 141.4 (2C), 140.0 (2C, J_{FC} = 241.6 Hz), 137.4 (2C, J_{FC} = 242.2 Hz), 128.3 (2C), 127.8 (2C), 126.0, 125.9, 120.8 (2C),

111.8 (J_{FC} = 16.2 Hz), 81.4, 66.4, 58.4, 50.9, 50.5, 48.7, 31.0, 28.3 (3C), 26.2, 19.5, 18.7, 18.5. IR (thin film, cm⁻¹) 3291, 2966, 1701, 1645, 1505, 1449, 1393, 1311, 1211, 1115, 1075, 1045, 765. HRMS (ESI) calculated for $C_{36}H_{38}F_5N_3O_6Na$ [M+Na]⁺ m/z 726.2578, found 726.2534.

Fmoc-L-Ala-L-Val-L-Phe-Ot-Bu (5aa) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Phe-Ot-Bu (111 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 92% yield with >20:1 dr (141 mg).

R_f = 0.49 (50% AcOEt in hexane). M.p. 200–205 °C. [α]_D²² = -32.4 (c 1.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.3 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.57 (d, J = 7.3 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.57 (d, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.44–7.42 (m, 2H, N \underline{H} and N \underline{H}), 7.33 (t, J = 7.6 Hz, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.25–7.20 (m, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 7.18–7.05 (m, 5H, CHCH₂C₆ $\underline{H}_{\underline{\theta}}$), 6.45 (d, J = 8.2 Hz, 1H, N \underline{H}), 4.81 (dd, J = 6.2 Hz and 14 Hz 1H, C \underline{H} CH₂Ph), 4.64–4.58 (m, 2H, C \underline{H} CH(CH₃)₂ and C \underline{H} CH₃), 4.34–4.24 (m, 2H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH $\underline{H}_{\underline{\theta}}$ DCONH), 4.16 (t, J = 7.3 Hz, 1H, C₁₂ $\underline{H}_{\underline{\theta}}$ CHCH₂OCONH), 2.98 (d, J = 6.2 Hz, 2H, CHC $\underline{H}_{\underline{\theta}}$ Ph), 2.10–2.02 (m, 1H, CHC \underline{H} (CH₃)₂), 1.34 (d, J = 6.9 Hz, 3H, CHC $\underline{H}_{\underline{\theta}}$), 1.29 (s, 9H, CO₂C(C $\underline{H}_{\underline{\theta}}$)₃), 0.96 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{\theta}}$)₂), 0.93 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{\theta}}$)). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 170.6, 170.3, 156.0, 143.8(2C), 141.2(2C), 136.0, 129.4(2C), 128.2(2C), 127.6(2C), 126.9 (2C), 126.8, 125.1 (2C), 119.8 (2C), 82.1, 67.1, 58.3, 53.6, 50.4, 47.0, 38.2, 31.4, 27.8(3C), 19.0(2C), 18.3. IR (thin film, cm⁻¹) 3290, 3063, 3019, 2970,1732, 1693, 1643, 1539, 1451, 1392, 1322, 1322, 1229, 1216, 1153, 1119, 1085, 1046, 754. HRMS (ESI) calculated for C₃₆H₄₃N₃O₆Na [M+Na]⁺ m/z 636.3031, found 636.3049.

Fmoc-L-Ala-L-Val-L-Phg-Ot-Bu (5ab) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the

resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Phg-Ot-Bu (104 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 91% yield with >20:1 dr (136 mg).

R_f = 0.48 (50% AcOEt in hexane). M.p. 205–210 °C. [α]_D²⁰ = -70.0 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (br d, J = 7.3 Hz, N \underline{H}), 7.71 (d, J = 7.1 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.55 (d, J = 6.2 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.36–7.21 (m, 7H, CHC₆ \underline{H}_5 and C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 7.14–7.12 (m, 3H, CHC₆ \underline{H}_5), 6.14 (d, J = 8.2 Hz, 1H, N \underline{H}), 5.52 (d, J = 7.6 Hz, 1H, C \underline{H} Ph), 4.67 (quin., J = 7.8 Hz, 1H, C \underline{H} CH₃), 4.46 (t, J = 6.2 Hz, 1H, C \underline{H} CH(CH₃)₂), 4.32–4.22 (m, 2H, C₁₂H₈CHC \underline{H}_2 OCONH), 4.14 (t, J = 7.3 Hz, 1H, C₁₂H₈C \underline{H} CH₂OCONH), 2.16–2.05 (m, 1H, CHC \underline{H} (CH₃)₂), 1.34 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.19 (d, J = 6.9 Hz, 3H, CHC \underline{H}_3), 0.98 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.93 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 170.6, 169.6, 156.0, 143.9, 143.8, 141.1(2C), 136.6, 128.5(3C), 128.0, 127.5(2C), 126.9(3C), 125.1(2C), 119.8(2C), 82.3, 67.0, 58.1, 56.9, 50.2, 47.0, 31.5, 27.7(3C), 19.0, 18.9, 18.3. IR (thin film, cm⁻¹) 3295, 3063, 2966, 2931, 1705, 1645, 1531, 1475, 1455, 1395, 1313, 1221, 1143, 1113, 1078, 1045, 757. HRMS (ESI) calculated for C₃₅H₄₁N₃O₆Na [M+Na]⁺ m/z 622.2867, found 622.2887.

Fmoc-L-Ala-L-Val-L-Tyr(t-Bu)-Ot-Bu (5ac) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Tyr(t-Bu)-Ot-Bu (147 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 86% yield with >20:1 dr (142 mg). R_f = 0.52 (50% AcOEt in hexane). M.p. 120–125 °C. [α]_D¹⁹ = –65.2 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 2H, C₁₂ H_{δ} CHCH₂OCONH), 7.57 (dd, J = 2.8 Hz and 7.3 Hz, 2H, C₁₂ H_{δ} CHCH₂OCONH), 7.35 (t, J = 7.3 Hz, 2H, C₁₂ H_{δ} CHCH₂OCONH), 7.29–7.22 (m, 2H, C₁₂ H_{δ} CHCH₂OCONH), 7.18 (br d, J = 7.6 Hz, 1H, NH), 6.97 (d, J = 8.5 Hz, 2H, C₁₂ H_{δ} CHCH₂OCONH), 7.18 (br d, J = 7.6 Hz, 1H, NH), 6.97 (d, J = 8.5 Hz, 2H,

CHCH₂C₆ $\underline{H}_{\underline{4}}$ OC(CH₃)₃), 6.81 (d, J = 8.5 Hz, 2H, CHCH₂C₆ $\underline{H}_{\underline{4}}$ OC(CH₃)₃), 6.23 (br d, J = 7.8 Hz, 1H, N \underline{H}), 4.71 (quin, J = 6.4 Hz 1H, C \underline{H} CH₃), 4.55–4.53 (m, 2H, C \underline{H} CH(CH₃)₂ and C \underline{H} CH₂C₆H₄OC(CH₃)₃), 4.37–4.30 (m, 2H, C₁₂H₈CHC $\underline{H}_{\underline{2}}$ OCONH), 4.19 (t, J = 7.3 Hz, C₁₂H₈C \underline{H} CH₂OCONH), 2.98 (dd, J = 5.5 Hz and 14 Hz, 2H, CHC $\underline{H}_{\underline{2}}$ C₆H₄OC(CH₃)₃), 2.91 (dd, J = 7.4 Hz and 14 Hz, 2H, CHC $\underline{H}_{\underline{2}}$ C₆H₄OC(CH₃)₃), 2.14–2.04 (m, 1H, CHC \underline{H} (CH₃)₂), 1.38 (d, J = 6.9 Hz, 3H, CHC $\underline{H}_{\underline{3}}$), 1.29 (s, 9H, CO₂C(C $\underline{H}_{\underline{3}}$)₃), 1.28 (s, 9H, CHCH₂C₆H₄OC(C $\underline{H}_{\underline{3}}$)₃), 0.94 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{3}}$)₂), 0.92 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{3}}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 170.6, 170.5, 156.0, 154.1, 143.8, 143.7, 141.1(2C), 130.9, 129.8(2C), 127.6(2C), 127.0(2C), 125.1(2C), 124.0(2C), 119.8(2C), 82.0, 78.2, 67.1, 58.3, 53.8, 50.4, 47.0, 37.7, 31.5, 28.7(3C), 27.6(3C), 19.0, 18.9, 18.3. IR (thin film, cm⁻¹) 3231, 3015, 2923, 1704, 1644, 1515, 1391, 1312, 1238, 1160, 1078, 1044, 765. HRMS (ESI) calculated for C₄₀H₅₁N₃O₇Na [M+Na]⁺ m/z 708.3625, found 708.3619.

Fmoc-L-Ala-L-Val-L-Trp(Boc)-Ot-Bu (5ad) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Trp(Boc)-Ot-Bu (180 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 43% yield with >20:1 dr (80.9 mg). $R_f = 0.48$ (50% AcOEt in hexane). M.p. 160–165 °C. $[\alpha]_D^{21} = -7.7$ (c 1.04, CHCl₃). ¹H NMR (400) MHz, CDCl₃) δ 8.10 (br d, J = 7.8 Hz, 1H, CHCH₂Ind<u>H</u>(Boc)), 7.72 (d, J = 7.1 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.55 (d, J = 6.4 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.48 (br d, J = 7.8 Hz, 1H, CHCH₂Ind \underline{H} (Boc)), 7.40–7.34 (m, 3H, C₁₂ \underline{H} ₈CHCH₂OCONH and CHCH₂Ind \underline{H} (Boc)), 7.30–7.18 (m, 4H, $C_{12}H_8$ CHCH₂OCONH and CHCH₂Ind \underline{H} (Boc)), 6.87 (br d, J = 8.5 Hz, 1H, N \underline{H}), 6.79 (br d, J = 6.9 Hz, 1H, NH), 5.81 (d, J = 7.6 Hz, 1H, NH), 4.83 (quin, J = 7.1 Hz 1H, CHCH₃), 4.39–4.34 (m, 4H, $C_{12}H_8CHC\underline{H}_2OCONH$, $C\underline{H}CH(CH_3)_2$, $C\underline{H}CH_2Ind(Boc)$), 4.18 (t, J=7.1 Hz, 1H, $C_{12}H_8C\underline{H}CH_2OCONH$), 3.16 (d, J = 5.2 Hz 2H, $CHC\underline{H}_2Ind(Boc)$), 2.14–2.06 (m, 1H, $CHC\underline{H}(CH_3)_2)$, 1.64 (s, 9H, $CHCH_2Ind(CO_2C(C\underline{H}_3)_3)$, 1.34 (s, 9H, $CO_2C(C\underline{H}_3)_3)$, 1.34–1.33 (m, 3H,

CHC $\underline{H_3}$), 0.92 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H_3}$)₂), 0.90 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H_3}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 170.5, 170.3, 156.0, 149.4, 143.8, 143.7, 141.2(2C), 135.3, 130.5, 127.6(2C), 127.0(2C), 125.1(2C), 124.5, 124.0, 122.6, 119.9(2C), 119.0, 115.2, 115.1, 83.5, 82.4, 67.0, 58.2, 53.0, 50.5, 47.0, 31.4, 28.1(3C), 27.8(3C), 27.7, 19.0, 18.8, 18.0. IR (thin film, cm⁻¹) 3285, 2975, 2933, 1731, 1639, 1528, 1451, 1368, 1340, 1308, 1253, 1228, 1155, 1085, 1043, 1019, 756. HRMS (ESI) calculated for C₄₃H₅₂N₄O₈Na [M+Na]⁺ m/z 775.3683, found 775.3689.

Fmoc-L-Ala-L-Ser(t-Bu)-L-Val-Ot-Bu (5ae) was prepared following General Procedure 1 using H-L-Ser(t-Bu)-OH (40.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μ L, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N2 atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 93% yield with >20:1 dr (142 mg). $R_f = 0.42$ (50% AcOEt in hexane). M.p. 110–115 °C. $[\alpha]_D^{20} = -61.5$ (c 1.01, CHCl₃). ¹H NMR (400) MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H, C₁₂ H_8 CHCH₂OCONH), 7.58 (d, J = 7.3 Hz, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH and N \underline{H}), 7.39 (t, J = 7.6 Hz, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH), 7.32–7.26 (m, 3H, $C_{12}\underline{H}_{8}$ CHCH₂OCONH), 6.89 (br d, J = 6.0 Hz, 1H, N \underline{H}), 5.54 (br d, J = 6.9 Hz, 1H, N \underline{H}), 4.46–4.28 (m, 5H, CHCH₂OC(CH₃)₃ and $C_{12}H_8CHCH_2OCONH$ and CHCH₃ and CHCH(CH₃)₂), 4.21 (t, J =6.9 Hz, 1H, $C_{12}H_8C\underline{H}CH_2OCONH$), 3.82 (dd, J = 3.2 Hz, and 8.2 Hz, 1H, $CHC\underline{H}_2OC(CH_3)_3$), 3.71 (dd, J = 8.0 Hz, and 8.2 Hz, 1H, CHC \underline{H}_2 OC(CH₃)₃), 2.19-2.10 (m, 1H, CHC \underline{H} (CH₃)₂), 1.46 (s, 9H, $CO_2C(CH_3)_3$, 1.44 (d, J = 6.9 Hz, 3H, CHC H_3), 1.21 (s, 9H, CHC $H_2OC(CH_3)_3$), 0.92 (d, J = 8.7 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.90 (d, J = 8.7 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 170.4, 169.9, 155.8, 143.8, 143.7, 141.2(2C), 127.6(2C), 127.0(2C), 125.0(2C), 119.9(2C), 81.7, 74.3, 67.0, 61.2, 57.7, 52.9, 50.6, 47.1, 31.2, 27.9(3C), 27.3(3C), 19.0, 18.9, 17.6. IR (thin film, cm ¹) 3291, 3065, 2969, 2935, 1705, 1644, 1535, 1474, 1450, 1391, 1313, 1221, 1143, 1115, 1078, 1045, 757. HRMS (ESI) calculated for $C_{34}H_{47}N_3O_7Na$ [M+Na]⁺ m/z 632.3312, found 632.3310.

Fmoc-L-Ala-L-Thr(t-Bu)-L-Val-Ot-Bu (5af) was prepared following General Procedure 1 using H-L-Thr(t-Bu)-OH (43.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N2 atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (35% AcOEt in hexane) to provide the title compound as a white solid in 91% yield with >20:1 dr (142 mg). $R_f = 0.61$ (50% AcOEt in hexane). M.p. 100–105 °C. $[\alpha]_D^{20} = -36.7$ (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.72 (br d, J = 8.7 Hz, 1H, N_H), 7.59 (d, J = 7.3 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.39 (t, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.32–7.29 (m, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.05 (br d, J = 7.0 Hz, 1H, NH), 5.53 (d, J = 7.3 Hz, 1H, N<u>H</u>), 4.38–4.32 (m, 5H, C<u>H</u>CH(CH₃)OC(CH₃)₃ and $C_{12}H_8CHC\underline{H}_2OCONH$ and $C\underline{H}CH_3$ and $CHCH(CH_3)_2$, 4.23–4.19 (m, 2H, $C_{12}H_8CHCH_2OCONH$ and $CHCH(CH_3)OC(CH_3)_3$), 2.22–2.12 (m, 1H, CHCH(CH₃)₂), 1.47 (s, 9H, CO₂C(CH₃)₃), 1.42 (d, J = 6.6 Hz, 3H, CHCH₃), 1.31 (s, 9H, CHCH(CH₃)OC(C \underline{H}_3)₃), 1.08 (d, J = 6.4 Hz, 3H, CHCH(C \underline{H}_3)OC(CH₃)₃), 0.95 (d, J = 6.9 Hz, 3H, CHCH(CH_3)₂), 0.92 (d, J = 6.9 Hz, 3H, CHCH(CH_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 170.2, 169.3, 155.6, 143.9, 143.8, 141.2(2C), 127.6(2C), 127.0(2C), 125.1(2C), 119.9(2C), 81.6, 75.5, 67.0, 66.2, 58.1, 57.3, 50.4, 47.1, 30.7, 28.2(3C), 28.0(3C), 19.2, 19.1, 17.5, 16.6. IR (thin film, cm⁻¹) 3305, 3034, 2967, 2931, 1705, 1644, 1531, 1475, 1453, 1391, 1311, 1221, 1144, 1110, 1075, 1045, 756. HRMS (ESI) calculated for $C_{35}H_{49}N_3O_7Na$ [M+Na]⁺ m/z 646.3468, found 646.3462.

Fmoc-L-Ala-L-Val-L-Ser(*t*-Bu)-O*t*-Bu (5ag) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Ser(*t*-Bu)-O*t*-Bu (109 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature

for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 91% yield with >20:1 dr (139 mg).

R_f = 0.44 (50% AcOEt in hexane). M.p. 150–155 °C. [α]_D²² = –51.4 (c 1.07, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.58 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.30–7.26 (m, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.30–7.26 (m, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.04 (br d, J = 8.7 Hz, 1H, N \underline{H}), 6.81 (br d, J = 8.0 Hz, 1H, N \underline{H}), 5.85 (d, J = 8.0 Hz, 1H, N \underline{H}), 4.62 (d, J = 8.0 Hz, 1H, C \underline{H} CHCH₂OC(CH₃)₃), 4.49–4.33 (m, 4H, C₁₂ \underline{H}_8 CHC \underline{H} 2OCONH and C \underline{H} CH₃ and C \underline{H} CH(CH₃)₂), 4.20 (t, J = 7.4 Hz, 1H, C₁₂ \underline{H}_8 CHCH₂OCONH), 3.73 (dd, J = 2.5 Hz, and 8.7 Hz, 1H, CHC \underline{H} 2OC(CH₃)₃), 3.47 (dd, J = 2.5 Hz, and 6.4 Hz, 1H, CHC \underline{H} 2OC(CH₃)₃), 2.17–2.09 (m, 1H, CHC \underline{H} (CH₃)₂), 1.44 (s, 9H, CO₂C(C \underline{H} 3)₃), 1.38 (d, J = 6.8 Hz, 3H, CHC \underline{H} 3), 1.10 (s, 9H, CHCH₂OC(C \underline{H} 3)₃), 0.97 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H} 3)₂), 0.94 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H} 3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 170.4, 169.1, 155.9, 143.8(2C), 141.2(2C), 127.6(2C), 127.0(2C), 125.1(2C), 119.8(2C), 81.8, 73.0, 67.0, 62.1, 58.1, 53.1, 50.4, 47.0, 31.6, 27.9(3C), 27.2(3C), 19.0(2C), 17.9. IR (thin film, cm⁻¹) 3289, 3067, 2973, 2935, 1706, 1641, 1526, 1449, 1392, 1366, 1249, 1231, 1194, 1152, 1079, 1047, 756. HRMS (ESI) calculated for C₃₄H₄₇N₃O₇Na [M+Na]+ m/z 632.3312, found 632.3308.

Fmoc-L-Ala-L-Val-L-Thr(t-Bu)-Ot-Bu (5ah) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N_2 atmosphere at 0 °C. After 1 h, L-Thr(t-Bu)-Ot-Bu (116 mg, 0.500 mmol) was added. The mixture was stirred under N_2 atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N_2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 92% yield with >20:1 dr (143.4 mg). $R_f = 0.59$ (50% AcOEt in hexane). M.p. 110–115 °C. [α]_D²⁰ = –89.0 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.59–7.57 (m, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.30–7.26 (m, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.08 (br d, J = 8.7 Hz, 1H, N_H), 6.59 (br d, J = 8.9 Hz, 1H, N_H), 5.85 (d, J = 7.6 Hz, 1H, N_H), 4.47–4.32 (m, 5H, C_H CH(CH₃)OC(CH₃)₃ and C_{12} H₈CHCH₂OCONH and C_H CH(CH₃)₂), 4.42–4.17 (m, 2H, C_{12} H₈CHCH₂OCONH and CHCH(CH₃)OC(CH₃)₃), 1.38 (d, J = 6.9 Hz, 3H, CHCH₃), 1.14

(s, 9H, CHCH(CH₃)OC(C \underline{H}_3)₃), 1.14–1.10 (m, 3H, CHCH(C \underline{H}_3)OC(CH₃)₃), 0.99 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.96 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 170.9, 169.4, 155.8, 143.8, 143.7, 141.2(2C), 127.5(2C), 126.9(2C), 125.1(2C), 119.8(2C), 81.8, 73.7, 67.1, 67.0, 58.3, 58.2, 50.3, 47.0, 31.5, 28.6(3C), 28.0(3C), 20.7, 19.0(2C), 18.0. IR (thin film, cm⁻¹) 3291, 3065, 2971, 2935, 1705, 1644, 1535, 1475, 1451, 1391, 1313, 1221, 1143, 1110, 1078, 1045, 757. HRMS (ESI) calculated for C₃₅H₄₉N₃O₇Na [M+Na]⁺ m/z 646.3468, found 646.3464.

Fmoc-L-Ala-L-Asp(t-Bu)-L-Val-Ot-Bu (5ai) was prepared following General Procedure 1 using H-L-Asp(t-Bu)-OH (47.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N2 atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 87% yield with >20:1 dr (139 mg). $R_f = 0.52$ (50% AcOEt in hexane). M.p. 105–110 °C. [α]_D²⁰ = -78.9 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, C₁₂ H_8 CHCH₂OCONH), 7.59 (t, J = 6.8 Hz, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH), 7.43–7.36 (m, 3H, $C_{12}\underline{H}_8$ CHCH₂OCONH and N<u>H</u>), 7.32–7.28 (m, 2H, $C_{12}\underline{H}_{8}$ CHCH₂OCONH), 7.12 (br d, J = 8.7 Hz, 1H, N \underline{H}), 5.58 (d, J = 7.1 Hz, 1H, N \underline{H}), 4.83–4.79 (m, 1H, CHCH2CO2C(CH3)3), 4.42-4.29 (m, 4H, C12H8CHCH2OCONH and CHCH(CH3)2 and $C\underline{H}CH_3$), 4.21 (t, J = 7.1 Hz, 1H, $C_{12}H_8C\underline{H}CH_2OCONH$), 2.90 (dd, J = 3.4 Hz and 17 Hz, 1H, $CHC\underline{H}_2CO_2C(CH_3)_3$, 2.60 (dd, J = 7.1 Hz and 17 Hz, 1H, $CHC\underline{H}_2CO_2C(CH_3)_3$), 1.44–1.41 (m, 21H, CHCH₂CO₂C(C \underline{H}_3)₃ and CO₂C(C \underline{H}_3)₃ and CHC \underline{H}_3), 0.90 (d, J = 7.1 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.88 (d, J = 7.1 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 171.4, 170.1, 170.0, 155.8, 143.8, 143.7, 141.2(2C), 127.6(2C), 127.0(2C), 125.0(2C), 119.9(2C), 81.8, 81.7, 67.0, 57.8, 50.6, 49.2, 47.0, 36.8, 30.9, 27.9(3C), 27.8(3C), 18.8(2C), 17.4. IR (thin film, cm⁻¹) 3295, 2977, 2931, 1735, 1703, 1677, 1635, 1515, 1451, 1391, 1335, 1311, 1252, 1217, 1149, 1113, 1045, 756. HRMS (ESI) calculated for $C_{35}H_{47}N_3O_8Na$ [M+Na]⁺ m/z 660.3229, found 660.3255.

Fmoc-L-Ala-L-Glu(t-Bu)-L-Val-Ot-Bu (5aj) was prepared following General Procedure 1 using H-L-Glu(t-Bu)-OH (50.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N2 atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 85% yield with >20:1 dr (138 mg). $R_f = 0.50$ (50% AcOEt in hexane). M.p. 120–125 °C. $[\alpha]_D^{24} = -116.5$ (c 1.03, CHCl₃). ¹H NMR (400) MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.59 (d, J = 7.1 Hz, 2H, $C_{12}H_8CHCH_2OCONH$), 7.38 (t, J = 7.6 Hz, 2H, $C_{12}H_8CHCH_2OCONH$), 7.31–7.26 (m, 3H, $C_{12}\underline{H}_8$ CHCH₂OCONH and $N\underline{H}$), 7.13 (br d, J = 8.7 Hz, $N\underline{H}$), 5.77 (d, J = 7.3 Hz, 1H, $N\underline{H}$), 4.57 (quin., J = 6.4 Hz, 1H, CHCH₃), 4.38-4.33 (m, 4H, CHCH(CH₃)₂ and CHCH₂CH₂CO₂C(CH₃)₃ and $C_{12}H_8CHCH_2OCONH$), 4.21 (t, J = 7.1 Hz, 1H, $C_{12}H_8CHCH_2OCONH$), 2.49–2.34 (m, 2H, CHCH(CH₃)₂ and CHCH₂CO₂C(CH₃)₃), 2.19-1.94 (m, 3H, CHCH₂CH₂CO₂C(CH₃)₃ and $CHC\underline{H}_2CH_2CO_2C(CH_3)_3)$, 1.44 (s, 9H, $CO_2C(C\underline{H}_3)_3$), 1.43 (s, 9H, $CHCH_2CH_2CO_2C(C\underline{H}_3)_3$), 1.44– 1.39 (m, 3H, CHC \underline{H}_3), 0.90 (d, J = 7.1 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.88 (d, J = 7.1 Hz, 3H, CHCH($C\underline{H}_3$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 172.4, 170.7, 170.4, 155.8, 143.8, 143.7, 141.2(2C), 127.6(2C), 127.0(2C), 125.1(2C), 119.9(2C), 81.8, 81.0, 67.0, 57.8, 52.5, 50.5, 47.0, 31.7, 31.0, 28.0(3C), 27.9(3C), 19.2, 18.9(2C) 17.5. IR (thin film, cm⁻¹) 3298, 2975, 2933, 1730, 1705, 1676, 1638, 1518, 1450, 1392, 1335, 1311, 1253, 1217, 1149, 1113, 1045, 756. HRMS (ESI) calculated for $C_{36}H_{49}N_3O_8Na [M+Na]^+ m/z 674.3417$, found 674.3417.

Fmoc-L-Ala-L-Val-L-Asp(t-Bu)-Ot-Bu (5ak) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Asp(t-Bu)-Ot-Bu (122 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient

temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 91% yield with >20:1 dr (145 mg). $R_f = 0.47$ (50% AcOEt in hexane). M.p. 210–215 °C. $[\alpha]_D^{21} = -13.8$ (c 1.09, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.58 (d, J = 6.4 Hz, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH), 7.37 (t, J = 7.1 Hz, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH), 7.29–7.25 (m, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH), 7.10–7.05 (m, 2H, N \underline{H} and N \underline{H}), 5.84 (d, J = 7.8 Hz, 1H, N \underline{H}), 4.75 (dd, J = 3.9 Hz and 8.0 Hz, 1H, CHCH2CO2C(CH3)3), 4.48-4.36 (m, 4H, C12H8CHCH2OCONH and $CHCH(CH_3)_2$ and $CHCH_3)$, 4.19 (t, J = 7.1 Hz, 1H, $C_{12}H_8CHCH_2OCONH$), 2.84 (dd, J = 4.6 Hz and 17 Hz, 1H, CHC \underline{H}_2 CO₂C(CH₃)₃), 2.63 (dd, J = 3.9 Hz and 17 Hz, 1H, CHC \underline{H}_2 CO₂C(CH₃)₃), 2.18– 2.08 (m, 1H, CHC \underline{H} (CH₃)₂), 1.42 (s, 9H, CO₂C(C \underline{H} ₃)₃), 1.41 (s, 9H, CHCH₂CO₂C(C \underline{H} ₃)₃), 1.38 (d, J= 7.3 Hz, 3H, CHC H_3), 0.97 (d, J = 6.9 Hz, 3H, CHCH(C H_3)₂), 0.94 (d, J = 6.9 Hz, 3H, CHCH($C\underline{H}_3$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 170.4, 170.2, 169.4, 155.9, 143.8, 143.7, 141.2(2C), 127.6(2C), 126.9(2C), 125.1(2C), 119.8(2C), 82.2, 81.5, 67.0, 58.1, 50.4, 48.9, 47.0, 37.3, 31.6, 27.9(3C), 27.8(3C), 19.0, 18.9, 17.9. IR (thin film, cm⁻¹) 3293, 3017, 2977, 1725, 1644, 1510, 1450, 1393, 1368, 1214, 1150, 1077, 1048, 746. HRMS (ESI) calculated for $C_{35}H_{47}N_3O_8Na$ $[M+Na]^+$ m/z 660.3229, found 660.3260.

Fmoc-L-Ala-L-Val-L-Glu(*t*-Bu)-O*t*-Bu (5al) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N_2 atmosphere at 0 °C. After 1 h, L-Glu(*t*-Bu)-O*t*-Bu (130 mg, 0.500 mmol) was added. The mixture was stirred under N_2 atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N_2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 89% yield with >20:1 dr (145 mg). $R_f = 0.47$ (50% AcOEt in hexane). M.p. 145–150 °C. [α]_D²¹ = -67.7 (*c* 1.02, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.57 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.28–7.22 (m, 3H, $C_{12}H_8$ CHCH₂OCONH and N_H), 7.13 (br d, J = 8.5 Hz, N_H), 6.07 (d, J = 7.8 Hz, 1H, N_H), 4.49–

4.34 (m, 5H, C \underline{H} CH(CH₃)₂ and C \underline{H} CH₃ and C \underline{H} CH₂CH₂CO₂C(CH₃)₃ and C₁₂H₈CHC \underline{H} ₂OCONH), 4.19 (t, J = 7.3 Hz, 1H, C₁₂H₈C \underline{H} CH₂OCONH), 2.33–2.07 (m, 4H, CHC \underline{H} (CH₃)₂ and CHC \underline{H} ₂CH₂CO₂C(CH₃)₃ and CHCH₂C \underline{H} ₂CO₂C(CH₃)₃), 1.93–1.84 (m, 1H, CHC \underline{H} ₂CH₂CO₂C(CH₃)₃), 1.42 (s, 9H, CO₂C(C \underline{H} ₃)₃), 1.40 (s, 9H, CHCH₂CH₂CO₂C(C \underline{H} ₃)₃), 1.38 (d, J = 7.3 Hz, 3H, CHC \underline{H} ₃), 0.95 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H} ₃)₂), 0.94 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H} ₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 172.0, 170.9, 170.7, 156.0, 143.9, 143.7, 141.2(2C), 127.5(2C), 126.9 (2C), 125.1 (2C), 119.8 (2C), 82.0, 80.6, 67.0, 58.3, 52.2, 50.3, 46.9, 31.3, 31.2, 27.9(3C), 27.8(3C), 27.4, 19.0(2C) 18.3. IR (thin film, cm⁻¹) 3286, 3067, 2975, 2933, 1729, 1703, 1643, 1531, 1450, 1392, 1367, 1252, 1228, 1150, 1112, 1078, 1041, 846, 756. HRMS (ESI) calculated for C₃₆H₄₉N₃O₈Na [M+Na]⁺ m/z 674.3417, found 674.3411.

Fmoc-L-Val-L-Glu(t-Bu)-L-Val-Ot-Bu (5am) was prepared following General Procedure 1 using H-L-Glu(t-Bu)-OH (50.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Val-Cl (268 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N2 atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (33% AcOEt in hexane) to provide the title compound as a white solid in 86% yield with >20:1 dr (146 mg). $R_f = 0.34$ (33% AcOEt in hexane). M.p. 175–180 °C. $[\alpha]_D^{24} = -117.1$ (c 1.01, CHCl₃). ¹H NMR (400) MHz, CDCl₃) δ 7.74 (d, J = 7.3 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.62–7.59 (m, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.38 (t, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.31–7.26 (m, 3H, $C_{12}\underline{H}_8$ CHCH₂OCONH and N<u>H</u>), 7.14 (br d, J = 8.0 Hz, N<u>H</u>), 5.84 (br d, J = 8.5 Hz, 1H, N<u>H</u>), 4.64– 4.60 1H, $CHCH(CH_3)_2$), 4.45-4.30 (m, 3H, CHCH₂CH₂CO₂C(CH₃)₃ C₁₂H₈CHCH₂OCONH), 4.23–4.16 (m, 2H, C₁₂H₈CHCH₂OCONH and CHCH(CH₃)₂), 2.49–2.34 (m, 2H, $CHC\underline{H}(CH_3)_2$ and $CHC\underline{H}(CH_3)_2$), 2.21–1.94 (m, 4H, $CHCH_2C\underline{H}_2CO_2C(CH_3)_3$ and $CHC\underline{H}_2CH_2CO_2C(CH_3)_3)$, 1.44 (s, 9H, $CO_2C(C\underline{H}_3)_3$), 1.42 (s, 9H, $CHCH_2CH_2CO_2C(C\underline{H}_3)_3$), 0.94– 0.87 (m, 12H, CHCH(C \underline{H}_3)₂ and CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 171.4, 170.9, 170.5, 156.3, 143.9, 143.8, 141.2 (2C), 127.6 (2C), 127.0 (2C), 125.2, 125.1, 119.8 (2C), 81.7, 80.9, 67.0, 60.1, 57.8, 52.4, 47.1, 31.7, 31.0, 28.1 (3C), 28.0 (3C), 19.1, 18.9 (2C), 17.9, 17.5 (2C). IR (thin film, cm⁻¹) 3305, 2975, 2930, 1715, 1705, 1675, 1641, 1517, 1441, 1393, 1331, 1311,

1251, 1217, 1149, 1110, 1045, 756. HRMS (ESI) calculated for $C_{38}H_{53}N_3O_8Na$ [M+Na]⁺ m/z 702.3730, found 702.3723.

Fmoc-L-Ala-L-Cys(t-Bu)-L-Val-Ot-Bu (5an) was prepared following General Procedure 1 using H-L-Cys(t-Bu)-OH (53.4 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N2 atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 89% yield with >20:1 dr (139 mg). $R_f = 0.56$ (50% AcOEt in hexane). M.p. 130–135 °C. $[\alpha]_D^{20} = -78.9$ (c 1.01, CHCl₃). ¹H NMR (400) MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.58 (d, J = 7.6 Hz, 2H, $C_{12}H_8CHCH_2OCONH$), 7.39 (t, J = 7.4 Hz, 2H, $C_{12}H_8CHCH_2OCONH$), 7.32–7.28 (m, 2H, $C_{12}H_{\delta}CHCH_2OCONH$), 7.06–7.03 (m, 2H, NH), 5.58 (d, J=6.9 Hz, 1H, NH), 4.58 (quin., J=6.6Hz, 1H, C<u>H</u>CH₃), 4.39–4.33 (m, 4H, C<u>H</u>CH₂S(CH₃)₃ and C<u>H</u>CH(CH₃)₂ and C₁₂H₈CHC<u>H</u>₂OCONH), 4.22 (t, J = 7.1 Hz, 1H, $C_{12}H_8CHCH_2OCONH$), 3.04 (dd, J = 5.3 Hz and 13.0 Hz, 1H, $CHC\underline{H}_2S(CH_3)_3$), 2.81 (dd, J = 7.3 Hz and 13.0 Hz, 1H, $CHC\underline{H}_2S(CH_3)_3$), 2.16–2.12 (m, 1H, $CHC\underline{H}(CH_3)_2$), 1.46 (s, 9H, $CO_2C(C\underline{H}_3)_3$), 1.42 (d, J = 6.6 Hz, 3H, $CHC\underline{H}_3$), 1.32 (s, 9H, $CHCH_2S(C\underline{H}_3)_3)$, 0.92 (d, J = 5.5 Hz, 3H, $CHCH(C\underline{H}_3)_2)$, 0.90 (d, J = 5.5 Hz, 3H, $CHCH(C\underline{H}_3)_2)$. ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 170.2, 169.8, 155.8, 143.8, 143.7, 141.2(2C), 127.6(2C), 127.0(2C), 125.0(2C), 119.8(2C), 81.8, 67.1, 57.9, 53.1, 50.5, 47.0, 43.0, 31.2, 30.8(3C), 30.3, 27.9(3C), 19.0, 18.8, 17.7. IR (thin film, cm⁻¹) 3301, 3061, 2971, 1723, 1691, 1639, 1525, 1441, 1391, 1366, 1253, 1221, 1151, 1107, 1077, 1043, 756. HRMS (ESI) calculated for $C_{34}H_{47}N_3O_6SNa$ $[M+Na]^+$ m/z 648.3083, found 648.3066.

Fmoc-L-Ala-L-Met-L-Val-Ot-Bu (5ao) was prepared following General Procedure 1 using H-L-

Met-OH (37.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μ L, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-O*t*-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 91% yield with >20:1 dr (136 mg).

R_f = 0.56 (50% AcOEt in hexane). M.p. 180–185 °C. [α]_D²⁰ = -75.5 (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 2H, C_{12 H_{δ}}CHCH₂OCONH), 7.58 (d, J = 7.3 Hz, 2H, C_{12 H_{δ}}CHCH₂OCONH), 7.38–7.35 (m, 3H, C_{12 H_{δ}}CHCH₂OCONH and NH), 7.29–7.26 (m, 2H, C_{12 H_{δ}}CHCH₂OCONH), 7.20 (br d, J = 8.7 Hz, NH), 6.03 (d, J = 7.8 Hz, 1H, NH), 4.82 (quin., J = 7.4 Hz, 1H, CHCH₃), 4.47–4.31 (m, 4H, CHCH₂CH₂SCH₃ and CHCH(CH₃)₂ and C₁₂H₈CHC H_{δ} OCONH), 4.20 (t, J = 7.1 Hz, 1H, C₁₂H₈CHCH₂OCONH), 2.56 (t, J = 7.3 Hz, 2H, CHCH₂C H_{δ} SCH₃), 2.17–1.96 (m, 3H, CHC H_{δ} CH₂SCH₃ and CHCH(CH₃)₂), 2.04 (s, 3H, CHCH₂CH₂SC H_{δ}), 1.43 (s, 9H, CO₂C(C H_{δ})₃), 1.37 (d, J = 6.9 Hz, 3H, CHC H_{δ}), 0.89 (d, J = 6.9 Hz, 3H, CHCH(C H_{δ})₂), 0.86 (d, J = 6.9 Hz, 3H, CHCH(C H_{δ})₂), 0.86 (d, J = 6.9 Hz, 3H, CHCH(C H_{δ})₂), 125.1(2C), 119.8(2C), 81.8, 67.1, 57.6, 52.1, 50.3, 47.0, 31.6, 31.1, 29.8, 27.9(3C), 19.1, 18.8, 17.6, 14.9. IR (thin film, cm⁻¹) 3289, 3056, 2973, 1725, 1691, 1631, 1525, 1449, 1391, 1365, 1252, 1221, 1151, 1105, 1078, 1043, 756. HRMS (ESI) calculated for C₃₂H₄₃N₃O₆SNa [M+Na]⁺ m/z 620.2770, found 620.2765.

Fmoc-L-Ala-L-Val-L-Met-Ot-Bu (5ap) was prepared following General Procedure 1 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Met-Ot-Bu (103 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (45% AcOEt in hexane) to provide the title compound as a white solid in 90% yield with >20:1 dr (134 mg).

 $R_f = 0.41$ (50% AcOEt in hexane). M.p. 150–155 °C. $[\alpha]_D^{20} = -46.2$ (c 1.17, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.6 Hz, 2H, $C_{12}\underline{H_8}$ CHCH₂OCONH), 7.57 (d, J = 7.3 Hz, 2H,

C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.49 (br d, J = 7.8 Hz, 1H, N \underline{H}), 7.44 (br d, J = 8.9 Hz, 1H, N \underline{H}), 7.34 (t, J = 7.3 Hz, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 7.26–7.22 (m, 2H, C₁₂ $\underline{H}_{\underline{g}}$ CHCH₂OCONH), 6.36 (d, J = 8.2 Hz, 1H, N \underline{H}), 4.66–4.51 (m, 3H, C \underline{H} CH₂CH₂SCH₃ and C \underline{H} CH₃ and C \underline{H} CH₂CH₃(CH₃), 4.36–4.29 (m, 2H, C₁₂H₈CHC $\underline{H}_{\underline{g}}$ OCONH), 4.17 (t, J = 7.4 Hz, 1H, C₁₂H₈C \underline{H} CH₂OCONH), 2.53–2.38 (m, 2H, CHCH₂CH₂SCH₃), 2.15–2.02 (m, 1H, CHC \underline{H} (CH₃)₂), 1.98 (s, 3H, CHCH₂CH₂SC $\underline{H}_{\underline{3}}$), 1.95–1.86 (m, 2H, CHC $\underline{H}_{\underline{g}}$ CH₂SCH₃), 1.40 (s, 9H, CO₂C(C $\underline{H}_{\underline{3}}$)₃), 1.38 (d, J = 7.1 Hz, 3H, CHC $\underline{H}_{\underline{3}}$), 0.96 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{3}}$)₂), 0.94 (d, J = 6.9 Hz, 3H, CHCH(C $\underline{H}_{\underline{3}}$)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 171.0, 170.7, 156.1, 143.8, 143.7, 141.2(2C), 127.5(2C), 126.9(2C), 125.1(2C), 119.8(2C), 82.1, 67.1, 58.5, 52.0, 50.3, 46.9, 31.9, 31.3, 29.8, 27.8(3C), 19.0(2C), 18.4, 15.3. IR (thin film, cm⁻¹) 3287, 3066, 2971, 1729, 1698, 1639, 1530, 1449, 1392, 1368, 1253, 1229, 1151, 1109, 1078, 1043, 756. HRMS (ESI) calculated for C₃₂H₄₃N₃O₆SNa [M+Na]⁺ m/z 620.2770, found 620.2774.

Fmoc-L-Ala-L-Lys(Fmoc)-L-Val-Ot-Bu (5aq) was prepared following General Procedure 1 using H-L-Lys(Fmoc)-OH (92.1 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 63% yield with >20:1 dr (129 mg). $R_f = 0.38$ (50% AcOEt in hexane). M.p. 205–210 °C. $[\alpha]_D^{22} = -56.4$ (c 1.01, CHCl₃). ¹H NMR (400 MHz, DMSO-d₆) δ 7.93–7.85 (m, 6H, NH and C₁₂H₈CHCH₂OCONH and C₁₂H₈CHCH₂OCONH), 7.73–7.55 (m, 5H, $C_{12}H_8$ CHCH₂OCONH and $C_{12}H_8$ CHCH₂OCONH and N_H), 7.41–7.23 (m, 9H, $C_{12}\underline{H}_8$ CHCH₂OCONH and $C_{12}\underline{H}_8$ CHCH₂OCONH and N<u>H</u>), 4.40–4.03 (m, 9H, C<u>H</u>CH₃ and C₁₂H₈CHCH₂OCONH CHCH2CH2CH2CH2NHFmoc and $CHCH(CH_3)_2$ and and C₁₂H₈C<u>H</u>CH₂OCONH and C₁₂H₈CHC<u>H₂OCONH and C₁₂H₈CHCH₂OCONH), 2.98–2.96 (m, 2H,</u> CHCH₂CH₂CH₂CH₂NHFmoc), 2.06–1.97 (m, 1H, CHC<u>H</u>(CH₃)₂), 1.70–1.69 (m, CHCH2CH2CH2CH2NHFmoc), 1.58-1.50 (m, 1H, CHCH2CH2CH2CH2NHBoc), 1.38 (s, 9H, CO₂C(CH₃)₃), 1.33–1.23 (m, 4H, CHCH₂CH₂CH₂CH₂NHFmoc and CHCH₂CH₂CH₂NHFmoc), 0.87 (d, J = 6.2 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.85 (d, J = 6.2 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, DMSO-d₆) δ 172.4, 171.8, 170.4 (2C), 156.1, 155.7, 143.9 (2C), 143.8, 140.7 (2C), 127.6 (4C), 127.1 (4C), 125.3 (2C), 125.1 (2C), 120.0 (6C), 80.5 (2C), 65.7, 65.2, 57.9, 52.2, 50.1, 46.8, 46.7, 31.9, 30.0, 29.2, 27.6 (3C), 22.5, 18.9, 18.2, 18.0. IR (thin film, cm $^{-1}$) 3292, 3067, 2973, 2933, 1700, 1642, 1520, 1477, 1450, 1392, 1366, 1312, 1247, 1166, 1078, 1042, 756. HRMS (ESI) calculated for $C_{48}H_{56}N_4O_8Na$ [M+Na] $^+$ m/z 839.3996, found 839.3991.

6. General Procedure for One-Pot Tetrapeptide Synthesis

General procedure 2: A mixture of L-amino acid (0.250 mmol), trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), and dry DCM (1 mL) in a flame-dried 20 mL test tube equipped with a magnetic stirring bar was stirred vigorously for 1 h at 0 °C under N₂ atmosphere. Then, L-amino acid *tert*-butyl ester (0.500 mmol) was added to the above reaction solution. The mixture was allowed to stir vigorously under N₂ atmosphere at room temperature for 24 h. Then, a solution of trimethylaluminum 2M in hexane (188 μL, 0.375 mmol) and L-amino acid (0.250 mmol), which was stirred for 1 h, was added. After 24 h, Fmoc-L-amino acid chloride and pivalic acid (2.55 mg, 0.025 mmol) were added to the reaction solution, and stirring continued under N₂ atmosphere at room temperature for 24 h. The reaction mixture was then diluted with CHCl₃ (4.50 mL), transferred onto SiO₂ column using by a pipette, and the used test tube vial and pipette were washed with CHCl₃ (2 x 4.00 mL). The reaction mixture was purified by flash column chromatography (50–100% EtOAc in hexane) to provide the corresponding tetrapeptide as white solid.

Fmoc-L-Ala-L-Val-L-Val-Ot-Bu (6a) was prepared following General Procedure 2 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After

24 h, stirred solution of H-L-Ala-OH (22.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (188 μ L, 0.375 mmol) was added into the reaction solution for further 24 h. Then, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (80% AcOEt in hexane) to provide the title compound as a white solid in 59% yield with >20:1 dr (92.4 mg).

R_f = 0.35 (80% AcOEt in hexane). M.p. 175–180 °C. $[\alpha]_D^{22} = -32.9$ (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.72 (m, 3H, C₁₂ \underline{H}_{δ} CHCH₂OCONH and N \underline{H}), 7.58 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.41–7.24 (m, 6H, C₁₂ \underline{H}_{δ} CHCH₂OCONH and N \underline{H}), 6.10 (br d, J = 8.2 Hz, 1H, N \underline{H}), 4.81–4.78 (m, 1H, C \underline{H} CH(CH₃)₂), 4.63–4.59 (m, 2H, C \underline{H} CH₃ and C \underline{H} CH(CH₃)₂) 4.49–4.29 (m, 3H, C \underline{H} CH₃ and C₁₂ \underline{H}_{δ} CHCH₂OCONH), 4.19 (t, J = 7.3 Hz, 1H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 2.12–2.02 (m, 2H, CHC \underline{H} (CH₃)₂ and CHC \underline{H} (CH₃)₂), 1.39 (s, 9H, CO₂C(C \underline{H}_{3})₃), 1.37–1.34 (m, 6H, CHC \underline{H}_{3}) and CHC \underline{H}_{3}), 0.95 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_{3})₂), 0.81 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_{3})₂), 0.85 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_{3})₂), 0.81 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_{3})₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.4 (2C), 171.2, 170.8, 155.9, 143.9 (2C), 141.2 (2C), 127.6 (2C), 127.0 (2C), 125.2 (2C), 119.9 (2C), 81.8, 67.1, 58.5, 57.6, 48.7, 47.1, 31.4, 31.3, 27.9 (3C), 19.7 (2C), 19.0 (2C), 18.8, 18.4, 17.7. IR (thin film, cm⁻¹) 3305, 3044, 2969, 2933, 1729, 1705, 1664, 1631, 1515, 1441, 1391, 1355, 1301, 1241, 1217, 1149, 1108, 1049, 753. HRMS (ESI) calculated for C₃₅H₄₈N₄O₇Na [M+Na]⁺ m/z 659.3421, found 659.3429.

Fmoc-L-Ala-L-Phe-L-Val-Ot-Bu (6b) was prepared following General Procedure 2 using H-L-Phe-OH (41.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, stirred solution of H-L-Ala-OH (22.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (188 μL, 0.375 mmol) was added into the reaction solution for further 24 h. Then, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (67% AcOEt in hexane) to provide the title compound as a white solid in 54% yield with >20:1 dr (92.4 mg).

R_f = 0.41 (67% AcOEt in hexane). M.p. 205–210 °C. [α]_D²² = -72.5 (c 1.01, CHCl₃). ¹H NMR (400 MHz, DMSO-d₆) δ 8.04 (d, J = 8.2 Hz, 1H, N \underline{H}), 7.95 (d, J = 7.3 Hz, 1H, N \underline{H}), 7.88–7.86 (m, 3H,

C₁₂<u>H</u>₈CHCH₂OCONH and N<u>H</u>), 7.70 (t, J = 8.5 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.52 (d, J = 7.3 Hz, 1H, N<u>H</u>), 7.39 (t, J = 7.3 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.33–7.15 (m, 7H, C₁₂<u>H</u>₈CHCH₂OCONH and CHCH₂C₆<u>H</u>₅), 4.63 (d t, J = 4.4 Hz and 8.9 Hz, 1H, C<u>H</u>CH₂Ph), 4.26–3.99 (m, 6H, C<u>H</u>CH₃ and C<u>H</u>CH₃ and and C<u>H</u>CH(CH₃)₂ and C₁₂H₈C<u>H</u>CH₂OCONH and C₁₂H₈CHC<u>H</u>₂OCONH), 3.05 (dd, J = 4.4 Hz and 14 Hz, 1H, CHC<u>H</u>₂Ph), 2.81 (dd, J = 8.9 Hz and 14 Hz, 1H, CHC<u>H</u>₂Ph), 2.07–1.97 (m, 1H, CHC<u>H</u>(CH₃)₂), 1.40 (s, 9H, CO₂C(C<u>H</u>₃)₃), 1.17 (d, J = 7.3 Hz, 3H, CHC<u>H</u>₃), 1.14 (d, J = 6.9 Hz, 3H, CHC<u>H</u>₃), 0.88 (d, J = 5.5 Hz, 3H, CHC(C<u>H</u>₃)₂), 0.86 (d, J = 5.5 Hz, 3H, CHCH(C<u>H</u>₃)₂). ¹³C NMR (100 MHz, DMSO-d₆) δ 171.9, 171.7, 170.8, 170.2, 155.5, 143.7, 143.6, 140.5 (2C), 137.3 (2C), 129.0 (2C), 127.7 (2C), 127.4 (2C), 126.8 (2C), 126.0, 125.0, 119.8 (2C), 80.4, 65.4, 57.7, 53.1, 49.7, 47.9, 46.4, 37.2, 29.9, 27.4 (3C), 18.7, 18.0, 17.9, 17.8. IR (thin film, cm⁻¹) 3291, 3054, 2967, 2931, 1705, 1641, 1531, 1475, 1445, 1391, 1313, 1221, 1143, 1110, 1078, 1045, 757. HRMS (ESI) calculated for C₃₉H₄₈N₄O₇Na [M+Na]⁺ m/z 707.3420, found 707.3372.

Fmoc-L-Ala-L-Phe-L-Phe-L-Ala-Ot-Bu (6c) was prepared following General Procedure 2 using H-L-Phe-OH (41.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Ala-Ot-Bu (72.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, stirred solution of H-L-Phe-OH (41.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (188 μL, 0.375 mmol) was added into the reaction solution for further 24 h. Then, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (60% AcOEt in hexane) to provide the title compound as a white solid in 66% yield with >20:1 dr (120.8 mg).

R_f = 0.51 (50% AcOEt in hexane). M.p. 225–230 °C. [α]_D²² = -89.5 (c 1.01, CHCl₃). ¹H NMR (400 MHz, DMSO-d₆) δ 8.33 (d, J = 6.9 Hz, 1H, N \underline{H}), 8.05 (d, J = 8.2 Hz, 1H, N \underline{H}), 7.87 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.82 (d, J = 8.2 Hz, 1H, N \underline{H}), 7.69 (t, J = 7.8 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.45–7.38 (m, 3H, C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 7.32–7.10 (m, 12H, C₁₂ \underline{H}_8 CHCH₂OCONH and CHCH₂C₆ \underline{H}_5 and CHCH₂C₆ \underline{H}_5), 4.55 (d t, J = 3.6 Hz and 9.2 Hz, 1H, C \underline{H} CH₂Ph), 4.45 (quin., J = 7.1 Hz, 1H, C \underline{H} CH₃), 4.29–3.95 (m, 5H, C \underline{H} CH₂Ph and C₁₂H₈CHCH₂OCONH and C₁₂H₈CHC \underline{H}_2 OCONH and C \underline{H} CH₃), 3.06 (dd, J = 3.6 Hz and 14 Hz, 1H, CHC \underline{H}_2 Ph), 2.93 (dd, J = 4.6 Hz and 14 Hz, 1H, CHC \underline{H}_2 Ph), 2.83–2.71 (m, 2H, CHC \underline{H}_2 Ph), 1.39 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.25 (d, J = 7.3 Hz, 3H, CHC \underline{H}_3), 1.09 (d, J = 7.1 Hz, 3H, CHC \underline{H}_3). ¹³C NMR

(100 MHz, DMSO-d₆) δ 172.1, 171.6, 170.7, 170.6, 155.6, 143.9, 143.7, 140.7 (2C), 137.6, 137.5, 129.2 (4C), 128.0 (2C), 127.9 (2C), 127.6 (2C), 127.1 (2C), 126.2, 126.1, 125.3 (2C), 120.0 (2C), 80.4, 65.7, 53.6, 53.4, 50.0, 48.3, 46.6, 37.6, 37.4, 27.6 (3C), 18.1, 17.0. IR (thin film, cm⁻¹) 3296, 3033, 2931, 1701, 1644, 1533, 1475, 1441, 1389, 1311, 1213, 1144, 1114, 1078, 1044, 756. HRMS (ESI) calculated for $C_{43}H_{48}N_4O_7Na$ [M+Na]⁺ m/z 755.3421, found 755.3428.

Fmoc-L-Ala-L-Phe-L-Thr(t-Bu)-L-Val-Ot-Bu (6d) was prepared following General Procedure 2

using H-L-Thr(t-Bu)-OH (43.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, stirred solution of H-L-Phe-OH (41.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (188 µL, 0.375 mmol) was added into the reaction solution for further 24 h. Then, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (40% AcOEt in hexane) to provide the title compound as a white solid in 56% yield with >20:1 dr (107.8 mg). $R_f = 0.56$ (50% AcOEt in hexane). M.p. 155–160 °C. $[\alpha]_D^{22} = -52.8$ (c 1.01, CHCl₃). ¹H NMR (400) MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.65 (br d, J = 8.5 Hz, 1H, N_H), 7.58 (t, J = 7.4 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.38 (t, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.31–7.06 (m, 8H, $C_{12}H_8$ CHCH₂OCONH and CHCH₂ C_6H_5 and NH_2), 6.86 (d, J = 7.3 Hz, 1H, NH_2), 5.68 (d, J = 7.8 Hz, 1H, N<u>H</u>), 4.86 (quin., J = 6.6 Hz, 1H, C<u>H</u>CH₃), 4.39–4.29 (m, 5H, $C\underline{H}CH(CH_3)OC(CH_3)_3$ and $C\underline{H}CH(CH_3)_2$ and $C_{12}H_8CHC\underline{H}_2OCONH$ and $CHC\underline{H}(CH_3)OC(CH_3)_3)$, 4.20–4.12 (m, 2H, CHCH₂Ph and $C_{12}H_8CHCH_2OCONH$), 3.11 (dd, J = 5.7 Hz and 14 Hz, 1H, $CHC\underline{H}_2Ph$), 3.03 (dd, J = 6.9 Hz and 14 Hz, 1H, $CHC\underline{H}_2Ph$), 2.19–2.13 (m, 1H, $CHC\underline{H}(CH_3)_2$), 1.44 (s, 9H, $CO_2C(C\underline{H}_3)_3$), 1.33 (d, J = 6.6 Hz, 3H, $CHC\underline{H}_3$), 1.26 (s, 9H, $CHCH(CH_3)OC(C\underline{H}_3)_3$), 1.01 $(d, J = 5.5 \text{ Hz}, 3H, CHCH(CH_3)OC(CH_3)_3), 0.94 (d, J = 6.7 \text{ Hz}, 3H, CHCH(CH_3)_2), 0.90 (d, J = 6.7 \text{ Hz})$ Hz, 3H, CHCH(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 170.3, 170.2, 169.1, 155.8, 143.7, 141.2 (2C), 135.9, 129.1 (2C), 128.4 (2C), 127.6 (2C), 127.0 (2C), 126.9, 125.1, 125.0 (2C), 119.8 (2C), 81.5, 75.3, 66.9, 66.3, 57.8, 57.3, 54.0, 50.3, 47.0, 38.3, 30.8, 28.1 (3C), 28.0 (3C), 19.0, 18.6, 17.5, 16.8. IR (thin film, cm⁻¹) 3302, 3024, 2967, 2931, 1705, 1645, 1531, 1475, 1455, 1391, 1313, 1221, 1144, 1115, 1075, 1045, 756. HRMS (ESI) calculated for C₄₄H₅₈N₄O₈Na [M+Na]⁺ m/z 793.4152, found 793.4159.

7. Procedure for Pentapeptide Synthesis

7-1. Pentapeptide Synthesis

Procedure: To a flame dried round-bottom flask charged with **5e** (145 mg, 0.250 mmol) and THF (5 mL), were added diethylamine (52.2 μL, 0.500 mmol) was added. The reaction mixture was stirred in an oil bath at 50 °C for 4 h. After completion of the reaction, distilled off THF and diethylamine were distilled in vacuo using an evaporator. The residue **5e** was used for next reaction without purification—as **5e**.

Fmoc-L-Ala-Aib-L-Ala-L-Tle-L-Val-Ot-Bu (7a) was prepared as follows procedure below. A mixture of H-Aib-OH (25.8 mg, 0.250 mmol), trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), and dry DCM (1 mL) in a flame-dried 20 mL test tube equipped with a magnetic stirring bar was stirred vigorously for 1 h at 0 °C under N₂ atmosphere. Then, 5e' was added to the above reaction solution. The mixture was allowed to stir vigorously under N₂ atmosphere at room temperature for 24 h. Then, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) was added to the reaction solution, and stirring was continued under N₂ atmosphere at room temperature for 24 h. The reaction mixture was then diluted with CHCl₃ (4.50 mL), transferred onto SiO₂ column using by-a pipette, and the used test tube vial and pipette were washed with CHCl₃ (2 x 4.00 mL). The reaction mixture was purified by flash column chromatography (82% EtOAc in hexane) to provide the corresponding pentapeptide as white solid in 34 % yield with >20:1 dr (62.5 mg).

R_f = 0.26 (80% AcOEt in hexane). M.p. 115–120 °C. [α]_D²⁰ = –32.8 (c 1.11, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.56 (dd, J = 3.9 Hz and 7.4 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.38 (t, J = 7.6 Hz, 2H, C₁₂<u>H</u>₈CHCH₂OCONH), 7.30–7.21 (m, 4H,

C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H}), 7.12 (br s, 1H, N \underline{H}), 7.06 (br d, J = 8.5 Hz, 1H, N \underline{H}), 6.00 (d, J = 6.0 Hz, 1H, N \underline{H}), 4.61–4.52 (m, 2H, C \underline{H} CH₃ and C \underline{H} C(CH₃)₃), 4.40–4.32 (m, 3H, C₁₂H₈CHC \underline{H}_2 OCONH and C \underline{H} CH(CH₃)₂), 4.27–4.19 (m, 2H, C \underline{H} CH₃ and C₁₂H₈C \underline{H} CH₂OCONH), 2.13–2.03 (m, 1H, CHC \underline{H} (CH₃)₂), 1.54 (s, 3H, C(C \underline{H}_3)₂), 1.53 (s, 3H, C(C \underline{H}_3)₂). 1.42 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.37 (d, J = 7.1 Hz, 3H, CHC \underline{H}_3), 1.34 (d, J = 7.1 Hz, 3H, CHC \underline{H}_3), 0.99 (s, 9H, CHC(C \underline{H}_3)₃), 089 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.84 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 172.6, 172.5, 170.8, 170.5, 156.4, 143.7, 143.6, 141.2 (2C), 127.7 (2C), 127.0 (2C), 125.0 (2C), 119.9 (2C), 81.7, 67.1, 60.6, 57.9, 56.9, 51.2, 49.6, 47.0, 34.6, 31.1, 27.9 (3C), 26.7 (3C), 25.2, 24.9, 18.9, 18.3, 18.1, 18.0. IR (thin film, cm⁻¹) 3305, 3012, 2967, 1707, 1645, 1530, 1478, 1368, 1297, 1192, 1115, 1077, 1045, 764. HRMS (ESI) calculated for C₄₀H₅₇N₅O₈Na [M+Na]⁺ m/z 758.4105, found 758.4120.

7-2. One-Pot Pentapeptide Synthesis

General procedure 3: A mixture of L-amino acid (0.250 mmol), trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), and dry DCM (1 mL) in a flame-dried 20 mL test tube equipped with a magnetic stirring bar was stirred vigorously for 1 h at 0 °C under N₂ atmosphere. Then, L-amino acid *tert*-butyl ester (0.500 mmol) was added to the above reaction solution. The mixture was allowed to stir vigorously under N₂ atmosphere at room temperature for 24 h. Then, a solution of trimethylaluminum 2M in hexane (188 μL, 0.375 mmol) and L-amino acid (0.250 mmol), which was

stirred for 1 h, was added. After 24 h, a solution of trimethylaluminum 2M in hexane (250 μ L, 0.500 mmol) and L-amino acid (0.500 mmol), which was stirred for 1 h, was added. And the mixture was allowed to stir vigorously under N_2 atmosphere at 50 °C for 24 h. Then, Fmoc-L-amino acid chloride and pivalic acid (2.55 mg, 0.025 mmol) were added to the reaction solution, and stirring continued under N_2 atmosphere at room temperature for 24 h. The reaction mixture was then diluted with CHCl₃ (4.50 mL), transferred to a SiO₂ column using pipette; and the used test tube and pipette were washed with CHCl₃ (2 x 4.00 mL). The reaction mixture was purified by flash column chromatography (50–100% EtOAc in hexane) to provide the corresponding tetrapeptide as white solid.

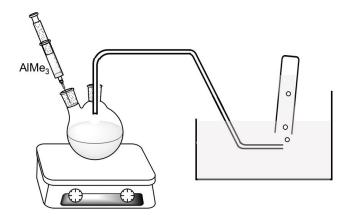
Fmoc-L-Ala-Aib-L-Ala-L-Val-L-Ala-Ot-Bu (7b) was prepared following General Procedure 3 using H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Ala-Ot-Bu (72.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, stirred solution of H-L-Ala-OH (22.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (188 μL, 0.375 mmol) was added. After 24 h, a solution of trimethylaluminum 2M in hexane (250 μL, 0.500 mmol) and H-Aib-OH (51.6 mg, 0.500 mmol), which was stirred for 1 h, was added. And the mixture was allowed to stir vigorously under N₂ atmosphere at 50 °C for 24 h. Then, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (AcOEt) to provide the title compound as a white solid in 60% yield with >20:1 dr (104.0 mg).

R_f = 0.28 (AcOEt). M.p. 85–90 °C. [α]_D²¹ = -34.5 (c 1.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.58 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_8 CHCH₂OCONH), 7.41–7.23 (m, 8H, C₁₂ \underline{H}_8 CHCH₂OCONH and N \underline{H} and N \underline{H} and N \underline{H} and N \underline{H}), 6.72 (d, J = 2.5 Hz, 1H, N \underline{H}), 4.48–4.21 (m, 6H, C \underline{H} CH₃ and C \underline{H} CH₃ and C \underline{H} CH₃ and C \underline{H} CH₃ and C \underline{H} CH₂OCONH), 3.98–3.95 (m, 1H, C₁₂ \underline{H}_8 C \underline{H} CH₂OCONH), 2.45–2.36 (m, 1H, CHC \underline{H} (CH₃)₂), 1.52 (s, 3H, C(C \underline{H}_3)₂), 1.44 (s, 3H, C(C \underline{H}_3)₂), 1.42 (s, 9H, CO₂C(C \underline{H}_3)₃), 1.42–1.36 (m, 9H, CHC \underline{H}_3 and CHC \underline{H}_3 and CHC \underline{H}_3), 0.96 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂), 0.93 (d, J = 6.9 Hz, 3H, CHCH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 173.9, 173.5, 171.7, 171.4, 157.4, 143.6, 143.5, 141.2 (2C), 127.8 (2C), 127.1 (2C), 124.9, 124.8, 119.9 (2C), 81.2, 67.4, 58.6, 56.6, 53.0, 50.9, 49.1, 47.0, 29.8, 27.8 (3C), 26.9, 23.6, 19.3, 17.7, 17.5, 17.4, 16.9. IR (thin film, cm⁻¹) 3307, 2979, 2935, 1642, 1530, 1450, 1382, 1368, 1298, 1251, 1192, 1151, 1118, 1077, 1033, 847.

HRMS (ESI) calculated for $C_{37}H_{51}N_5O_8Na [M+Na]^+ m/z 716.3635$, found 716.3607.

Fmoc-L-Ala-Aib-L-Val-Aib-L-Val-Ot-Bu (7c) was prepared following **General Procedure 3** using H-Aib-OH (25.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, stirred solution of H-L-Val-OH (29.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (188 μL, 0.375 mmol) was added. After 24 h, a solution of trimethylaluminum 2M in hexane (250 μL, 0.500 mmol) and H-Aib-OH (51.6 mg, 0.500 mmol), which was stirred for 1 h, was added. And the mixture was allowed to stir vigorously under N₂ atmosphere at 50 °C for 24 h. Then, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (82% AcOEt in hexane) to provide the title compound as a white solid in 51% yield with >20:1 dr (93.8 mg).

R_f = 0.23 (80% AcOEt in hexane). M.p. 95–100 °C. $[\alpha]_D^{21} = -45.0$ (c 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.56 (t, J = 6.9 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.38 (t, J = 7.6 Hz, 2H, C₁₂ \underline{H}_{δ} CHCH₂OCONH), 7.31–7.26 (m, 3H, C₁₂ \underline{H}_{δ} CHCH₂OCONH and N \underline{H}), 7.16 (br s, 1H, N \underline{H}), 7.02 (br d, J = 8.9 Hz, 1H, N \underline{H}), 6.96 (br d, J = 8.5 Hz, 1H, N \underline{H}), 6.63 (d, J = 3.0 Hz, 1H, N \underline{H}), 4.36–4.29 (m, 3H, C \underline{H} CH₃ and C₁₂ \underline{H}_{δ} CHCH₂OCONH), 4.25–4.19 (m, 2H, C \underline{H} CH(CH₃)₂) and C₁₂ \underline{H}_{δ} CHCH₂OCONH), 4.05–3.99 (m, 1H, C \underline{H} CH(CH₃)₂), 1.56 (s, 3H, C(C \underline{H}_{3})₂), 1.47 (s, 3H, C(C \underline{H}_{3})₂), 1.42 (s, 3H, C(C \underline{H}_{3})₂), 1.40 (d, J = 6.9 Hz, 3H, CHC \underline{H} (2), 1.39 (s, 9H, CO₂C(C(\underline{H}_{3})₃), 0.88 (d, J = 6.8 Hz, 3H, CHCH(C \underline{H}_{2})₂), 0.83–0.78 (m, 9H, CHCH(C \underline{H}_{3})₂ and CHCH(C(\underline{H}_{3})₂ and CHCH(C(\underline{H}_{3})₂) and CHCH(C(\underline{H}_{3})₂) and CHCH(C(\underline{H}_{3})₃). 1.37 NMR (100 MHz, CDCl₃) δ 175.1, 174.7, 173.7, 170.9, 170.7, 157.3, 143.6, 143.3, 141.2, 141.1, 127.8 (2C), 127.1 (2C), 124.8 (2C), 120.0 (2C), 81.3, 67.5, 58.9, 57.1, 56.9, 53.0, 46.8, 30.8, 28.8, 27.8 (3C), 27.4, 25.9, 24.9, 23.3, 19.4, 18.9, 18.5, 17.1 (2C), 17.0. IR (thin film, cm⁻¹) 3309, 3018, 1664, 1525, 1451, 1368, 1296, 1214, 1159, 1078, 1035, 744. HRMS (ESI) calculated for C₄₀H₅₇N₅O₈Na [M+Na]⁺ m/z 758.4105, found 758.4128.


Fmoc-L-Ala-L-Leu-Aib-L-Met-L-Ala-Ot-Bu (7d) was prepared following **General Procedure 3** using H-Met-OH (37.3 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Ala-Ot-Bu (72.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, stirred solution of H-Aib-OH (25.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (188 μL, 0.375 mmol) was added. After 24 h, a solution of trimethylaluminum 2M in hexane (250 μL, 0.500 mmol) and H-L-Leu-OH (65.6 mg, 0.500 mmol), which was stirred for 1 h, was added. And the mixture was allowed to stir vigorously under N₂ atmosphere at 50 °C for 24 h. Then, Fmoc-L-Ala-Cl (247 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (75% AcOEt in hexane) to provide the title compound as a white solid in 60% yield with >20:1 dr (115.1 mg).

 $R_f = 0.41$ (75% AcOEt in hexane). M.p. 75–80 °C. $[\alpha]_D^{23} = -62.1$ (c 1.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.4 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.59 (t, J = 8.2 Hz, 2H, $C_{12}H_8CHCH_2OCONH$), 7.46 (br d, J = 7.4 Hz, 1H, NH), 7.40 (t, J = 7.3 Hz, 2H, $C_{12}\underline{H}_8$ CHCH₂OCONH), 7.33–7.23 (m, 3H, $C_{12}\underline{H}_8$ CHCH₂OCONH and N<u>H</u>), 7.07 (br s, 1H, N<u>H</u>), 6.97 (br d, J = 5.3 Hz, 1H, N<u>H</u>), 6.09 (br d, J = 3.2 Hz, 1H, N<u>H</u>), 4.55–4.49 (m, 1H, CHCH2CH2SCH3), 4.46-4.34 (m, 3H, CHCH3 and C12H8CHCH2OCONH), 4.24-4.19 (m, 1H, $C_{12}H_8C\underline{H}CH_2OCONH$), 4.12–4.06 (m, 2H, $C\underline{H}CH_2CH(CH_3)_2$ and $C\underline{H}CH_3$), 2.61–2.48 (m, 2H, CHCH₂CH₂SCH₃), 2.36–2.30 (m, 1H, CHC<u>H</u>₂CH₂SCH₃), 2.13–2.05 (m, 1H, CHC<u>H</u>₂CH₂SCH₃), 2.02 (s, 3H, CHCH₂CH₂SCH₃), 1.71–1.53 (m, 3H, CHCH₂CH(CH₃)₂ and CHCH₂CH(CH₃)₂), 1.53 (s, 3H, $C(C\underline{H}_3)_2$), 1.45–1.37 (m, 18H, $C(C\underline{H}_3)_2$ and $CHC\underline{H}_3$ and $CHC\underline{H}_3$ and $CO_2C(C\underline{H}_3)_3$), 0.93 (d, J = 6.0 Hz, 3H, CHCH₂CH(C \underline{H}_3)₂), 0.88 (d, J = 6.0 Hz, 3H, CHCH₂CH(C \underline{H}_3)₂). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 172.2, 172.0 (2C), 171.4, 156.9, 143.6, 143.4, 141.2, 127.8 (2C), 127.1 (2C), 124.9, 124.8, 120.0 (2C), 81.3, 67.2, 57.1, 53.9, 52.9, 52.1, 49.1, 47.0, 39.5, 30.7, 30.6, 27.9 (3C), 26.3, 24.9, 24.4, 22.7, 21.8, 17.6, 17.3, 15.2 (2C). IR (thin film, cm⁻¹) 3308, 3018, 1656, 1528, 1450, 1368, 1297, 1214, 1152, 746. HRMS (ESI) calculated for $C_{40}H_{57}N_5O_8SNa$ [M+Na]⁺ m/z 790.3826, found 790.3829.

Fmoc-L-Val-L-Ala-Aib-L-Aoc(2)-L-Val-Ot-Bu (7e) was prepared following **General Procedure 3** using H-Aoc(2)-OH (39.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (250 μL, 0.500 mmol), the resulting mixture was stirred in DCM under N₂ atmosphere at 0 °C. After 1 h, L-Val-Ot-Bu (86.6 mg, 0.500 mmol) was added. The mixture was stirred under N₂ atmosphere at ambient temperature. After 24 h, stirred solution of H-Aib-OH (25.8 mg, 0.250 mmol) and trimethylaluminum 2M in hexane (188 μL, 0.375 mmol) was added. After 24 h, a solution of trimethylaluminum 2M in hexane (250 μL, 0.500 mmol) and H- L-Ala-OH (44.6 mg, 0.500 mmol), which was stirred for 1 h, was added. And the mixture was allowed to stir vigorously under N₂ atmosphere at 50 °C for 24 h. Then, Fmoc-L-Val-Cl (268 mg, 0.750 mmol) and pivalic acid (2.55 mg, 0.025 mmol) were added into the reaction solution and stirring under N₂ atmosphere at room temperature for 24 h. The reaction mixture was purified by flash column chromatography (80% AcOEt in hexane) to provide the title compound as a white solid in 53% yield with >20:1 dr (104.9 mg).

 $R_f = 0.34$ (80% AcOEt in hexane). M.p. 135–142 °C. $[\alpha]_D^{23} = -48.0$ (c 1.03, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.57 (d, J = 7.6 Hz, 2H, $C_{12}H_8$ CHCH₂OCONH), 7.40–7.25 (m, 6H, $C_{12}H_8$ CHCH₂OCONH and NH and NH), 7.17 (br d, J =7.4 Hz, 1H, N<u>H</u>), 7.06 (br s, 1H, N<u>H</u>), 6.00 (br d, J = 6.6 Hz, 1H, N<u>H</u>), 4.48–4.39 (m, 2H, C<u>H</u>CH₃ and CHCH2CH2CH2CH2CH2CH3), 4.33–4.29 (m, 2H, C12H8CHCH2OCONH), 4.26–4.19 (m, 2H, $C\underline{H}CH(CH_3)_2$ and $C\underline{H}CH(CH_3)_2$), 3.97 (t, J = 6.6 Hz, 1H, $C_{12}H_8C\underline{H}CH_2OCONH$), 2.23–2.04 (m, 2H, CHCH(CH₃)₂ and CHCH(CH₃)₂), 2.00–1.93 (m, 1H, CHCH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.75–1.69 (m, 1H, $CHC\underline{H}_2CH_2CH_2CH_2CH_3$), 1.54 (s, 3H, $C(C\underline{H}_3)_2$), 1.47 (s, 3H, $C(C\underline{H}_3)_2$), 1.45 (s, 9H, $CO_2C(C\underline{H}_3)_3$), 1.38 (d, J = 6.9 Hz, 3H, $CHC\underline{H}_3$), 1.33–1.22 (m, 8H, $CHCH_2C\underline{H}_2CH_2CH_2CH_3$ CHCH₂CH₂CH₂CH₂CH₂CH₃ and CHCH₂CH₂CH₂CH₂CH₃ $CHCH_2CH_2CH_2CH_2CH_2CH_3$), 0.98–0.92 (m, 12H, $CHCH(C\underline{H}_3)_2$ and $CHCH(C\underline{H}_3)_2$), 0.82 (t, J = 6.6Hz, 3H, CHCH₂CH₂CH₂CH₂CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 172.5, 172.3, 172.2, 170.8, 156.9, 143.7, 143.5, 141.2, 127.7 (2C), 127.0 (2C), 125.0, 124.9, 119.9 (2C), 81.5, 67.1, 61.1, 58.5, 57.1, 54.0, 50.8, 47.0, 32.0, 31.6, 30.7, 30.5, 28.9, 27.9 (3C), 26.1, 25.8, 24.4, 22.5 (2C), 19.2, 18.9, 18.2, 17.1, 13.9 (2C). IR (thin film, cm⁻¹) 3315, 2964, 2930, 2248, 1706, 1644, 1524, 1450, 1368, 1275, 1227, 1148, 1031, 907, 726. HRMS (ESI) calculated for $C_{44}H_{65}N_5O_8Na$ [M+Na]⁺ m/z814.4730, found 814.4721.

8. Procedure for Time Course of Gas Generation

Gases were measured in volume by displacement over water and yields were calculated based on ideal gas (1 mmol = 22.4 mL).

A flame-dried 50 mL two-necked flask with a magnetic stirring bar was charged with substrate (1 mmol) and dichloromethane (5 mL) under N_2 atmosphere. One of the necks of the flask was connected by a tube to an inverted graduated cylinder filled with water. Then, trimethylaluminum 2M in hexane (550 μ L, 1.1 mmol) was added under room temperature.

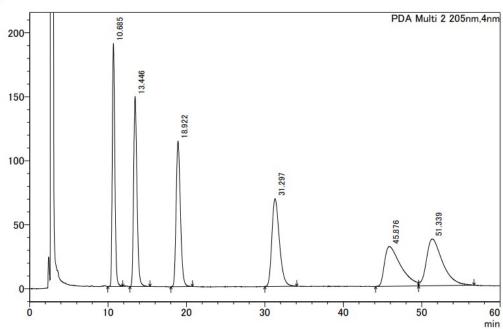
Benzylamine; gas was barely detected.

3-Phenylpropionic acid; 22 mL of gas was gathered within 10 min. And no further gasses were observed.

Phenylalanine; 27 mL of gas was gathered within 10 min. Gasses were gradually generated thereafter, and finally 44 mL of gasses could be gathered for one hour.

9. HPLC data

Conditions:


Chiral Column:

Racemic

Injection Volume Data File Method File Sample Information

: 10 : Fmoc-rac.Ala-rac.Phg-rac.Val-OtBu.lcd : IE 80 20 1.5ml 60min.lcm

mAU

Peak Table

	1	can rabic	
PDA Ch2	205nm		
Peak#	Ret. Time	Area	Area%
1	10.685	4303848	15.748
2	13.446	4427188	16.199
3	18.922	4330797	15.846
4	31.297	4590956	16.798
5	45.876	4462308	16.327
6	51.339	5215011	19.082
Total	11.71	27330107	100.000
	1.00		

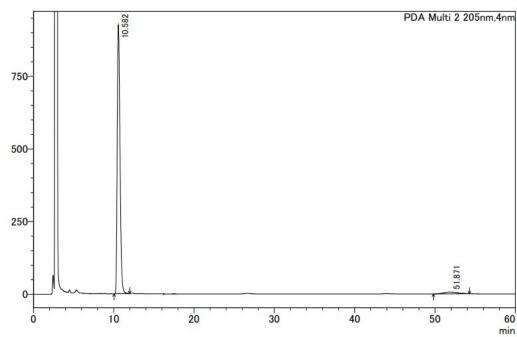
Retention time (min.);

Fmoc-D-Ala-L-Phg-L-Val-Ot-Bu; 31.297

Fmoc-L-Ala-D-Phg-L-Val-Ot-Bu; 45.8767

Fmoc-D-Ala-L-Phg-D-Val-Ot-Bu; 18.922

Fmoc-L-Ala-L-Phg-L-Val-Ot-Bu; 10.685


Result;

Sample Information

Injection Volume Data File Method File

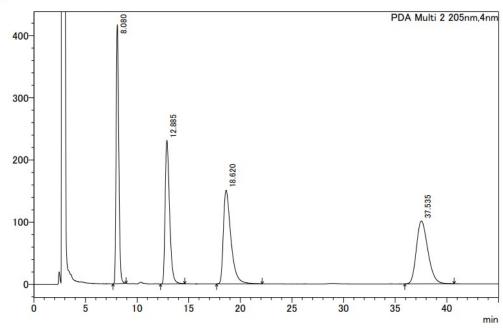
: 10 : TH19-28.lcd : IE 80 20 1.5ml 60min.lcm

mAU

Peak Table

PDA Ch2	205nm	Market State Co.	
Peak#	Ret. Time	Area	Area%
1	10.582	22151689	96.682
2	51.871	760208	3.318
Total	50	22911897	100.000

Conditions:


Chiral Column:

Racemic

Sample Information

Injection Volume : 10 Sample 1
Data File : Fmoc-rac.Ala-rac.Val-rac.Phg-OtBu.lcd
Method File : IE 80 20 1.5ml 45min.lcm

mAU

Peak Table

PDA Ch2	205nm		110 1100
Peak#	Ret. Time	Area	Area%
1	8.080	7427979	24.984
2	12.885	6860904	23.076
3	18.620	7626497	25.651
4	37.535	7816088	26.289
Total		29731468	100.000

Retention time (min.);

Fmoc-D-Ala-L-Val-L-Phg-Ot-Bu; 37.535

Fmoc-D-Ala-L-Val-L-Phg-Ot-Bu; 18.620

Fmoc-D-Ala-L-Val-L-Phg-Ot-Bu; 12.885

Fmoc-D-Ala-L-Val-L-Phg-Ot-Bu; 8.080

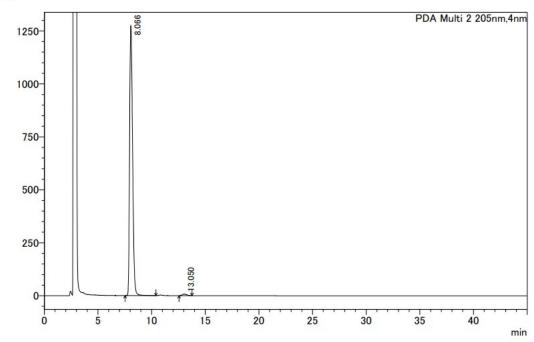
Result;

1) AIMe₃ (2 equiv)
DCM, 0°C, 1 h

2) Ph
H₂N CO₂t-Bu
r.t., 24 h

Fmoc N H

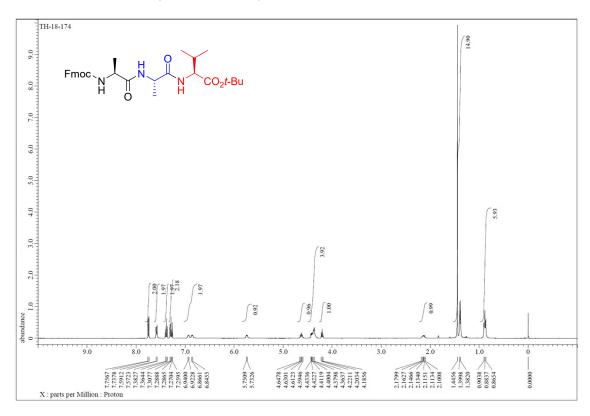
CO₂t-Bu
CO₂t-Bu
(2 equiv)
Ph
CO₂t-Bu
(3 equiv)
Ph
CO₂t-Bu
(4 equiv)
Ph
CO₂t-Bu

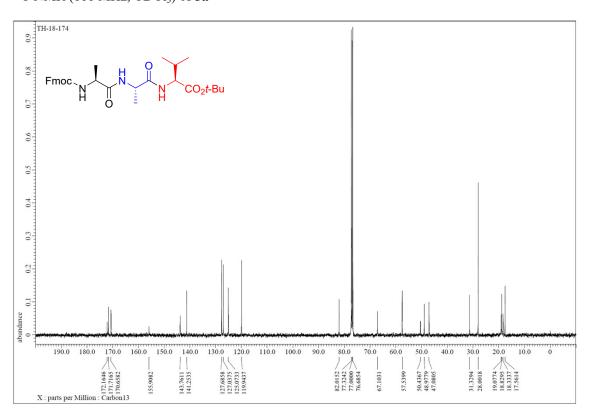

(1 equiv) Fmoc N CI H O (3 equiv) r.t., 24 h

91% yield LLL:DLL:LDL:LLD =99.1:0:0:0.9

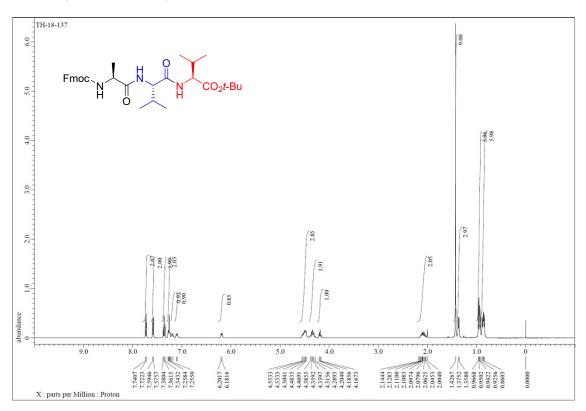
Sample Information

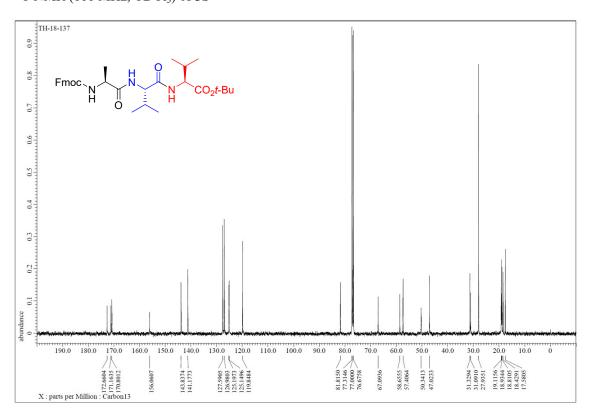
Injection Volume Data File Method File : 10 : Fmoc-L-Ala-L-Val-L-Phg-OtBu.lcd : IE 80 20 1.5ml 45min.lcm

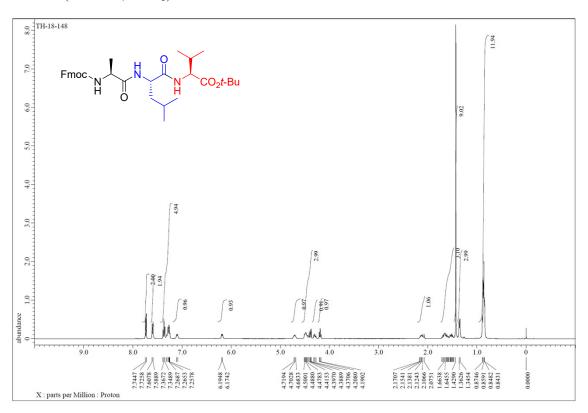

mAU

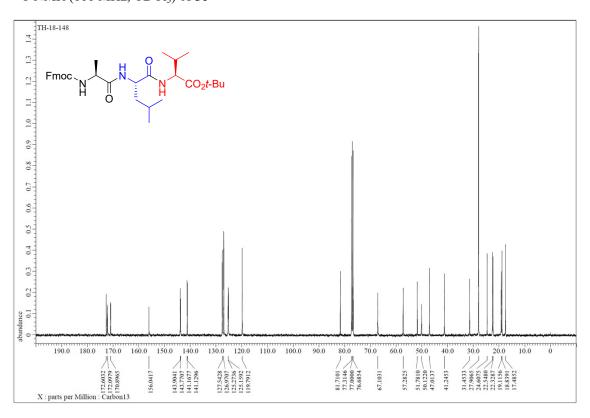

Peak Table

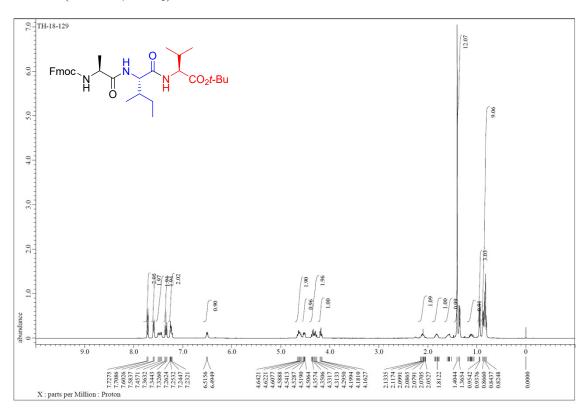
	PDA Ch2 205nm					
	Peak#	Ret. Time	Area	Area%		
ſ	1	8.066	24664541	99.107		
	2	13.050	222177	0.893		
	Total	1	24886717	100.000		

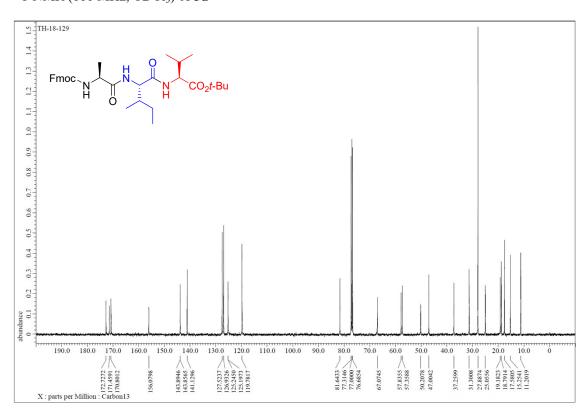

10. NMR data ¹H NMR (400 MHz, CDCl₃) of 5a

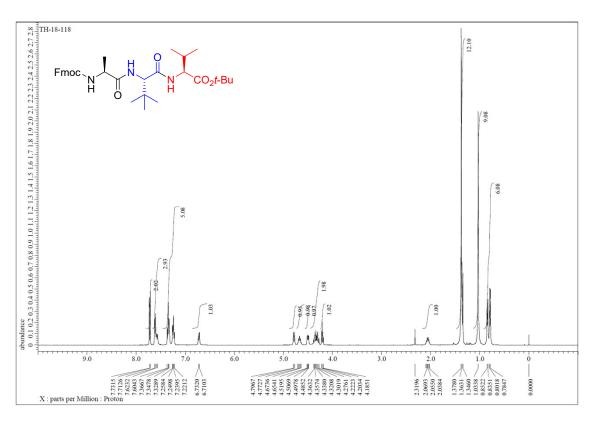

¹³C NMR (100 MHz, CDCl₃) of **5a**

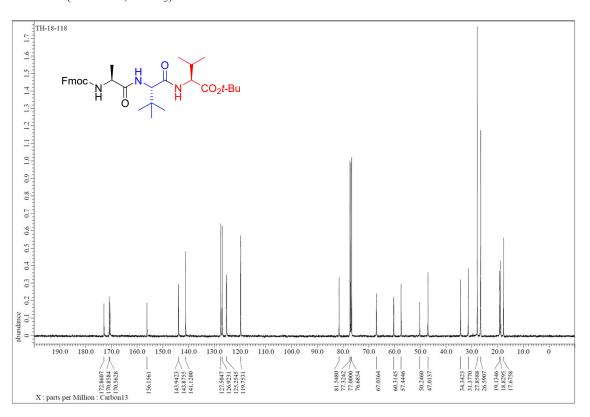

¹H NMR (400 MHz, CDCl₃) of **5b**

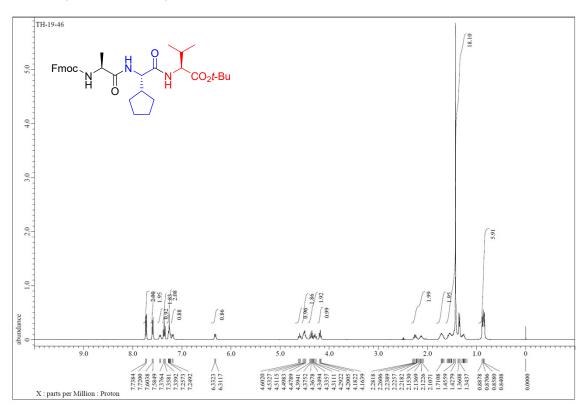

¹³C NMR (100 MHz, CDCl₃) of **5b**

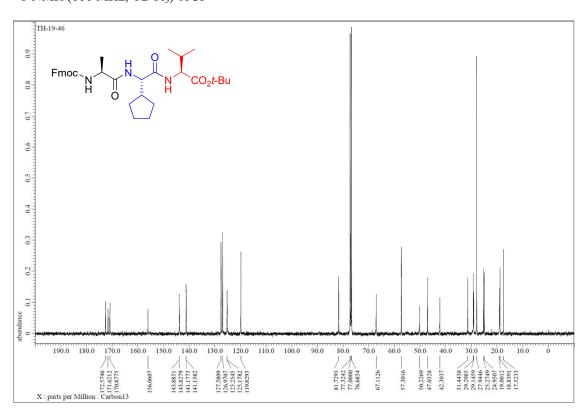

¹H NMR (400 MHz, CDCl₃) of **5c**

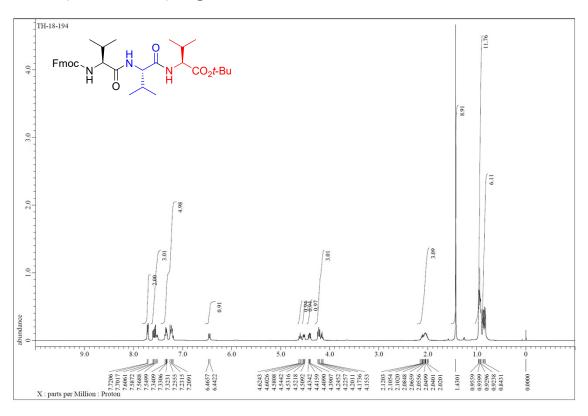

¹³C NMR (100 MHz, CDCl₃) of **5c**

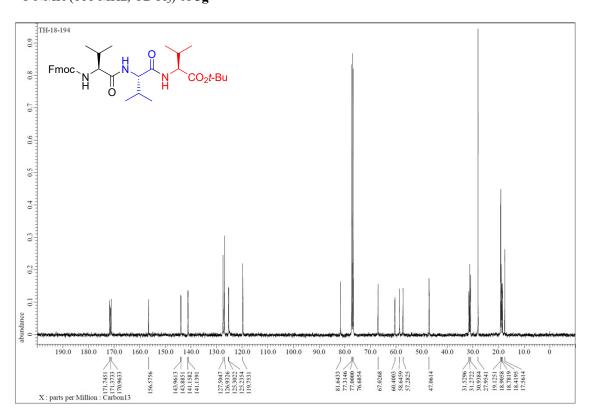

¹H NMR (400 MHz, CDCl₃) of **5d**

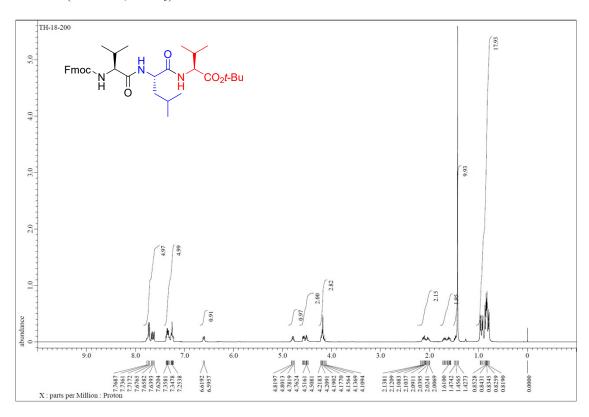

¹³C NMR (100 MHz, CDCl₃) of **5d**

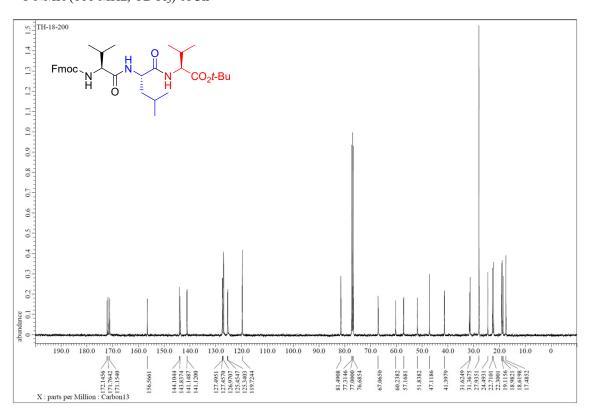

¹H NMR (400 MHz, CDCl₃) of **5e**

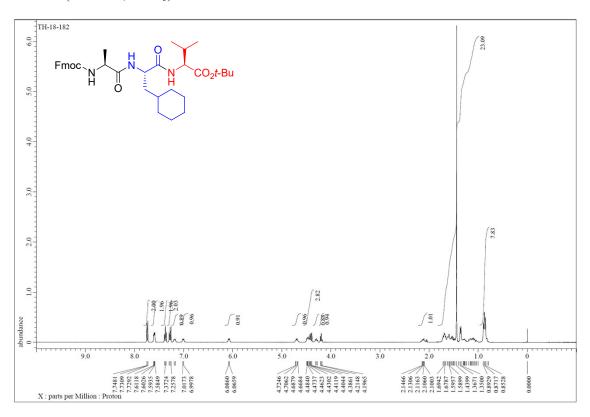

¹³C NMR (100 MHz, CDCl₃) of **5e**

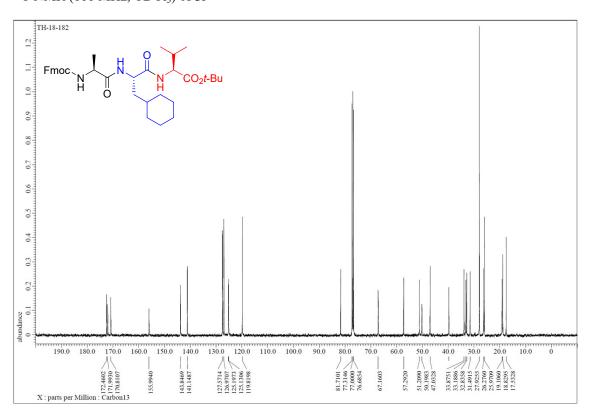

¹H NMR (400 MHz, CDCl₃) of **5f**

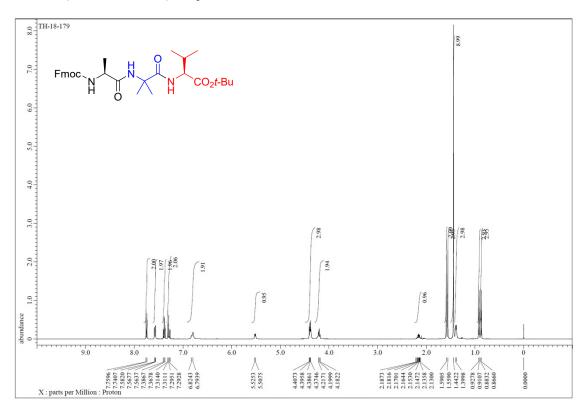

¹³C NMR (100 MHz, CDCl₃) of **5f**

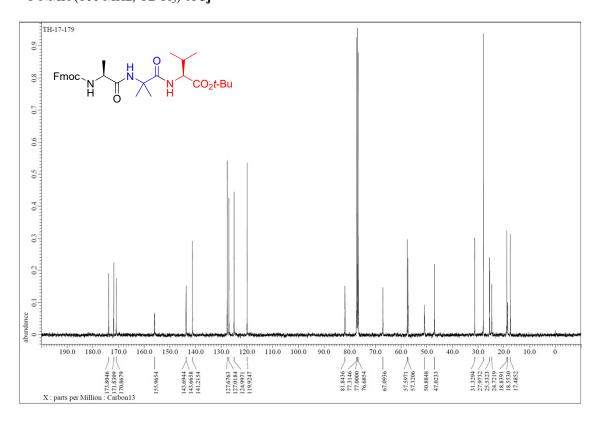

1 H NMR (400 MHz, CDCl₃) of $\mathbf{5g}$

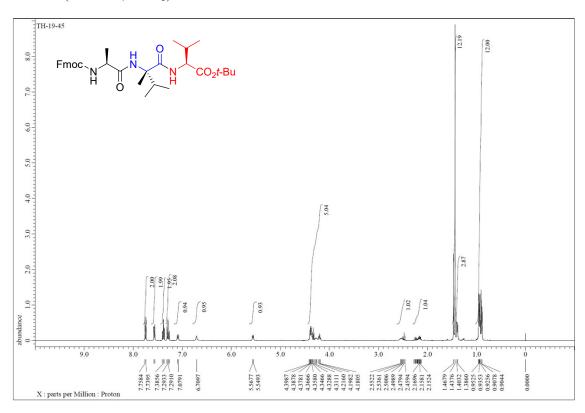

13 C NMR (100 MHz, CDCl₃) of $\mathbf{5g}$

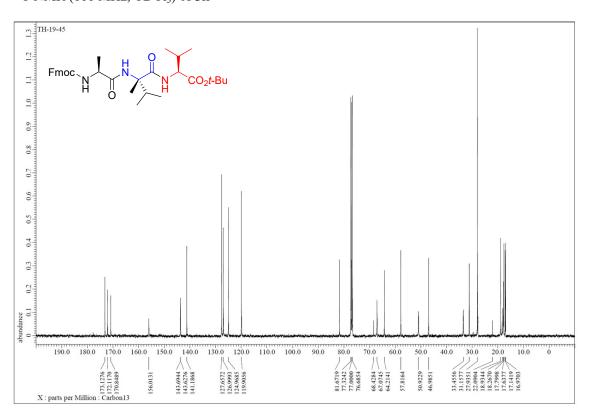

¹H NMR (400 MHz, CDCl₃) of **5h**

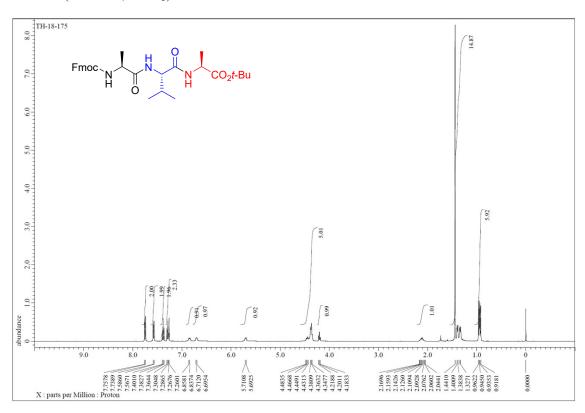

¹³C NMR (100 MHz, CDCl₃) of **5h**

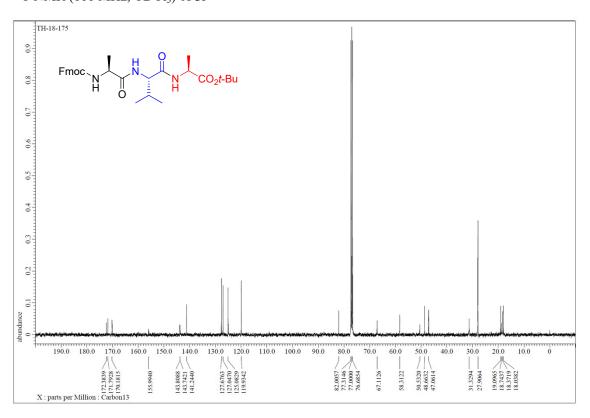

¹H NMR (400 MHz, CDCl₃) of 5i

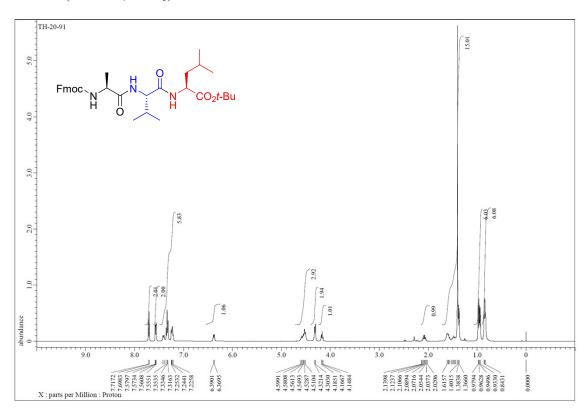

¹³C NMR (100 MHz, CDCl₃) of **5i**

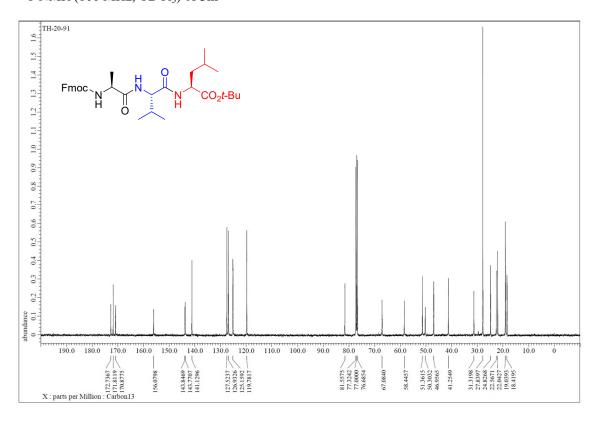

¹H NMR (400 MHz, CDCl₃) of 5j

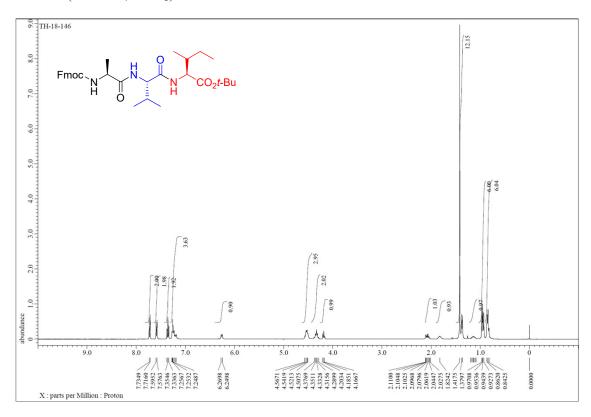

¹³C NMR (100 MHz, CDCl₃) of **5j**


¹H NMR (400 MHz, CDCl₃) of **5k**

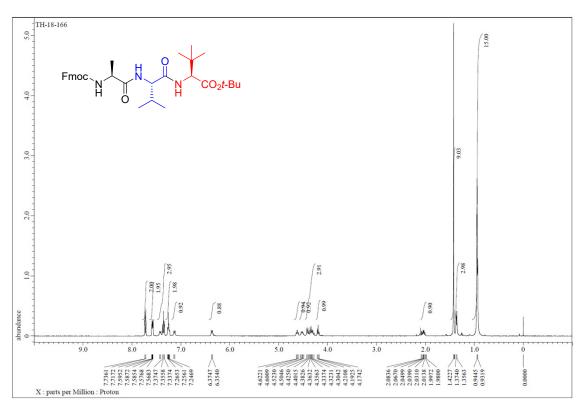

¹³C NMR (100 MHz, CDCl₃) of **5k**

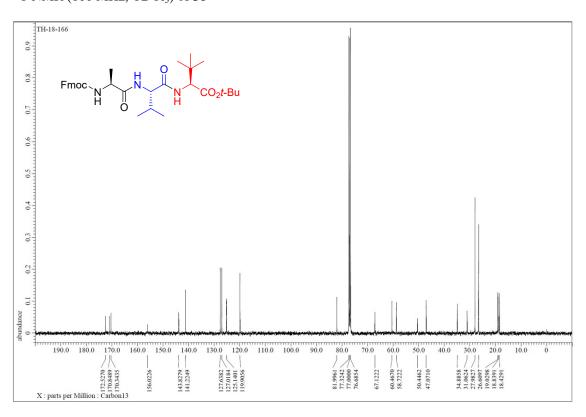

¹H NMR (400 MHz, CDCl₃) of **51**

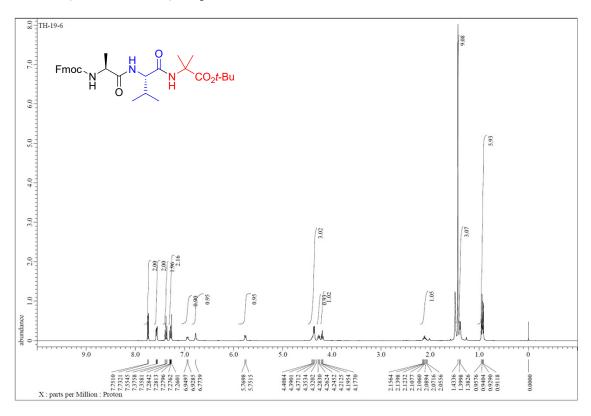

¹³C NMR (100 MHz, CDCl₃) of **5l**

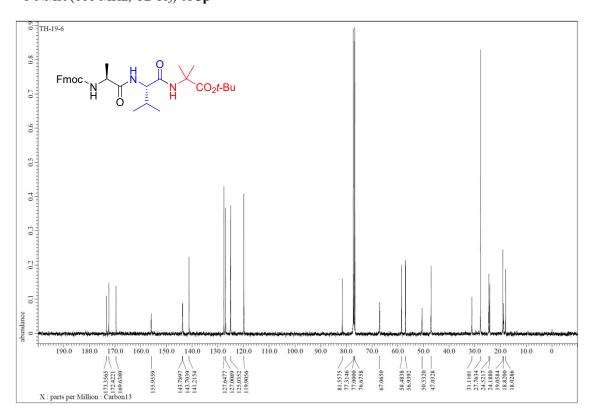

1 H NMR (400 MHz, CDCl₃) of 5m

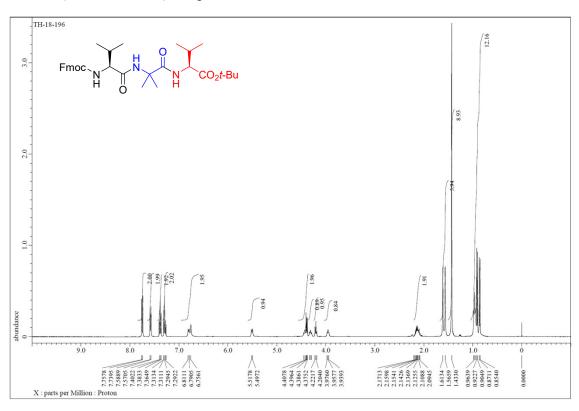

¹³C NMR (100 MHz, CDCl₃) of **5m**

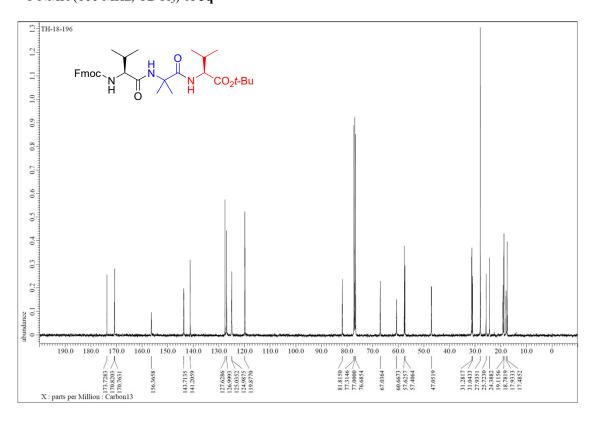

¹H NMR (400 MHz, CDCl₃) of **5n**

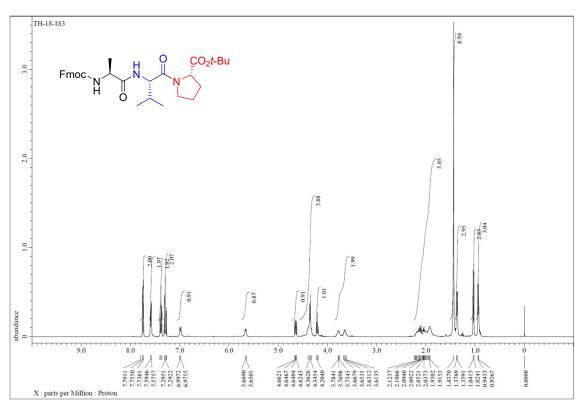

¹³C NMR (100 MHz, CDCl₃) of **5n**

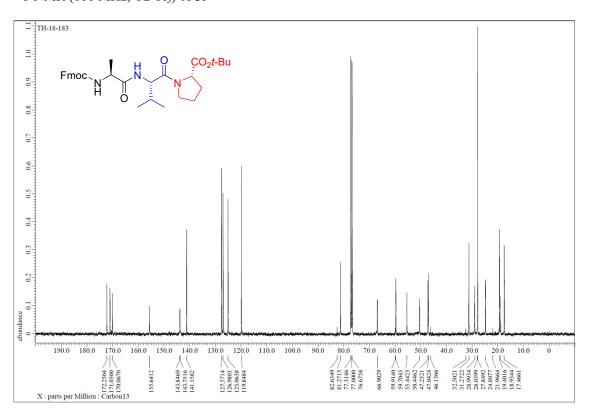

¹H NMR (400 MHz, CDCl₃) of **50**

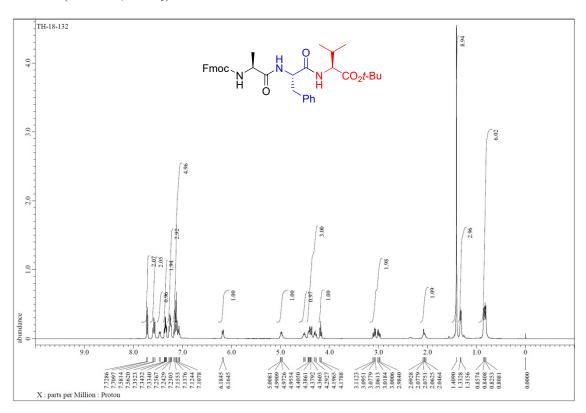

¹³C NMR (100 MHz, CDCl₃) of **50**

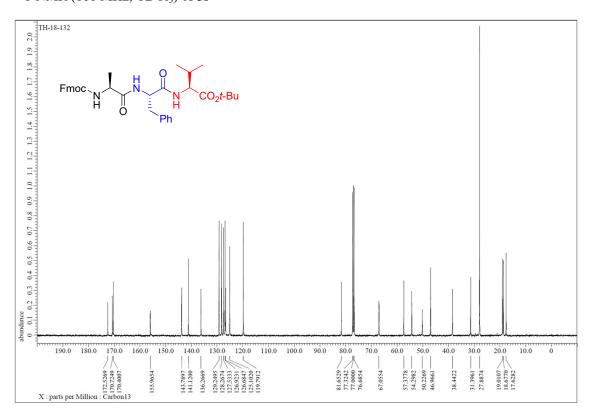

¹H NMR (400 MHz, CDCl₃) of **5p**

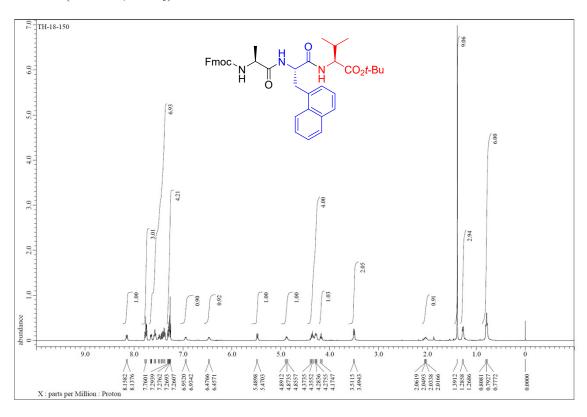

¹³C NMR (100 MHz, CDCl₃) of **5p**

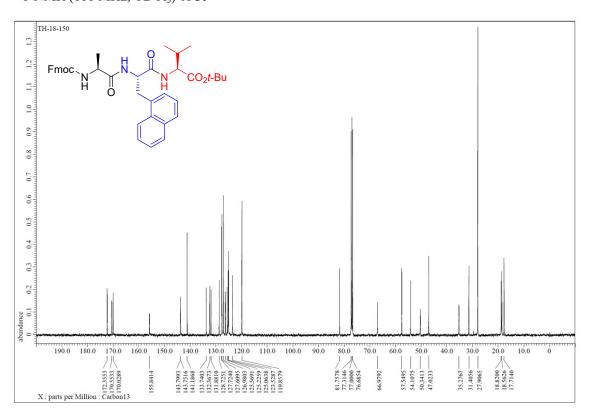

¹H NMR (400 MHz, CDCl₃) of **5q**

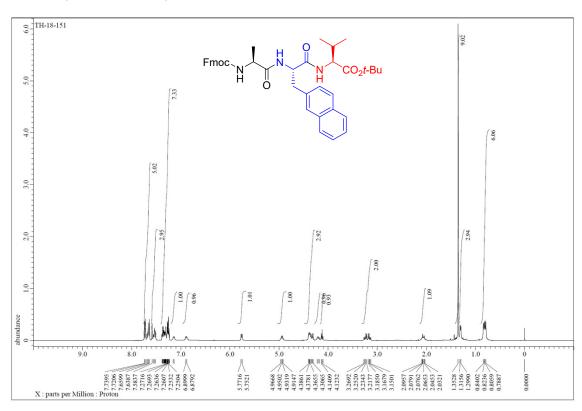

¹³C NMR (100 MHz, CDCl₃) of **5q**

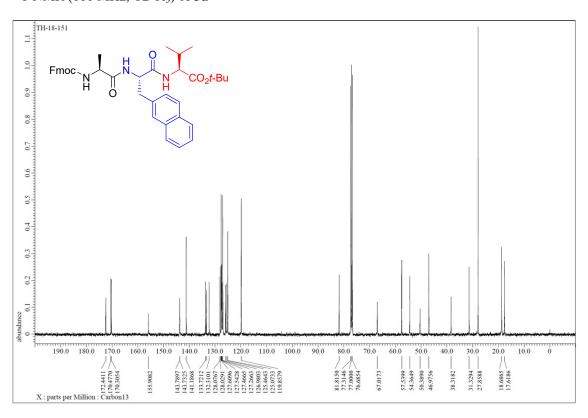

1 H NMR (400 MHz, CDCl₃) of 5r

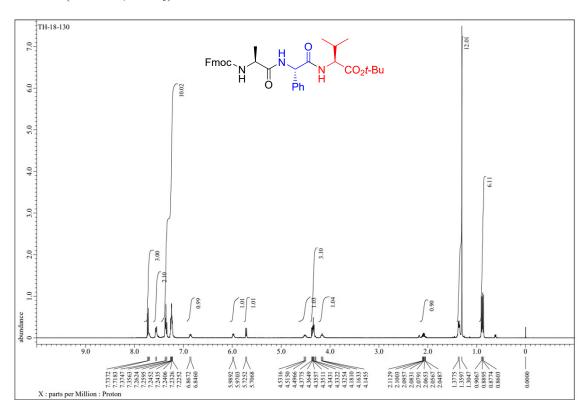

¹³C NMR (100 MHz, CDCl₃) of **5r**

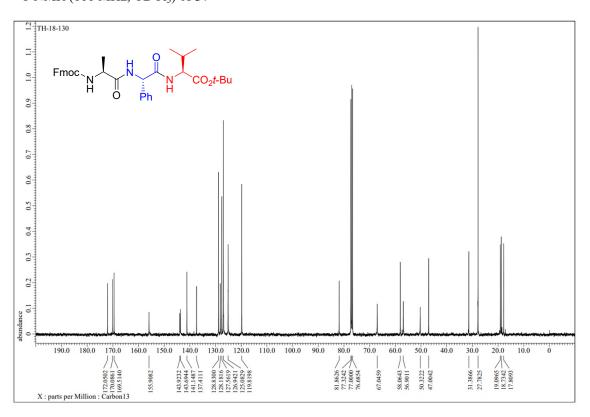

¹H NMR (400 MHz, CDCl₃) of **5s**

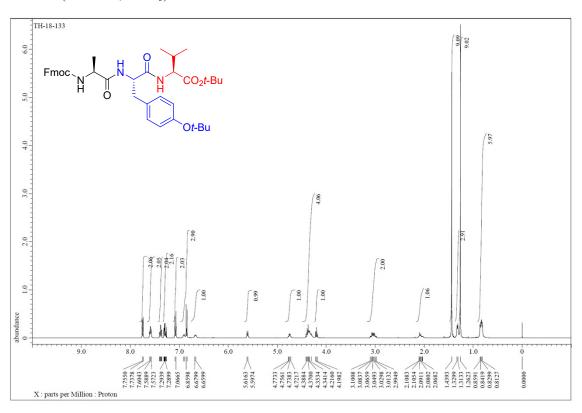

¹³C NMR (100 MHz, CDCl₃) of **5s**

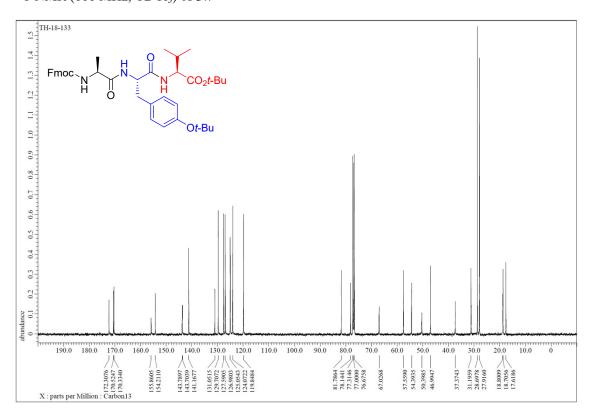

¹H NMR (400 MHz, CDCl₃) of **5t**

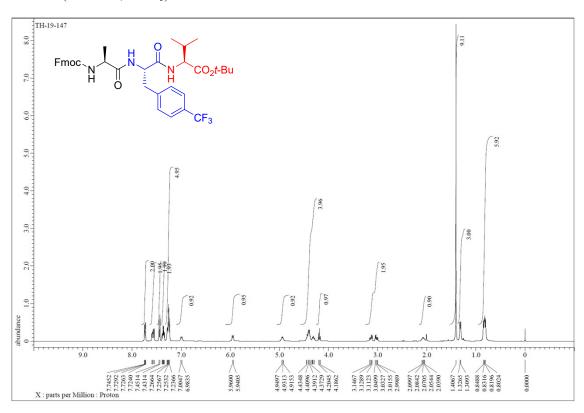

¹³C NMR (100 MHz, CDCl₃) of **5t**

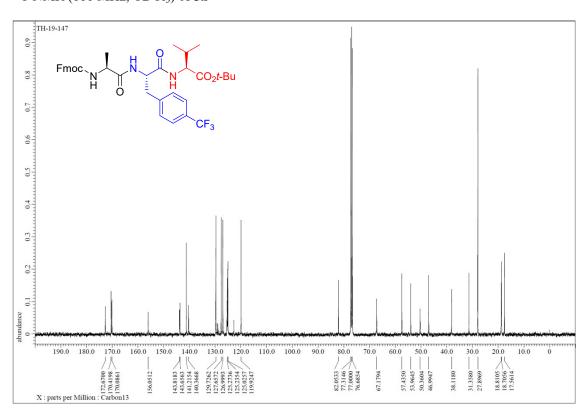

¹H NMR (400 MHz, CDCl₃) of **5u**

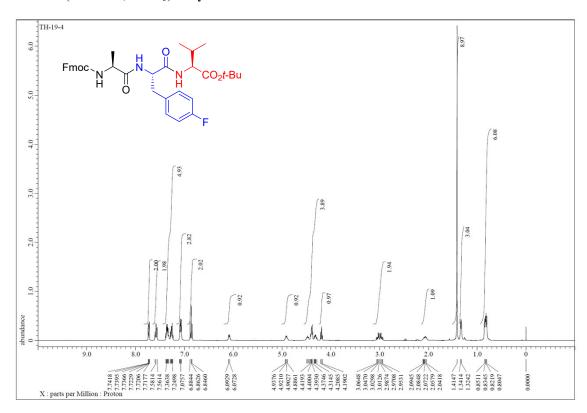

¹³C NMR (100 MHz, CDCl₃) of **5u**

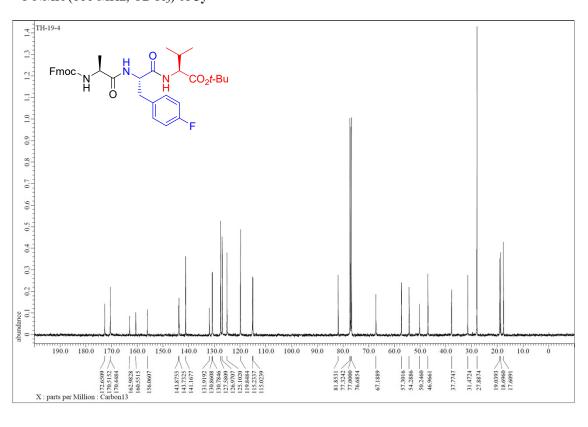

$^{1}\text{H NMR}$ (400 MHz, CDCl₃) of 5v

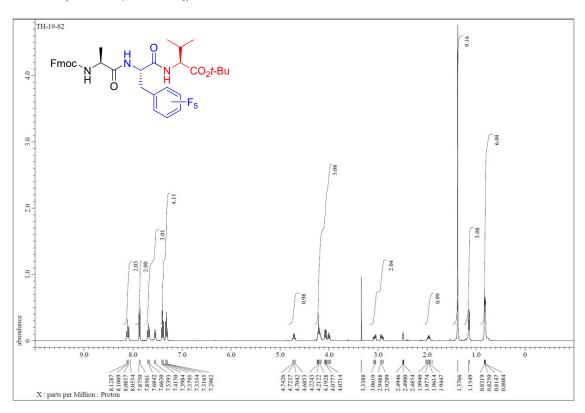

13 C NMR (100 MHz, CDCl₃) of 5v

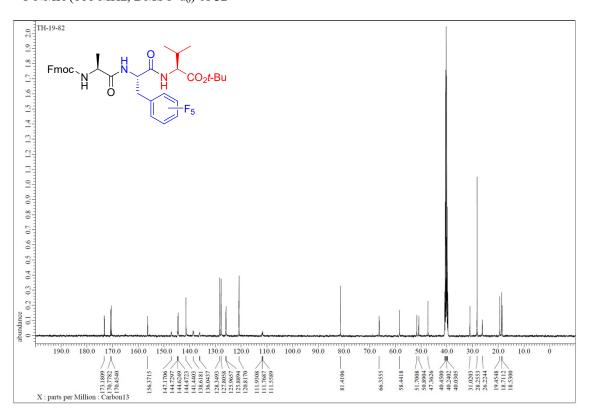

¹H NMR (400 MHz, CDCl₃) of **5w**

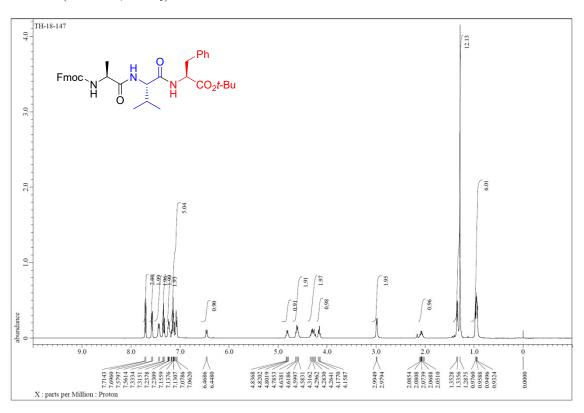

¹³C NMR (100 MHz, CDCl₃) of **5w**

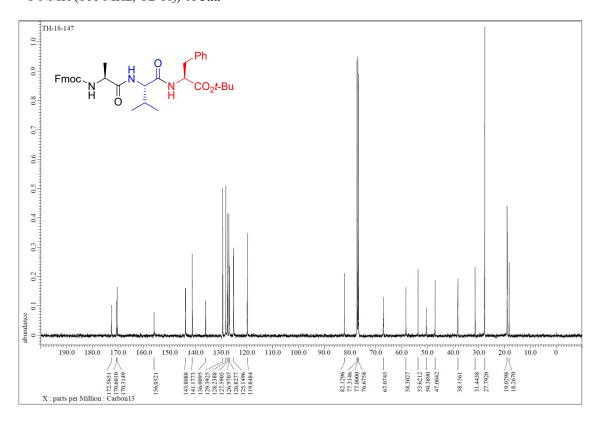

¹H NMR (400 MHz, CDCl₃) of **5x**

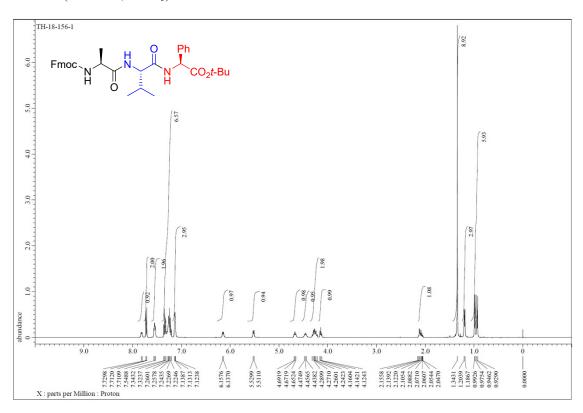

¹³C NMR (100 MHz, CDCl₃) of **5x**


¹H NMR (400 MHz, CDCl₃) of **5y**

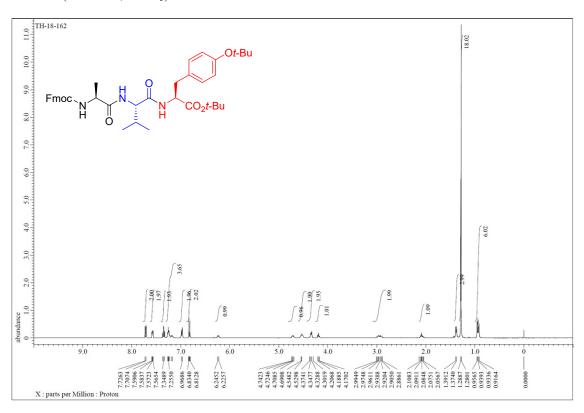

¹³C NMR (100 MHz, CDCl₃) of **5y**

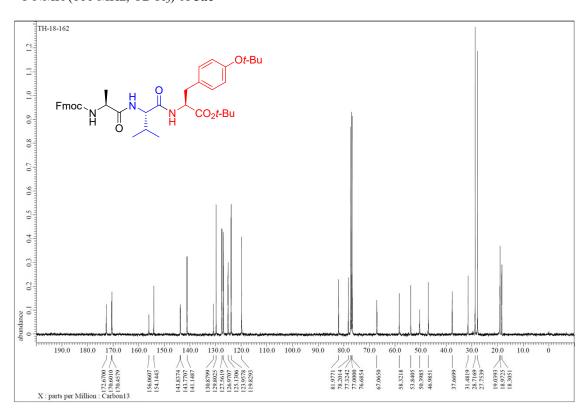

¹H NMR (400 MHz, DMSO-d₆) of **5z**

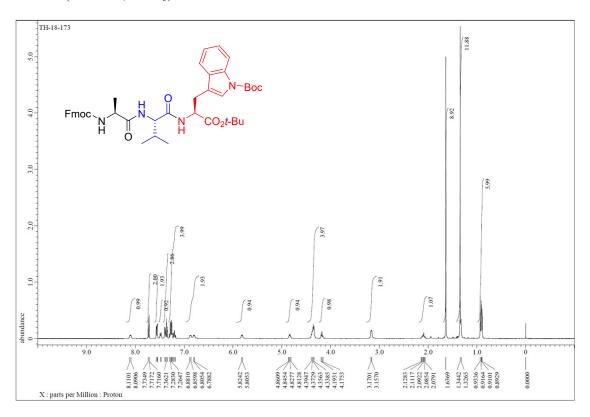

¹³C NMR (100 MHz, DMSO-d₆) of **5z**

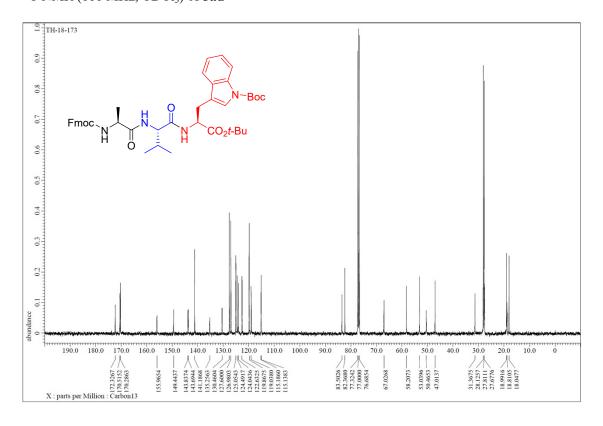

¹H NMR (400 MHz, CDCl₃) of 5aa

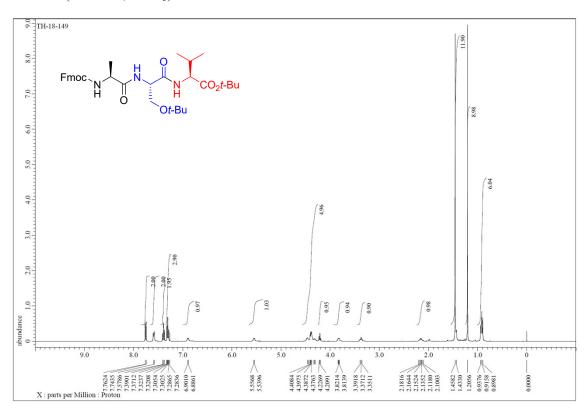
¹³C NMR (100 MHz, CDCl₃) of 5aa

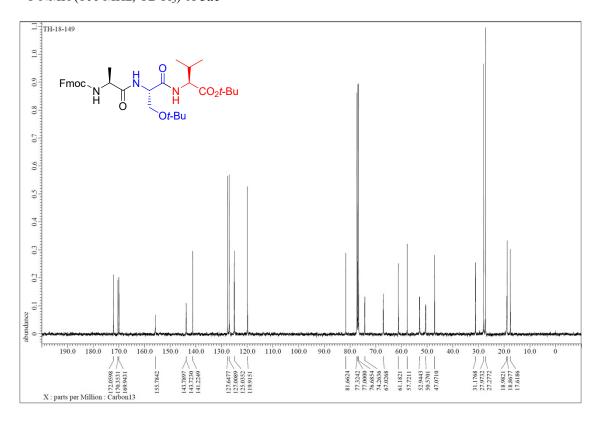

¹H NMR (400 MHz, CDCl₃) of **5ab**

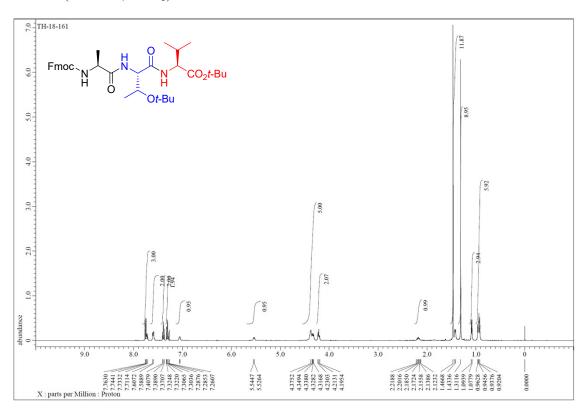

¹³C NMR (100 MHz, CDCl₃) of 5ab

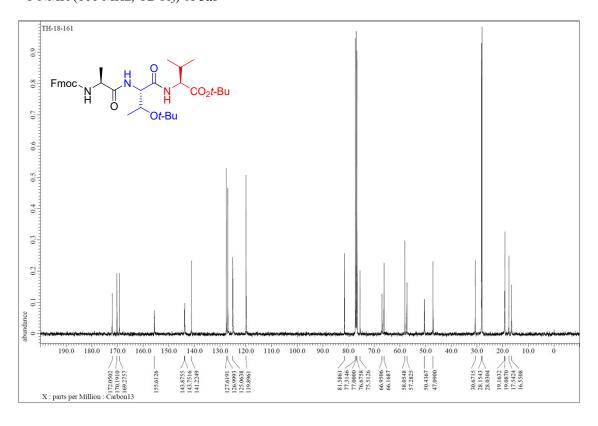

¹H NMR (400 MHz, CDCl₃) of **5ac**

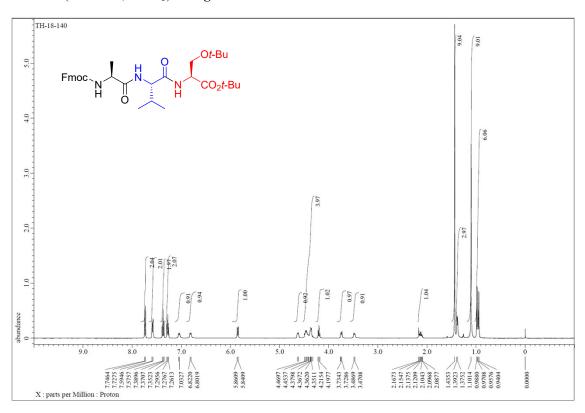

¹³C NMR (100 MHz, CDCl₃) of 5ac

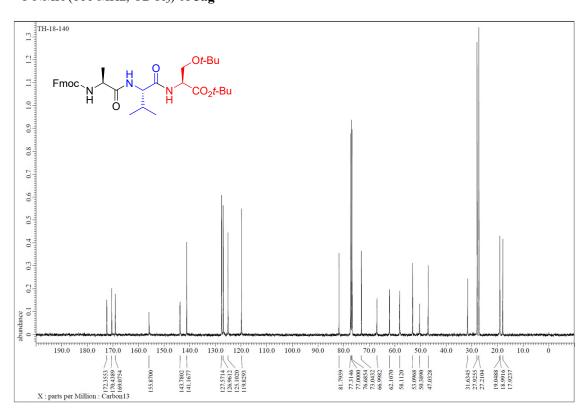

¹H NMR (400 MHz, CDCl₃) of 5ad

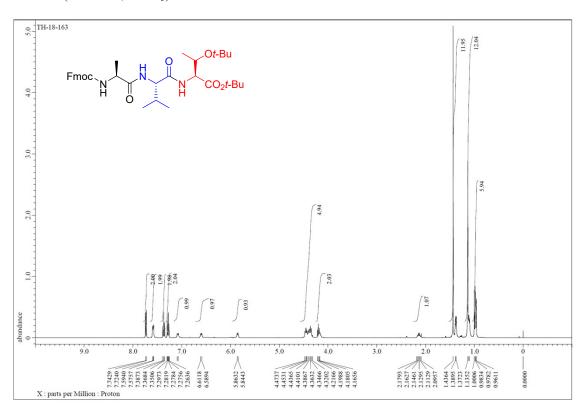

¹³C NMR (100 MHz, CDCl₃) of 5ad

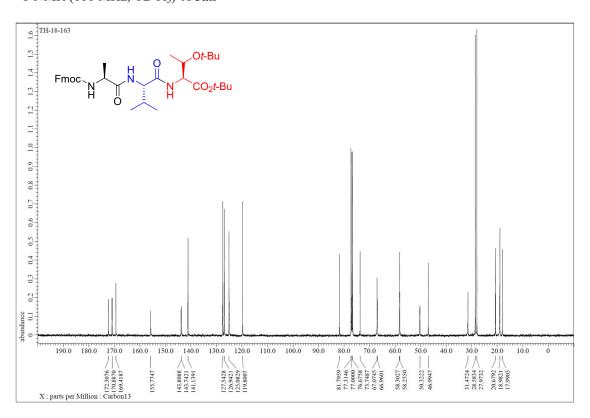

¹H NMR (400 MHz, CDCl₃) of 5ae

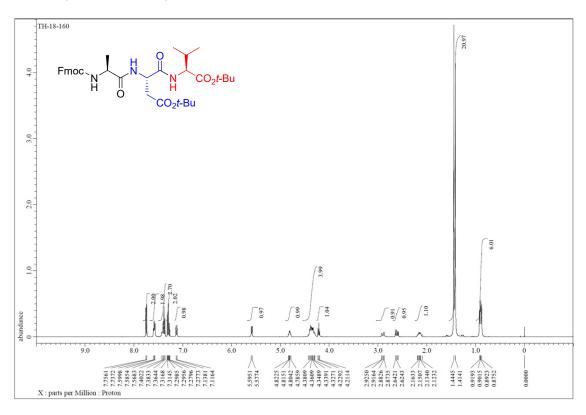

¹³C NMR (100 MHz, CDCl₃) of 5ae

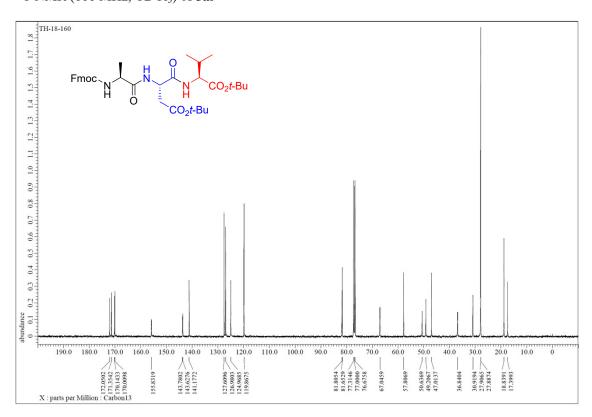

¹H NMR (400 MHz, CDCl₃) of **5af**

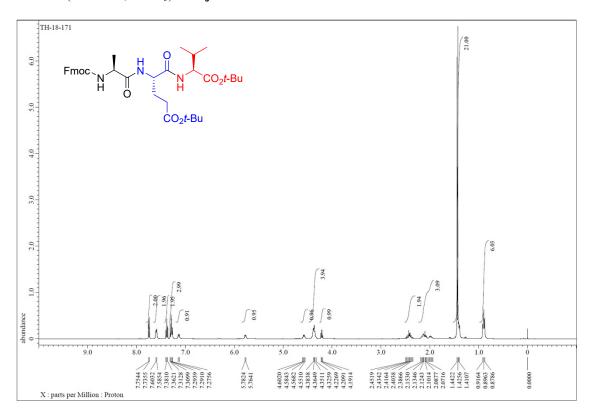

13 C NMR (100 MHz, CDCl₃) of **5af**

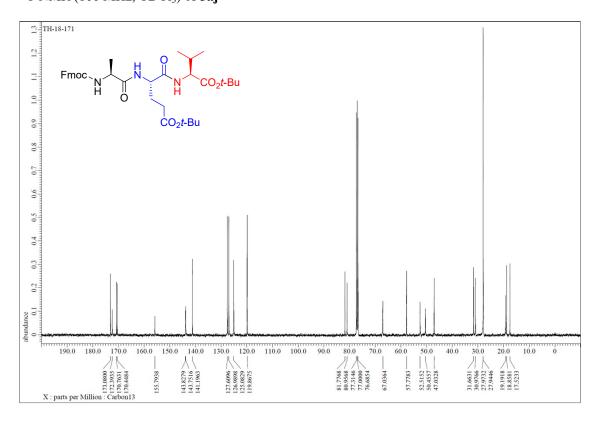

¹H NMR (400 MHz, CDCl₃) of 5ag

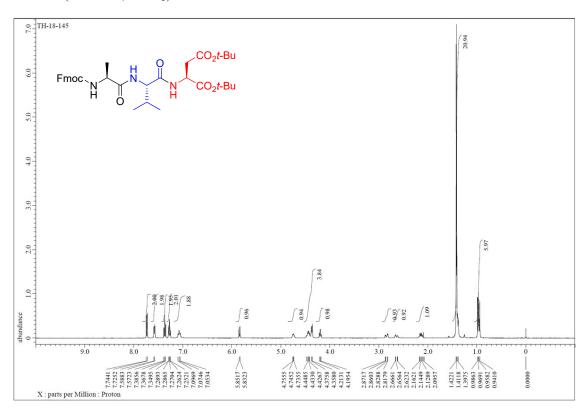

¹³C NMR (100 MHz, CDCl₃) of 5ag

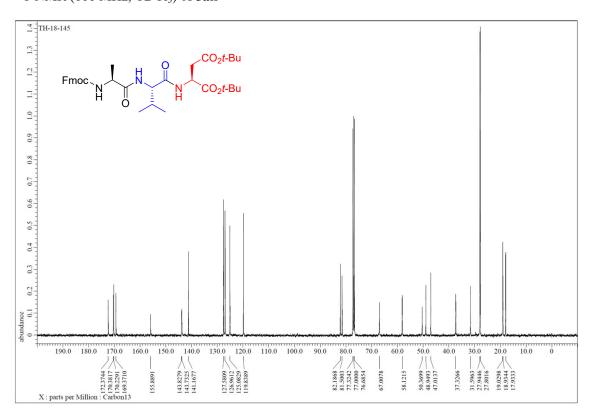

¹H NMR (400 MHz, CDCl₃) of 5ah


¹³C NMR (100 MHz, CDCl₃) of 5ah

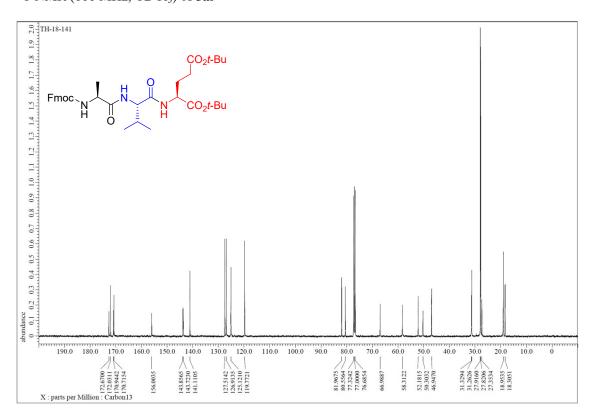

¹H NMR (400 MHz, CDCl₃) of **5ai**

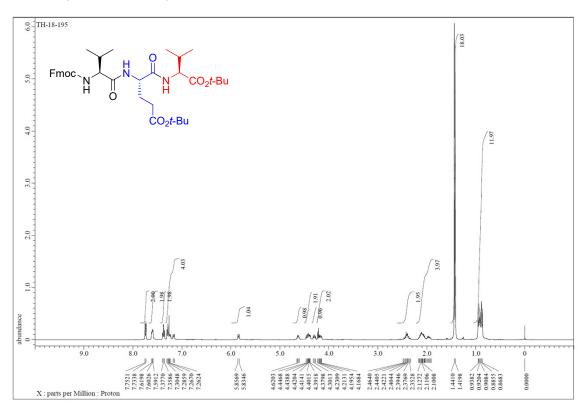

13 C NMR (100 MHz, CDCl₃) of **5ai**

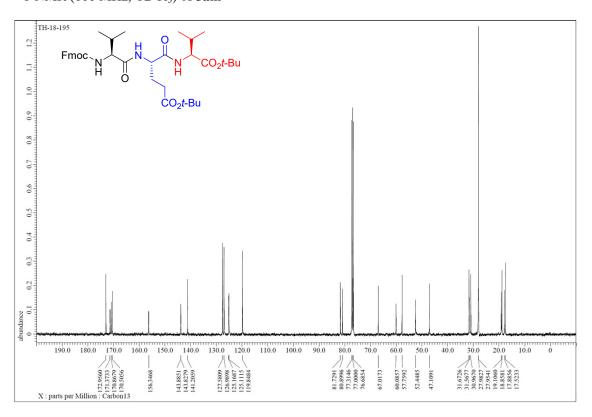

¹H NMR (400 MHz, CDCl₃) of **5aj**

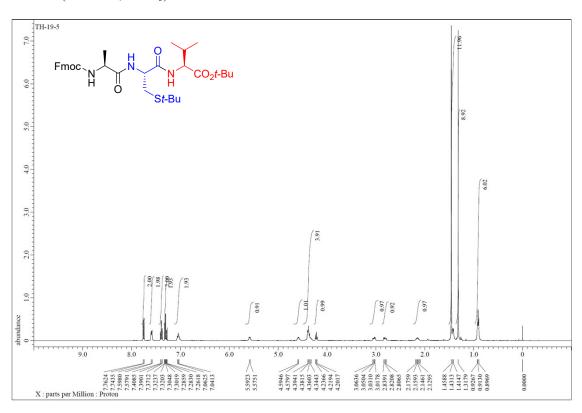

¹³C NMR (100 MHz, CDCl₃) of **5aj**

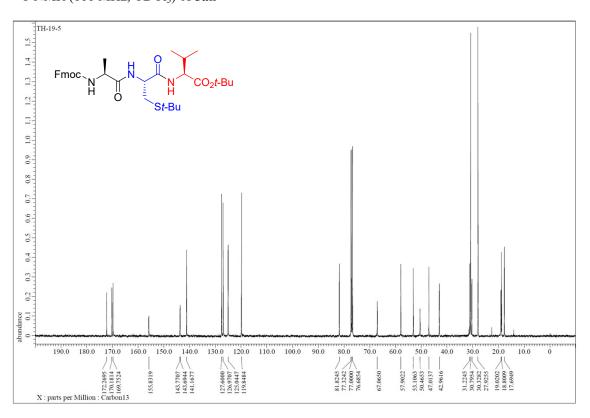
¹H NMR (400 MHz, CDCl₃) of 5ak

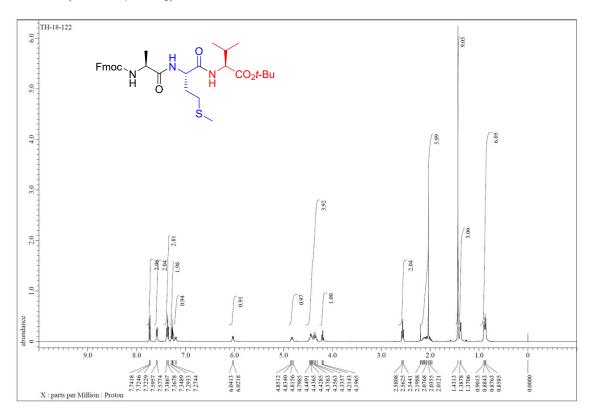

¹³C NMR (100 MHz, CDCl₃) of 5ak

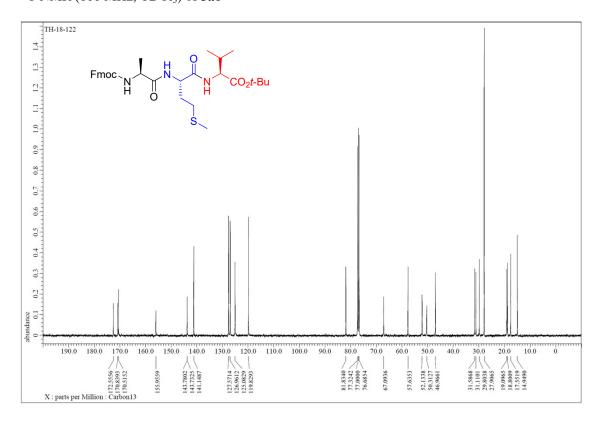

¹H NMR (400 MHz, CDCl₃) of 5al

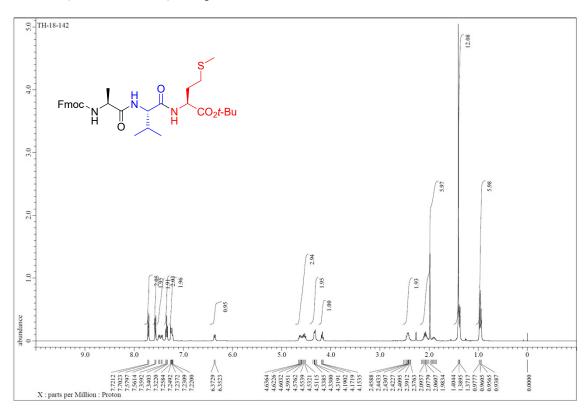

¹³C NMR (100 MHz, CDCl₃) of 5al

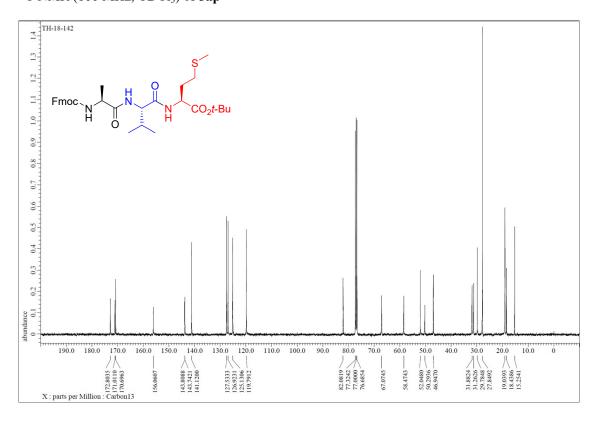

¹H NMR (400 MHz, CDCl₃) of 5am

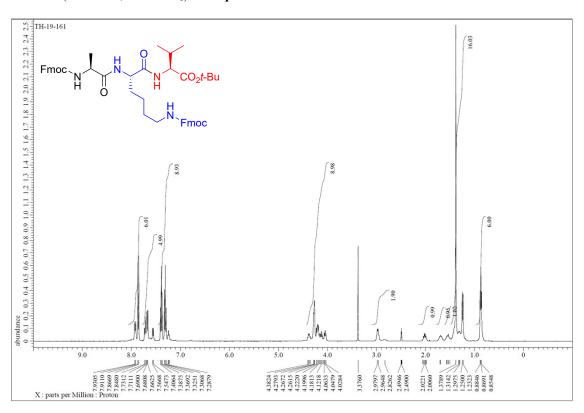

¹³C NMR (100 MHz, CDCl₃) of 5am

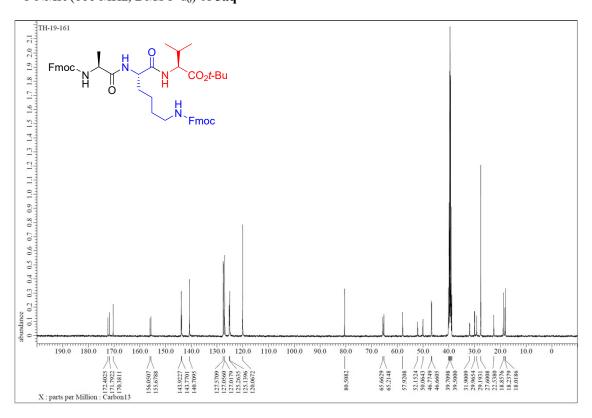

¹H NMR (400 MHz, CDCl₃) of 5an

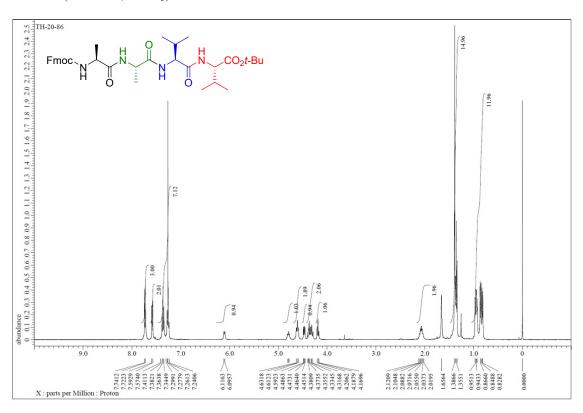

¹³C NMR (100 MHz, CDCl₃) of 5an

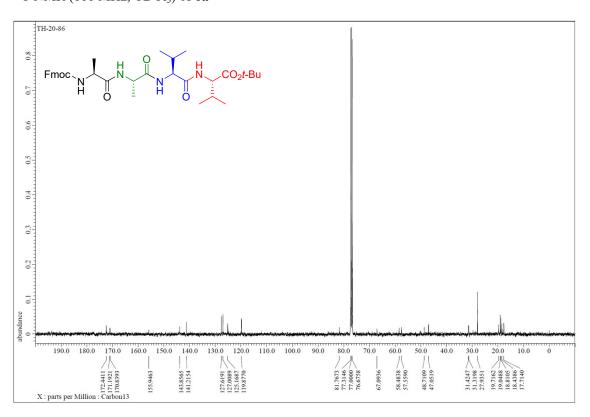

¹H NMR (400 MHz, CDCl₃) of 5ao

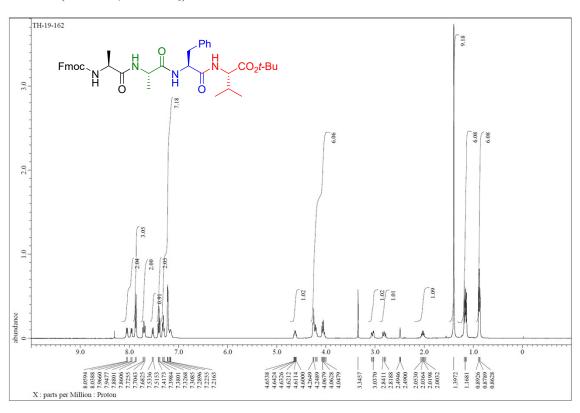

¹³C NMR (100 MHz, CDCl₃) of **5ao**

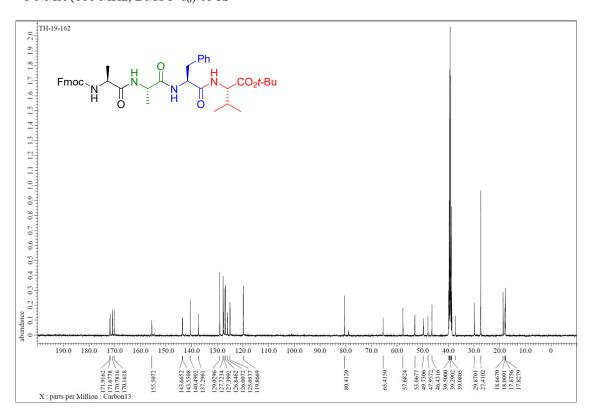

¹H NMR (400 MHz, CDCl₃) of 5ap

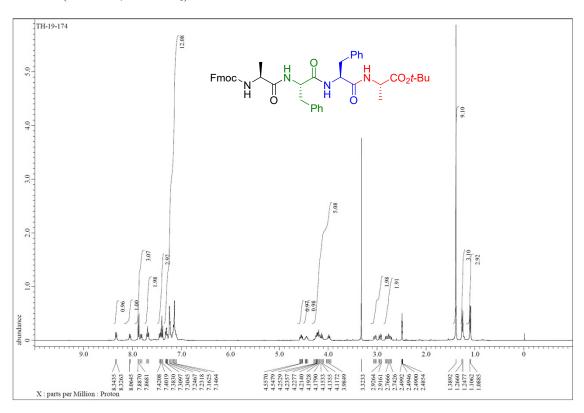

¹³C NMR (100 MHz, CDCl₃) of 5ap

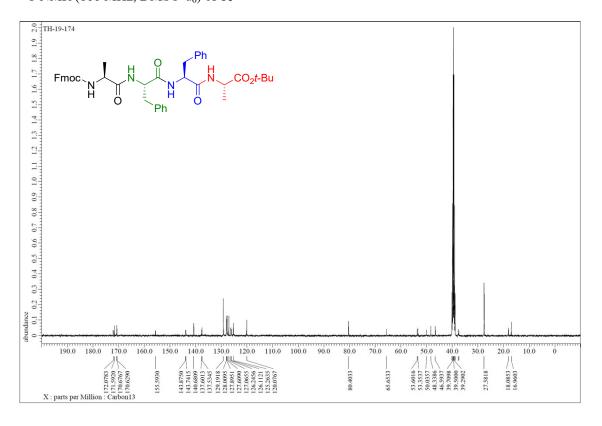

¹H NMR (400 MHz, DMSO-d₆) of **5aq**

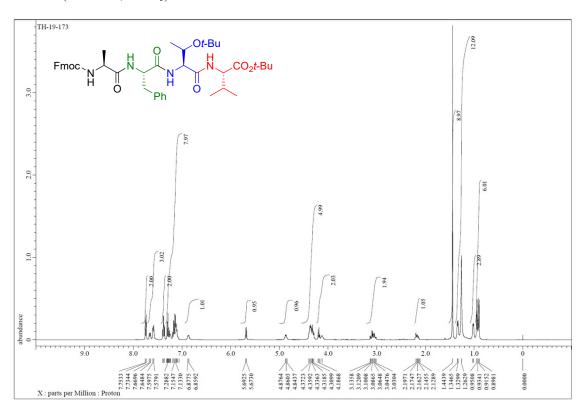

13 C NMR (100 MHz, DMSO-d₆) of **5aq**

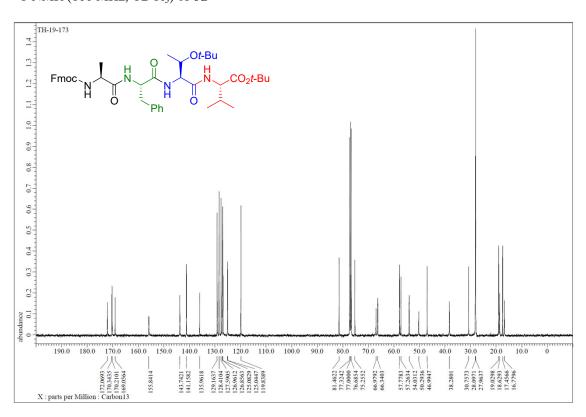

¹H NMR (400 MHz, CDCl₃) of 6a

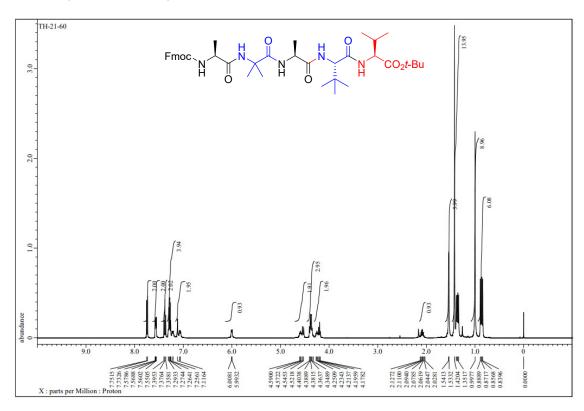

¹³C NMR (100 MHz, CDCl₃) of **6a**

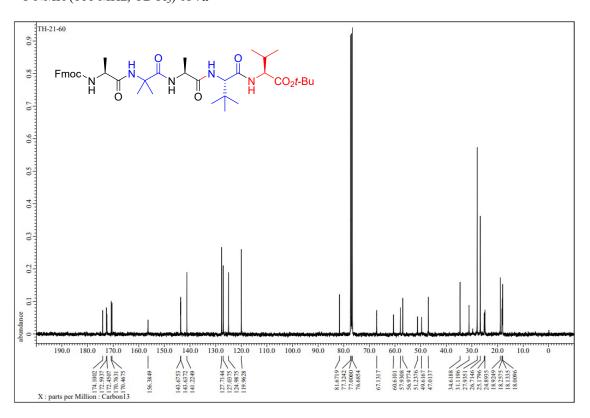

¹H NMR (400 MHz, DMSO-d₆) of **6b**

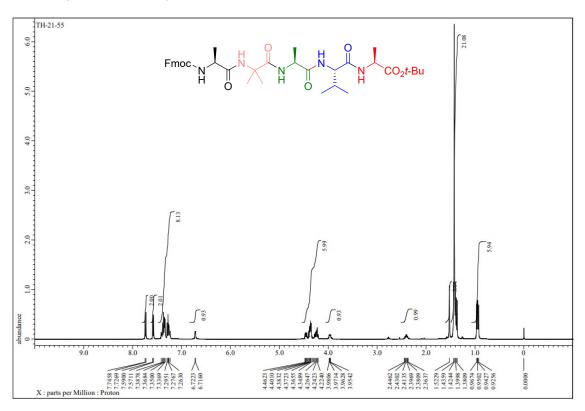

¹³C NMR (100 MHz, DMSO-d₆) of **6b**

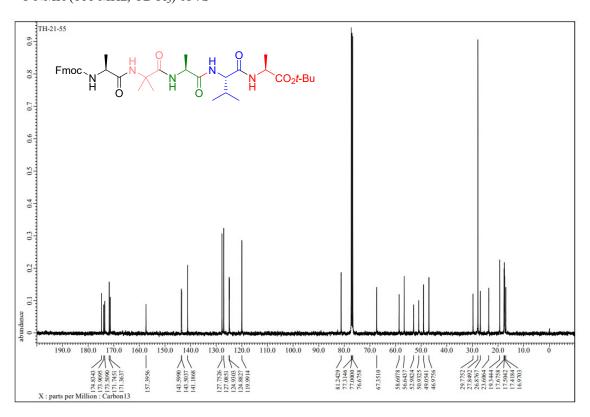

¹H NMR (400 MHz, DMSO-d₆) of **6c**


¹³C NMR (100 MHz, DMSO-d₆) of **6c**

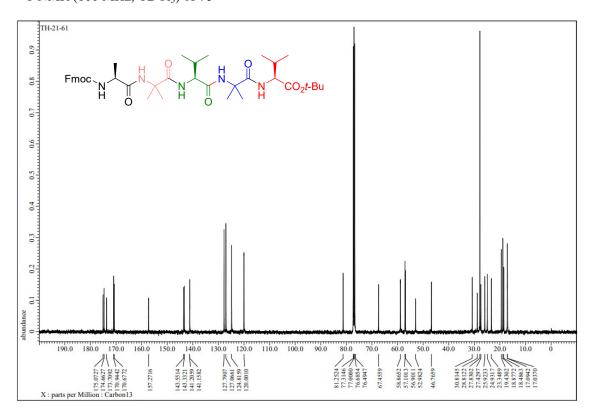

¹H NMR (400 MHz, CDCl₃) of 6d

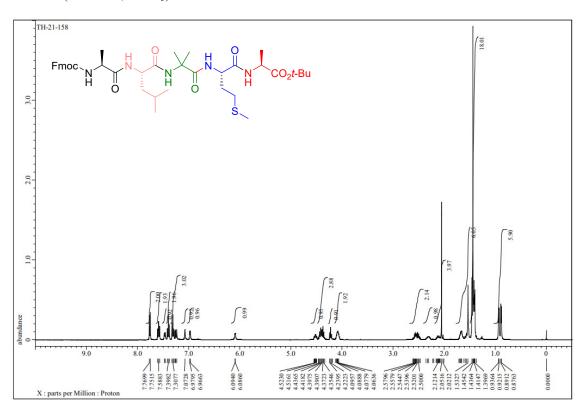

¹³C NMR (100 MHz, CDCl₃) of **6d**

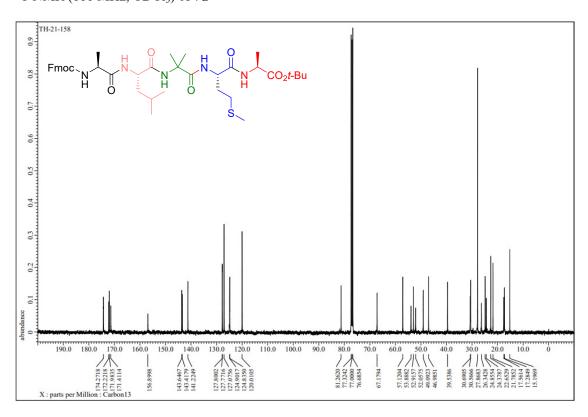

¹H NMR (400 MHz, CDCl₃) of **7a**

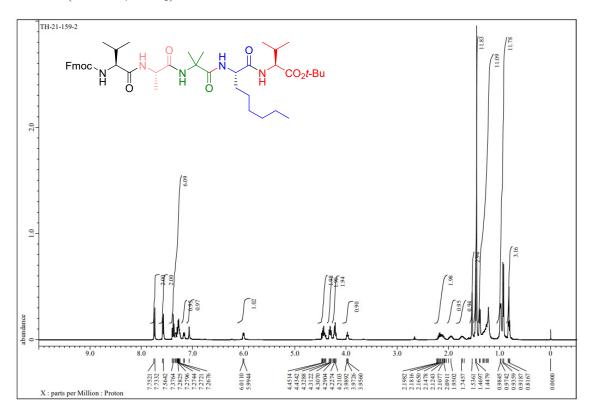

¹³C NMR (100 MHz, CDCl₃) of **7a**

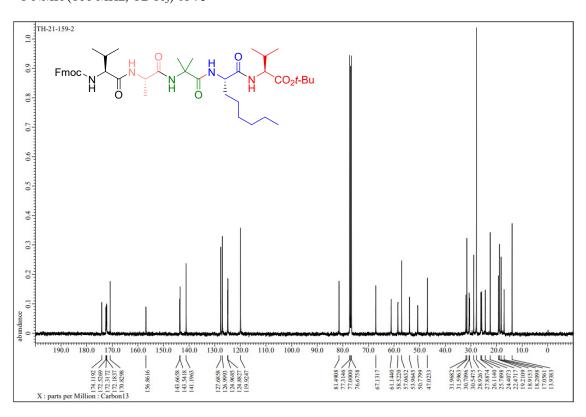
¹H NMR (400 MHz, CDCl₃) of **7b**


¹³C NMR (100 MHz, CDCl₃) of **7b**


¹H NMR (400 MHz, CDCl₃) of 7c


13 C NMR (100 MHz, CDCl₃) of 7c


¹H NMR (400 MHz, CDCl₃) of **7d**


¹³C NMR (100 MHz, CDCl₃) of **7d**

1 H NMR (400 MHz, CDCl₃) of 7e

13 C NMR (100 MHz, CDCl₃) of 7e

